Ipoyopnuévn Kataveunuévn
YnroloyloTikn

HY623

AWdoKkwv —
Anunrprog Katcapog

@ Tp. HMMY

Awdreln 3



Concepts



o)

Definitions

v * Virtualization

* A layer mapping its visible interface and resources onto the interface
and resources of the underlying layer or system on which it is
1mplemented

* Purposes

* Abstraction — to simplify the use of the underlying resource (e.g., by
removing details of the resource’s structure)

* Replication — to create multiple instances of the resource (e.g., to
simplify management or allocation)

* Isolation — to separate the uses which clients make of the underlying
resources (e.g., to improve security)

*  Virtual Machine Monitor (VMM)

* A virtualization system that partitions a single physical “machine”
into multiple virtual machines.

* Terminology

* Host — the machine and/or software on which the VMM 1s implemented
* Guest — the OS which executes under the control of the VMM



Origins - Principles

Fig. 1. The virtual machine monitor. F l .
ormal Requirements
VMM . .
for Virtualizable
Third Generation
Architectures
M Gerald J. Popek
University of California, Los Angeles
and
Robert P. Goldberg
o _ _ Honeywell Information Systems and
“an efficient, isolated duplicate of the real machine” Harvard University
«  Efficiency
* Innocuous instructions should execute Virtual machine systems have been implemented on a
directly on the hardware limited number of third generation computer systems, e.g.
. R 1 CP-67 on the IBM 360/67. From previous empirical
esource COHtI'O studies, it is known that certain third generation computer
. Executed programs may not affect the systems, e.g. the DEC PDP-10, cannot support a virtual
svstem resources machine system. In this paper, model of a third-
. y generation-like computer system is developed. Formal
° Equ1valence techniques are used to derive precise sufficient conditions

to test whether such an architecture can support virtual

*  The behavior of a program executing machines.

under the VMM should be the same as
if the program were executed directly
on the hardware (except possibly for
timing and resource availability)

Communications of the ACM, vol 17, no 7, 1974, pp.412-421



& Origins - Principles
U Instruction types

*  Privileged
an instruction traps in unprivileged (user) mode but not in privileged
(supervisor) mode.
«  Sensitive

* Control sensitive —
attempts to change the memory allocation or privilege mode

* Behavior sensitive
* Location sensitive — execution behavior depends on location in memory
* Mode sensitive — execution behavior depends on the privilege mode

 Innocuous — an instruction that is not sensitive

Theorem

For any conventional third generation computer, a virtual machine monitor may be
constructed if the set of sensitive instructions for that computer is a subset of the
set of privileged instructions.

Signficance
The [A-32/x86 architecture 1s not virtualizable.



Qi\

-

et )

L~
-

23

Origins - Technology

o]

VM/370—a study of multiplicity and usefulness
by L. H. Seawright and R. A. MacKinnon

The productivity of data processing professionals and other pro-
fessionals can be enhanced through the use of interactive and
time-sharing systems. Similarly, system programmers can bene-
fit from the use of system testing tools. A systems solution to
both areas can be the virtual machine concept, which provides
multiple software replicas of real computing systems on one real
processor. Each virtual machine has a full complement of input/
output devices and provides functions similar to those of a real
machine. One system that implements virtual machines is 1BM's
Virtual Machine Facility/370 (vM/370)."

IBM Systems Journal, vol. 18, no. 1, 1979, pp. 4-17.

Figure 1 A VM/370 environment

*  Concurrent execution of multiple production operating systems
*  Testing and development of experimental systems CMs | Cus | chis [00s/vS| ¥s/L |oos/vs
«  Adoption of new systems with continued use of legacy systems

0 %kéﬂity to accommodate applications requiring special-purpose
CP

* Introduced notions of “handshake” and “virtual-equals-real
mode” to allow sharing of resource control information with CP

« Leveraged ability to co-design hardware, VMM, and guestOS



’’’’’’

Y
44 ppllcatlon \ '\Appllcatlon \ '\Appllcatlon b
’

= v/ =T v/ ==
I I
1 1

!
I
1

Guest 0S' !i (Guest 0S' !i {Guest OS' ,'
VoS e T Ve VR /
‘\ Virtual ., > Virtual , > Virtual .

~ Machine.’ ~ Machine .’ ~ Machine.’

<. VMM

~ -
- -

Vairtua\zaxxaw

Real
> Machine

Server/workload consolidation (reduces “server sprawl”)

Innavative Technology for Computer Profassionals
—————
- SS - RN - ~
== == \ / _______ \ / _______ \

n.y zoos

: Pecking
Orders,

\l'\\'\“a\‘\'c_'&(\p\
Technologies

Compatible with evolving multi-core architectures

App || App

App || App

App

Simplifies software distributions for complex
environments

Operating
system

Operating
system

Operating
system

Virtual machine monitor

“Whole system” (workload) migration

Hardware

Improved data-center management and efficiency

Additional services (workload isolation) added
“underneath” the OS

* security (intrusion detection, sandboxing,...)
+ fault-tolerance (checkpointing, roll-back/recovery)




Architecture & Interfaces

Architecture: formal specification of a system’s interface and
the logical behavior of its visible resources.

Applications
Libraries
System| Calls
| | 1
| | 1 |
Operating vy v
System
ISA
System ISA User ISA
Hardware
: — application binary interface
: — application binary interface

« ISA — instruction set architecture



Applications

Virtual
Machine

I/ Applications
Guest <
N
f/
‘/I
VMM \l
I\
Host -< Hardware
N
[ ]
Process
I/i
Guest < Application Process
—— BN DN BB AN
Runtime <r Virtualizing
L Software
S
[ 0s
Host ,\/ Machine
‘ Hardware
N

Application Process
NN NN N NN

Virtual
Machine

Provides ABI interface
Efficient execution

Can add OS-independent services
(e.g., migration, intrustion detection)

Provdes API interface
Easier installation

Leverage OS services (e.g.,
device drivers)

Execution overhead (possibly
mitigated by just-in-time
compilation)



System-level Design Approaches

Core operating system  Full virtualization (direct execution)
Hardware abstraction layer - Exact hardware exposed to OS
Knows about - Efficient execution

*  OS runs unchanged

Slrive bl e I * Requires a “virtualizable” architecture

+ Example: VMWare

Physical hardware

Core operating system * Paravirtualization
Hardware abstraction layer *  OS modified to execute under VMM
«  Requires porting OS code
«  Execution overhead

Virtual machine monitor I *  Necessary for some (popular) architectures (e.g.,

x86)
Physical hardware I - Examples: Xen, Denali

Knows about




Design Space (level vs. ISA)

ABI interface

A
A

Process VMs

System VMs

Different
[SA

Different
ISA

Same
[SA

Same
[SA

Multiprogrammed Dynamic Classic system Whole-system
systems translators VMs VMs
|
Same-ISA dynamig High-level-language: Hosted Codesigned
binary optimizers VMs I VMs VMs

« Variety of techniques and approaches available
* Critical technology space highlighted



System VMMs

Process VMs

Different
ISA

guest guest guest _ _ 7
application application application M”"'Eyrgt%r[%rgmed tgﬁg‘?ﬂ;ﬁs C'ass\'fhﬁé’swm Who'ﬁ]ﬁgaem
guest operating system S;;";;y'i’i‘)ﬁ%’.‘amic il e | s R
virtual-machine monitor (VMM)
host hardware
Type 1
«  Structure
. guest guest guest
. Type 1: runs dlrectly on host hardware application application application
¢ Type 2: runs on HostOS guest operating system
. Primary goa].S virtual-machine monitor (VMM)
5 Type 1: ngh performance host operating system
R Typ e 9 E ase o f host hardware

construction/installation/acceptability
- Examples

* Type 1: VMWare ESX Server, Xen,
0S/370

* Type 2: User-mode Linux

Type 2



Hosted VMMs

Process VMs

«  Structure o
ISA

Different
ISA

Different

* Hybrid between Typel and Type2
« Core VMM executes directly on T |
hardware Same-I1SA dynamic High-level-language! Hosted Codesigned
« 1/0O services provided by code running B T ] ‘N
on HostOS
*  Goals
* Improve performance overall
+ leverages I/O device support on the
HostOS App
- Disadvantages App (| App | | /O
: VMM Guest0S
* Incurs overhead on I/O operations
+ Lacks performance isolation and Host0S VMM

performance guarantees

Standard x86 PC hardware

-  Example: VMWare (Workstation)



.

Whole-system VMMs

Process VMs

System VMs

Same Different Different
ISA ISA ISA
~N
= Multi d Dynami Classi Whole-syst
Challenge: GuestOS ISA differs Cgstms o I T

Hosted Codesigned

from HostOS ISA rayopiss M e —Hs e

Requires full emulation of GuestOS
and its applications

Example: VirtualPC

Windows apps.




239)
. Strategies
=

: De privileging

VMM emulates the effect on system/hardware
resources of privileged instructions whose
execution traps into the VMM

aka trap-and-emulate

Typically achieved by running GuestOS at a lower
hardware priority level than the VMM

Problematic on some architectures where
privileged instructions do not trap when executed
at deprivileged priority

*  Primary/shadow structures

GuestOS
~ ~ \A
__ privileged
«--[ instruction
1
v
trap .
et IS OGN
emulate change
*  vmm
change
v
resource

VMM maintains ° shadow coples of critical
structures whose “primary” versions are
manipulated by the GuestOS

e.g., page tables

Primary copies needed to insure correct
environment visible to GuestOS

 Memory traces

Controlling access to memory so that the shadow
and primary structure remain coherent

Common strategy: write-protect primary copies so
that update operations cause page faults which
can be caught, interpreted, and emulated.



Live migration of Virtual
Machines

16




P Introduct:
i - ntroauction
ﬂ.

* OS virtualization
- Data centers
* Cluster computing
« Live OS migration
* Avoid problem of “residual dependencies”

* In-memory state can be transferred in a consistent and
efficient way

* Separation of concerns between Users and Operator of a
data center or cluster

* Separation of hardware and software considerations, and
consolidating clustered hardware into a single coherent
management domain



.-'-.-.;.%esign

£
* Migrating memory

- Balancing Downtime and Total migration time

* Push phase

* Stop-and-copy phase
* Pull phase

* LLocal resources

* Connections to local devices (disks , network
Interfaces)

» Single switched LAN
* Network-Attached Storage



§ VM running nommally on | Stage 0: Pre-Migration
S | Host A Active VM on Host A
Alternate physical host may be preselected for migration
Block devices mirrored and free resources maintained

Stage 1: Reservation
Initialize a container on the target host

Downtime

(VM Out of Service) Stage 3: Stop and copy

Suspend VM on host A
Generate ARP to redirect traffic to Host B
Synchronize all remaining VM state to Host B

Stage 4: Commitment *
VM state on Host A is released

TuM rarming nomally on - -
Host B I d Stage 5: Activation

WM starts on Host B
Connects to local devices
Resumes normal operation




Tracking the Writable Working Set of SPEC CINT2000

80000

gzZip: vpr Egcci mcf .':rafi'parsari eon pierbml-iga:v:)rtex bzip2 : twolf

70000 —

60000 —

50000 —

40000

30000

Number of pages

20000

10000

Wi
0 | | e | L = | I I l_l

0 2000 4000 6000 8000 10000 12000
Elapsed time (secs)

20

Tu. Mnyavikov H'Y, Tnlenkowvovidov & Awctdov, [oavemotmpio Osscoriog



_Iterative Progress of Live Migration: SPECweb99
350 Clients (90% of max load), B00MB VM
Total Data Transmitted: 960MB (x1.20)

Area of Bars:
[ ¥M mem ory transfered

|| Memaory dirtied during this iteration

g

g

Transfer Rate (Mbit/sec)

g

In the final iteration, the domain is suspended. The remaining
18.2 MB of dirty pages are sent and the VM resumes execution
on the remote machine. In addition fo the 201ms required to
copy the last round of data, an additional 9ms elapse while the
VM starts up. The total downtime for this experiment is 210ms.

The first iteration involves a long, relatively low-rate transfer of
the VM's memory. In this example, 676.8 MB are transfered in
54.1 seconds. These early phases allow non-writable working
sef data to be transfered with a low impact on active services.

55
Elapsed Time (sec)

Figure 9: Results of migrating a running SPECweb VM.

Tu. Mnyavikov H'Y, Tnlenkowvovidov & Awctdov, [oavemotmpio Osscoriog



. _ll‘lﬂrll:h'u Progress of Live Migration: Quake 3 Server

& Clients, B4MB VM —
Total Data Transmitted: S8ME (xL37) The final ileration in this case leaves only 143KB of dafa to
20 fransmit In addition o fhe 20ms required fo copy fis lasf
Area of Bars: round, an addifional 40ms are spenf on siaf-up overhead. The
x50 || VM memory transfered fotal downfime experienced is 60ms.
[] Memary dirtied dusing this ieration
o
R
&
£ x|
a
5
-

g

| I
i} Iﬁui'cy 45 -3 1.7 -3 ES T

Elzpsed Time {sec)

Figure 11: Results of migrating a ranning Quake 3 server VM.

22

Tu. Mnyavikov H'Y, Tnlenkowvovidov & Awctdov, [oavemotmpio Osscoriog




1000 512MEB VM, Constant writes to 256ME region.
— Total Data Tmnsmitted: 638MB (x1.25)
E)
ﬁ 800 7 Area of Bars:
+F [ VM memary transfered
| Memory dirtied during this iteration
= B00 —
(i)
il
&
. 20 — |In the first iteration, the workload
% dities half of memory. The other half
% 20 is transmitted, both bars are equal
- D ]
= /

b= | | |

0 3 10 15

116.0 MB

44.0 MB

255.4 MB
|

20

Elapsed Time (sec)

Figure 12: Results of migrating a VM running a diabolical

workload.

Tu. Mnyavikov H'Y, Tnlenkowvovidov & Awctdov, [oavemotmpio Osscoriog

Iterative Progress of Live Migration: Diabolical Workload

2225 MB

25




Black-box and Gray-box

Strategies for Virtual
Machine Migration

24



3 5

&  resource
usage

network and

| The Sa

~ Gathering

onstruct

plper

Determine:

, What virtual servers should migrate

reLS Where

- usage profiles How much of a resource to allocate

to move them

each virtual s¢ the virtual servers after migration
: (Predict PM
Gathers processor, - workload)

e e

P S S R s VAR e

sustain period

. IaTre= e

FE ‘rofiling __‘ Hotspot Migration
statistics =ngine Detector Manager
for each VM Implements a

daemon to gather —

OS-level c MNucleus

statistics and -] | |5

application logs = B |18

RRARE 98P & Monikonng

Engine | 0 E Engne
- 7 ||s
- <||< 5 > <
| s | =2 & R
Len VMM Aen VMM
M. PM



Profile Generation(2/2)

* Profile type:

 Distribution profile:
* The probability distribution of the resource usage
over the window W.
* Time series profile:

* The temporal fluctuations and it is simply a list of all
reported observations within the window W.

abesn

Angegold

Utilization Profile Time Series Profile

Figure 2: Profile generation in Sandpiper



Y
. Hotspot detection

o

e Goal:

— Signaling a need for VM migration whenever SLA
violations are detected.

* A hotspotis flagged only if or are
exceeded for a sustained time.

— at least k/n most recent observations and the next
predicted value exceed a threshold.
* Use time series profile
e Formula: kst = p+ ¢(ugp — )

where u, = kgpobservation,u = mean of the time series,
@ = variration (auto-regressive family of predictors-AR(1).)



b
e Hotspot mitigation (1/3)

- Hotspot mitigation algorithm:
* Goal:

* Determine which VM should be migrate to where
to dissipate

* Challenge:

* NP-Hard — multi-dimensional bin packing
problem
* Bin=physical server, dimension=resource constraints

« Solution:

* A heuristic which solve:
* Which overloaded VMs to migrate
« Migrate to where such that migration overhead is minimized.
- Migration overhead can not be neglect



Q"‘v
e Hotspot mitigation (2/3)

- Hotspot mitigation algorithm:

* Intuition:

* Move load from the most overloaded servers to
the least-loaded servers,

* minimize data copying incurred during migration

* Volume: the degree of load along multiple
dimensions in a unified fashion

11

l—cpu 1—net 1— mem

- where cpu, net and mem are the corresponding
utilizations of that resource for the virtual or
physical server



%)
. Hotspot mitigation (3/3)

£% Hotspot mitigation algorithm:
* volume-to-size ratio (VSR):
* Volume/Size (Size=the memory size of the VM)

- Migration decision:

* Move highest VSR VM from the highest volume
server and determines 1f 1t can be housed on the
least volume physical server.

* Swap decision (only consider 2-way swap):

 Activate when simple migration cannot solve
hotspot

* Swap the highest VSR VM on the highest volume
hotspot server with

- If a swap cannot be found, the next least loaded server is
considered



