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Bloom Filter 

 

 
Approximate membership queries 
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• Given a set S = {x1,x2,x3,…xn} on a universe U, 

want to answer queries of the form: 

 

• Example:  a set of URLs from the universe of 

all possible URL strings   

• Bloom Filter provides an answer in 

• “Constant” time (time to hash) 

• Small amount of space 

• But with some probability of being wrong 

?Syis 

Lookup problem 
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Start with an m bit array, filled with 0s. 

Hash each item xj in S   k times.  If Hi(xj) = a, set B[a] = 1. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B 

To check if y is in S, check B at Hi(y).  All k values must be 1. 

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B 

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B 

Possible to have a false positive;  all k values are 1, but y is not in S. 

Bloom Filters 
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• Number of elements n= 2: 9 and 11 

• Size of Bloom Filter m=5 

• Number of hash functions k=2 
• h1(x) = x mod 5 

• h2(x) = (2x+3) mod 5 

(A toy) Example 

h1(x) h2(x) 

Initialize 

insert 9 4 1 

insert 11 1 0 

0 0 0 0 0 

0 1 0 0 1 

1 1 0 0 1 

Bloom Filter 

Membership queries 

Queries h1(x) h2(x) Answer 

for elem 15 0 3 No, not in Bloom Filter (correct answer) 

for elem 16 1 0 Yes, in B (wrong answer: false positive) 
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• Assumption:  We have good hash functions, 

look random. 

• Given m bits for filter and n elements, 

choose number k of hash functions to 

minimize false positives: 

• Let  

• Let 

• As k increases, more chances to find a 0, 

but more 1’s in the array. 

• Find optimal at k = (ln 2)m/n by calculus 
(scanned document accompanying this lecture) 
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Errors 
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m/n = 8 

Opt k = 8 ln 2 = 5.45... 

Example 
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R-tree 

 

 
Indexing multi-dimensional data 



The R-Tree 

• The R-tree is a tree-structured index that 

remains balanced on inserts and deletes. 

• Each key stored in a leaf entry is 

intuitively a box, or collection of intervals, 

with one interval per dimension. 

• Example in 2-D: 

X 

Y 

Root of 
R Tree 

Leaf  
level 



R1 R2 

R3 R4 R5 R6 R7 

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 

R8 
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R14 

R15 

R16 

R1 

R2 

R3 

R4 
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R7 

Leaf entry 

Index entry 

Spatial object 
approximated by  
bounding box R8 


