
1

Πποχωπημένη Κατανεμημένη

Υπολογιστική

ΗΥ623

Διδάζκων –

 Δημήηριος Καηζαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 3η

 Virtualization

Concepts

Definitions

• Virtualization
• A layer mapping its visible interface and resources onto the interface

and resources of the underlying layer or system on which it is
implemented

• Purposes
• Abstraction – to simplify the use of the underlying resource (e.g., by

removing details of the resource’s structure)

• Replication – to create multiple instances of the resource (e.g., to
simplify management or allocation)

• Isolation – to separate the uses which clients make of the underlying
resources (e.g., to improve security)

• Virtual Machine Monitor (VMM)
• A virtualization system that partitions a single physical “machine”

into multiple virtual machines.

• Terminology
• Host – the machine and/or software on which the VMM is implemented

• Guest – the OS which executes under the control of the VMM

Origins - Principles

• Efficiency
• Innocuous instructions should execute

directly on the hardware

• Resource control
• Executed programs may not affect the

system resources

• Equivalence
• The behavior of a program executing

under the VMM should be the same as
if the program were executed directly
on the hardware (except possibly for
timing and resource availability)

Communications of the ACM, vol 17, no 7, 1974, pp.412-421

“an efficient, isolated duplicate of the real machine”

Origins - Principles

Instruction types

• Privileged

 an instruction traps in unprivileged (user) mode but not in privileged
(supervisor) mode.

• Sensitive
•Control sensitive –

attempts to change the memory allocation or privilege mode

•Behavior sensitive
• Location sensitive – execution behavior depends on location in memory

• Mode sensitive – execution behavior depends on the privilege mode

• Innocuous – an instruction that is not sensitive

Theorem
For any conventional third generation computer, a virtual machine monitor may be
constructed if the set of sensitive instructions for that computer is a subset of the
set of privileged instructions.

Signficance
 The IA-32/x86 architecture is not virtualizable.

Origins - Technology

• Concurrent execution of multiple production operating systems

• Testing and development of experimental systems

• Adoption of new systems with continued use of legacy systems

• Ability to accommodate applications requiring special-purpose
OS

• Introduced notions of “handshake” and “virtual-equals-real
mode” to allow sharing of resource control information with CP

• Leveraged ability to co-design hardware, VMM, and guestOS

IBM Systems Journal, vol. 18, no. 1, 1979, pp. 4-17.

VMMs Rediscovered

• Server/workload consolidation (reduces “server sprawl”)

• Compatible with evolving multi-core architectures

• Simplifies software distributions for complex
environments

• “Whole system” (workload) migration

• Improved data-center management and efficiency

• Additional services (workload isolation) added
“underneath” the OS
• security (intrusion detection, sandboxing,…)

• fault-tolerance (checkpointing, roll-back/recovery)

VMM

Virtual
Machine

Guest OS

Application

Virtual
Machine

Guest OS

Application

Virtual
Machine

Guest OS

Application

Real
Machine

Architecture & Interfaces
• Architecture: formal specification of a system’s interface and

the logical behavior of its visible resources.

Hardware

System ISA User ISA

Operating

System

System Calls
Libraries

Applications

ISA

ABI

API

• API – application binary interface

• ABI – application binary interface

 • ISA – instruction set architecture

VMM Types

• System

• Process

• Provides ABI interface

• Efficient execution

• Can add OS-independent services
(e.g., migration, intrustion detection)

• Provdes API interface

• Easier installation

• Leverage OS services (e.g.,
device drivers)

• Execution overhead (possibly
mitigated by just-in-time
compilation)

System-level Design Approaches

• Full virtualization (direct execution)

• Exact hardware exposed to OS

• Efficient execution

• OS runs unchanged

• Requires a “virtualizable” architecture

• Example: VMWare

• Paravirtualization

• OS modified to execute under VMM

• Requires porting OS code

• Execution overhead

• Necessary for some (popular) architectures (e.g.,
x86)

• Examples: Xen, Denali

Design Space (level vs. ISA)

• Variety of techniques and approaches available

• Critical technology space highlighted

API interface ABI interface

System VMMs

• Structure
• Type 1: runs directly on host hardware

• Type 2: runs on HostOS

• Primary goals
• Type 1: High performance

• Type 2: Ease of
construction/installation/acceptability

• Examples
• Type 1: VMWare ESX Server, Xen,

OS/370

• Type 2: User-mode Linux

Type 1

Type 2

Hosted VMMs

• Structure
• Hybrid between Type1 and Type2

• Core VMM executes directly on
hardware

• I/O services provided by code running
on HostOS

• Goals
• Improve performance overall

• leverages I/O device support on the
HostOS

• Disadvantages
• Incurs overhead on I/O operations

• Lacks performance isolation and
performance guarantees

• Example: VMWare (Workstation)

Whole-system VMMs

• Challenge: GuestOS ISA differs
from HostOS ISA

• Requires full emulation of GuestOS
and its applications

• Example: VirtualPC

Strategies
• De-privileging

• VMM emulates the effect on system/hardware
resources of privileged instructions whose
execution traps into the VMM

• aka trap-and-emulate

• Typically achieved by running GuestOS at a lower
hardware priority level than the VMM

• Problematic on some architectures where
privileged instructions do not trap when executed
at deprivileged priority

• Primary/shadow structures
• VMM maintains “shadow” copies of critical

structures whose “primary” versions are
manipulated by the GuestOS

• e.g., page tables

• Primary copies needed to insure correct
environment visible to GuestOS

• Memory traces
• Controlling access to memory so that the shadow

and primary structure remain coherent

• Common strategy: write-protect primary copies so
that update operations cause page faults which
can be caught, interpreted, and emulated.

resource

 vmm

privileged

instruction

trap

GuestOS

resource

emulate change

change

16

Live migration of Virtual

Machines

Introduction

• OS virtualization

• Data centers

• Cluster computing

• Live OS migration

• Avoid problem of “residual dependencies”

• In-memory state can be transferred in a consistent and
efficient way

• Separation of concerns between Users and Operator of a
data center or cluster

• Separation of hardware and software considerations, and
consolidating clustered hardware into a single coherent
management domain

Design

• Migrating memory
• Balancing Downtime and Total migration time

• Push phase

• Stop-and-copy phase

• Pull phase

• Local resources

• Connections to local devices (disks , network

interfaces)

• Single switched LAN

• Network-Attached Storage

Τμ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & Δικηύων, Πανεπιζηήμιο Θεζζαλίας
20

Τμ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & Δικηύων, Πανεπιζηήμιο Θεζζαλίας
21

Τμ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & Δικηύων, Πανεπιζηήμιο Θεζζαλίας
22

Τμ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & Δικηύων, Πανεπιζηήμιο Θεζζαλίας
23

24

Black-box and Gray-box

Strategies for Virtual

Machine Migration

The Sandpiper Architecture

25

Gathering

resource

usage

statistics on

that server
Gathers processor,

network and

memory swap

statistics

for each VM Implements a

daemon to gather

OS-level

statistics and

application logs

Construct resource

usage profiles for

each virtual server

(Predict PM

workload)

Monitors usage profiles to detect

hotspots.

Hotspot: any resource exceeds a

threshold(or SLA violation) for a

sustain period

Determine:

What virtual servers should migrate

Where to move them

How much of a resource to allocate

the virtual servers after migration

Profile Generation(2/2)

• Profile type:
• Distribution profile:

• The probability distribution of the resource usage
over the window W.

• Time series profile:
• The temporal fluctuations and it is simply a list of all

reported observations within the window W.

26

•

Hotspot detection

27

Hotspot mitigation (1/3)

• Hotspot mitigation algorithm:

• Goal:
• Determine which VM should be migrate to where

to dissipate

• Challenge:
• NP-Hard – multi-dimensional bin packing

problem
• Bin=physical server, dimension=resource constraints

• Solution:
• A heuristic which solve:

• Which overloaded VMs to migrate

• Migrate to where such that migration overhead is minimized.

• Migration overhead can not be neglect

28

Hotspot mitigation (2/3)

• Hotspot mitigation algorithm:

• Intuition:
• Move load from the most overloaded servers to

the least-loaded servers,

• minimize data copying incurred during migration

• Volume: the degree of load along multiple
dimensions in a unified fashion

• where cpu, net and mem are the corresponding

utilizations of that resource for the virtual or
physical server

 29

Hotspot mitigation (3/3)

• Hotspot mitigation algorithm:

• volume-to-size ratio (VSR):
• Volume/Size (Size=the memory size of the VM)

• Migration decision:
• Move highest VSR VM from the highest volume

server and determines if it can be housed on the
least volume physical server.

• Swap decision (only consider 2-way swap):
• Activate when simple migration cannot solve

hotspot

• Swap the highest VSR VM on the highest volume
hotspot server with k lowest VSR VMs in lowest
volume server

• If a swap cannot be found, the next least loaded server is
considered

30

