
1

Πποχωπημένη Κατανεμημένη

Υπολογιστική

ΗΥ623

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 6η

2

Bloom Filter

Approximate membership queries

3

• Given a set S = {x1,x2,x3,…xn} on a universe U,

want to answer queries of the form:

• Example: a set of URLs from the universe of

all possible URL strings

• Bloom Filter provides an answer in

• “Constant” time (time to hash)

• Small amount of space

• But with some probability of being wrong

?Syis

Lookup problem

4

Start with an m bit array, filled with 0s.

Hash each item xj in S k times. If Hi(xj) = a, set B[a] = 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B

To check if y is in S, check B at Hi(y). All k values must be 1.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0 B

Possible to have a false positive; all k values are 1, but y is not in S.

Bloom Filters

5

• Number of elements n= 2: 9 and 11

• Size of Bloom Filter m=5

• Number of hash functions k=2
• h1(x) = x mod 5

• h2(x) = (2x+3) mod 5

(A toy) Example

h1(x) h2(x)

Initialize

insert 9 4 1

insert 11 1 0

0 0 0 0 0

0 1 0 0 1

1 1 0 0 1

Bloom Filter

Membership queries

Queries h1(x) h2(x) Answer

for elem 15 0 3 No, not in Bloom Filter (correct answer)

for elem 16 1 0 Yes, in B (wrong answer: false positive)

6

• Assumption: We have good hash functions,

look random.

• Given m bits for filter and n elements,

choose number k of hash functions to

minimize false positives:

• Let

• Let

• As k increases, more chances to find a 0,

but more 1’s in the array.

• Find optimal at k = (ln 2)m/n by calculus
(scanned document accompanying this lecture)

mk nk n emp /)/11(]emp ty is ce llP r[
kmk nk epf)1()1(]p o s fa lseP r[/

Errors

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

F
a

ls
e
 p

o
si

ti
v

e
 r

a
te

m/n = 8

Opt k = 8 ln 2 = 5.45...

Example

8

R-tree

Indexing multi-dimensional data

The R-Tree

• The R-tree is a tree-structured index that

remains balanced on inserts and deletes.

• Each key stored in a leaf entry is

intuitively a box, or collection of intervals,

with one interval per dimension.

• Example in 2-D:

X

Y

Root of
R Tree

Leaf
level

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

R8
R9

R10

R11

R12

R17

R18

R19

R13

R14

R15

R16

R1

R2

R3

R4

R5

R6

R7

Leaf entry

Index entry

Spatial object
approximated by
bounding box R8

