
830 Chapter 19 Distributed Databases

should update all replicas on a write request. We can ensure that it does so by
maintaining a catalog table, which the system uses to determine all replicas for
the data item.

19.3 Distributed Transactions

Access to the various data items in a distributed system is usually accomplished
through transactions, which must preserve the ACID properties (Section 14.1).
There are two types of transaction that we need to consider. The local transactions
are those that access and update data in only one local database; the global
transactions are those that access and update data in several local databases.
Ensuring the ACID properties of the local transactions can be done as described in
Chapters 14, 15, and 16. However, for global transactions, this task is much more
complicated, since several sites may be participating in execution. The failure of
one of these sites, or the failure of a communication link connecting these sites,
may result in erroneous computations.

In this section, we study the system structure of a distributed database and
its possible failure modes. In Section 19.4, we study protocols for ensuring atomic
commit of global transactions, and in Section 19.5 we study protocols for concur-
rency control in distributed databases. In Section 19.6, we study how a distributed
database can continue functioning even in the presence of various types of failure.

19.3.1 System Structure

Each site has its own local transaction manager, whose function is to ensure the
ACID properties of those transactions that execute at that site. The various trans-
action managers cooperate to execute global transactions. To understand how
such a manager can be implemented, consider an abstract model of a transaction
system, in which each site contains two subsystems:

• The transaction manager manages the execution of those transactions (or
subtransactions) that access data stored in a local site. Note that each such
transaction may be either a local transaction (that is, a transaction that exe-
cutes at only that site) or part of a global transaction (that is, a transaction
that executes at several sites).

• The transaction coordinator coordinates the execution of the various trans-
actions (both local and global) initiated at that site.

The overall system architecture appears in Figure 19.2.
The structure of a transaction manager is similar in many respects to the

structure of a centralized system. Each transaction manager is responsible for:

• Maintaining a log for recovery purposes.

19.3 Distributed Transactions 831

TM1 TMn

computer 1 computer n

TC1 TCn
transaction
coordinator

transaction
manager

Figure 19.2 System architecture.

• Participating in an appropriate concurrency-control scheme to coordinate the
concurrent execution of the transactions executing at that site.

As we shall see, we need to modify both the recovery and concurrency schemes
to accommodate the distribution of transactions.

The transaction coordinator subsystem is not needed in the centralized en-
vironment, since a transaction accesses data at only a single site. A transaction
coordinator, as its name implies, is responsible for coordinating the execution of
all the transactions initiated at that site. For each such transaction, the coordinator
is responsible for:

• Starting the execution of the transaction.

• Breaking the transaction into a number of subtransactions and distributing
these subtransactions to the appropriate sites for execution.

• Coordinating the termination of the transaction, which may result in the
transaction being committed at all sites or aborted at all sites.

19.3.2 System Failure Modes

A distributed system may suffer from the same types of failure that a centralized
system does (for example, software errors, hardware errors, or disk crashes).
There are, however, additional types of failure with which we need to deal in a
distributed environment. The basic failure types are:

• Failure of a site.

• Loss of messages.

832 Chapter 19 Distributed Databases

• Failure of a communication link.

• Network partition.

The loss or corruption of messages is always a possibility in a distributed
system. The system uses transmission-control protocols, such as TCP/IP, to handle
such errors. Information about such protocols may be found in standard textbooks
on networking (see the bibliographical notes).

However, if two sites A and B are not directly connected, messages from
one to the other must be routed through a sequence of communication links. If a
communication link fails, messages that would have been transmitted across the
link must be rerouted. In some cases, it is possible to find another route through
the network, so that the messages are able to reach their destination. In other
cases, a failure may result in there being no connection between some pairs of
sites. A system is partitioned if it has been split into two (or more) subsystems,
called partitions, that lack any connection between them. Note that, under this
definition, a partition may consist of a single node.

19.4 Commit Protocols

If we are to ensure atomicity, all the sites in which a transaction T executed must
agree on the final outcome of the execution. T must either commit at all sites, or
it must abort at all sites. To ensure this property, the transaction coordinator of T
must execute a commit protocol.

Among the simplest and most widely used commit protocols is the two-phase
commit protocol (2PC), which is described in Section 19.4.1. An alternative is the
three-phase commit protocol (3PC), which avoids certain disadvantages of the
2PC protocol but adds to complexity and overhead. Section 19.4.2 briefly outlines
the 3PC protocol.

19.4.1 Two-Phase Commit

We first describe how the two-phase commit protocol (2PC) operates during nor-
mal operation, then describe how it handles failures and finally how it carries out
recovery and concurrency control.

Consider a transaction T initiated at site Si , where the transaction coordinator
is Ci .

19.4.1.1 The Commit Protocol

When T completes its execution—that is, when all the sites at which T has exe-
cuted inform Ci that T has completed—Ci starts the 2PC protocol.

• Phase 1. Ci adds the record <prepare T> to the log, and forces the log onto
stable storage. It then sends a prepare T message to all sites at which T
executed. On receiving such a message, the transaction manager at that site

19.4 Commit Protocols 833

determines whether it is willing to commit its portion of T. If the answer is
no, it adds a record <no T> to the log, and then responds by sending an abort
T message to Ci . If the answer is yes, it adds a record <ready T> to the log,
and forces the log (with all the log records corresponding to T) onto stable
storage. The transaction manager then replies with a ready T message to Ci .

• Phase 2. When Ci receives responses to the prepare T message from all the
sites, or when a prespecified interval of time has elapsed since the prepare
T message was sent out, Ci can determine whether the transaction T can be
committed or aborted. Transaction T can be committed if Ci received a ready
T message from all the participating sites. Otherwise, transaction T must be
aborted. Depending on the verdict, either a record <commit T> or a record
<abort T> is added to the log and the log is forced onto stable storage. At this
point, the fate of the transaction has been sealed. Following this point, the
coordinator sends either a commit T or an abort T message to all participating
sites. When a site receives that message, it records the message in the log.

A site at which T executed can unconditionally abort T at any time before
it sends the message ready T to the coordinator. Once the message is sent, the
transaction is said to be in the ready state at the site. The ready T message is,
in effect, a promise by a site to follow the coordinator’s order to commit T or to
abort T. To make such a promise, the needed information must first be stored
in stable storage. Otherwise, if the site crashes after sending ready T, it may be
unable to make good on its promise. Further, locks acquired by the transaction
must continue to be held until the transaction completes.

Since unanimity is required to commit a transaction, the fate of T is sealed as
soon as at least one site responds abort T. Since the coordinator site Si is one of
the sites at which T executed, the coordinator can decide unilaterally to abort T.
The final verdict regarding T is determined at the time that the coordinator writes
that verdict (commit or abort) to the log and forces that verdict to stable storage.
In some implementations of the 2PC protocol, a site sends an acknowledge T
message to the coordinator at the end of the second phase of the protocol. When
the coordinator receives the acknowledge T message from all the sites, it adds the
record <complete T> to the log.

19.4.1.2 Handling of Failures

The 2PC protocol responds in different ways to various types of failures:

• Failure of a participating site. If the coordinator Ci detects that a site has
failed, it takes these actions: If the site fails before responding with a ready
T message to Ci , the coordinator assumes that it responded with an abort T
message. If the site fails after the coordinator has received the ready T message
from the site, the coordinator executes the rest of the commit protocol in the
normal fashion, ignoring the failure of the site.

When a participating site Sk recovers from a failure, it must examine its log
to determine the fate of those transactions that were in the midst of execution

834 Chapter 19 Distributed Databases

when the failure occurred. Let T be one such transaction. We consider each
of the possible cases:

◦ The log contains a <commit T> record. In this case, the site executes
redo(T).

◦ The log contains an <abort T> record. In this case, the site executes
undo(T).

◦ The log contains a <ready T> record. In this case, the site must consult
Ci to determine the fate of T. If Ci is up, it notifies Sk regarding whether
T committed or aborted. In the former case, it executes redo(T); in the
latter case, it executes undo(T). If Ci is down, Sk must try to find the
fate of T from other sites. It does so by sending a querystatus T message
to all the sites in the system. On receiving such a message, a site must
consult its log to determine whether T has executed there, and if T has,
whether T committed or aborted. It then notifies Sk about this outcome. If
no site has the appropriate information (that is, whether T committed or
aborted), then Sk can neither abort nor commit T. The decision concerning
T is postponed until Sk can obtain the needed information. Thus, Sk must
periodically resend the querystatus message to the other sites. It continues
to do so until a site that contains the needed information recovers. Note
that the site at which Ci resides always has the needed information.

◦ The log contains no control records (abort, commit, ready) concerning T.
Thus, we know that Sk failed before responding to the prepare T message
from Ci . Since the failure of Sk precludes the sending of such a response,
by our algorithm Ci must abort T. Hence, Sk must execute undo(T).

• Failure of the coordinator. If the coordinator fails in the midst of the execution
of the commit protocol for transaction T, then the participating sites must
decide the fate of T. We shall see that, in certain cases, the participating sites
cannot decide whether to commit or abort T, and therefore these sites must
wait for the recovery of the failed coordinator.

◦ If an active site contains a <commit T> record in its log, then T must be
committed.

◦ If an active site contains an <abort T> record in its log, then T must be
aborted.

◦ If some active site does not contain a <ready T> record in its log, then
the failed coordinator Ci cannot have decided to commit T, because a site
that does not have a <ready T> record in its log cannot have sent a ready
T message to Ci . However, the coordinator may have decided to abort T,
but not to commit T. Rather than wait for Ci to recover, it is preferable to
abort T.

◦ If none of the preceding cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records (such

19.4 Commit Protocols 835

as <abort T> or <commit T>). Since the coordinator has failed, it is
impossible to determine whether a decision has been made, and if one
has, what that decision is, until the coordinator recovers. Thus, the active
sites must wait for Ci to recover. Since the fate of T remains in doubt, T may
continue to hold system resources. For example, if locking is used, T may
hold locks on data at active sites. Such a situation is undesirable, because
it may be hours or days before Ci is again active. During this time, other
transactions may be forced to wait for T. As a result, data items may be
unavailable not only on the failed site (Ci), but on active sites as well. This
situation is called the blocking problem, because T is blocked pending
the recovery of site Ci .

• Network partition. When a network partitions, two possibilities exist:

1. The coordinator and all its participants remain in one partition. In this
case, the failure has no effect on the commit protocol.

2. The coordinator and its participants belong to several partitions. From
the viewpoint of the sites in one of the partitions, it appears that the
sites in other partitions have failed. Sites that are not in the partition
containing the coordinator simply execute the protocol to deal with
failure of the coordinator. The coordinator and the sites that are in the
same partition as the coordinator follow the usual commit protocol,
assuming that the sites in the other partitions have failed.

Thus, the major disadvantage of the 2PC protocol is that coordinator failure may
result in blocking, where a decision either to commit or to abort T may have to be
postponed until Ci recovers.

19.4.1.3 Recovery and Concurrency Control

When a failed site restarts, we can perform recovery by using, for example, the
recovery algorithm described in Section 16.4. To deal with distributed commit
protocols, the recovery procedure must treat in-doubt transactions specially; in-
doubt transactions are transactions for which a <ready T> log record is found,
but neither a <commit T> log record nor an <abort T> log record is found. The
recovering site must determine the commit–abort status of such transactions by
contacting other sites, as described in Section 19.4.1.2.

If recovery is done as just described, however, normal transaction processing
at the site cannot begin until all in-doubt transactions have been committed or
rolled back. Finding the status of in-doubt transactions can be slow, since multiple
sites may have to be contacted. Further, if the coordinator has failed, and no other
site has information about the commit–abort status of an incomplete transaction,
recovery potentially could become blocked if 2PC is used. As a result, the site
performing restart recovery may remain unusable for a long period.

To circumvent this problem, recovery algorithms typically provide support
for noting lock information in the log. (We are assuming here that locking is used
for concurrency control.) Instead of writing a <ready T> log record, the algorithm

836 Chapter 19 Distributed Databases

writes a <ready T, L> log record, where L is a list of all write locks held by the
transaction T when the log record is written. At recovery time, after performing
local recovery actions, for every in-doubt transaction T , all the write locks noted
in the <ready T, L> log record (read from the log) are reacquired.

After lock reacquisition is complete for all in-doubt transactions, transaction
processing can start at the site, even before the commit–abort status of the in-
doubt transactions is determined. The commit or rollback of in-doubt transactions
proceeds concurrently with the execution of new transactions. Thus, site recovery
is faster, and never gets blocked. Note that new transactions that have a lock
conflict with any write locks held by in-doubt transactions will be unable to make
progress until the conflicting in-doubt transactions have been committed or rolled
back.

19.4.2 Three-Phase Commit

The three-phase commit (3PC) protocol is an extension of the two-phase commit
protocol that avoids the blocking problem under certain assumptions. In partic-
ular, it is assumed that no network partition occurs, and not more than k sites
fail, where k is some predetermined number. Under these assumptions, the pro-
tocol avoids blocking by introducing an extra third phase where multiple sites
are involved in the decision to commit. Instead of directly noting the commit
decision in its persistent storage, the coordinator first ensures that at least k other
sites know that it intended to commit the transaction. If the coordinator fails, the
remaining sites first select a new coordinator. This new coordinator checks the
status of the protocol from the remaining sites; if the coordinator had decided
to commit, at least one of the other k sites that it informed will be up and will
ensure that the commit decision is respected. The new coordinator restarts the
third phase of the protocol if some site knew that the old coordinator intended to
commit the transaction. Otherwise the new coordinator aborts the transaction.

While the 3PC protocol has the desirable property of not blocking unless k
sites fail, it has the drawback that a partitioning of the network may appear to be
the same as more than k sites failing, which would lead to blocking. The protocol
also has to be implemented carefully to ensure that network partitioning (or
more than k sites failing) does not result in inconsistencies, where a transaction
is committed in one partition and aborted in another. Because of its overhead,
the 3PC protocol is not widely used. See the bibliographical notes for references
giving more details of the 3PC protocol.

19.4.3 Alternative Models of Transaction Processing

For many applications, the blocking problem of two-phase commit is not accept-
able. The problem here is the notion of a single transaction that works across
multiple sites. In this section, we describe how to use persistent messaging to avoid
the problem of distributed commit, and then briefly outline the larger issue of
workflows; workflows are considered in more detail in Section 26.2.

To understand persistent messaging, consider how one might transfer funds
between two different banks, each with its own computer. One approach is to have

	Cover
	Database System Concepts, Sixth Edition
	ISBN 9780073523323
	Contents
	Chapter 1 Introduction
	1.1 Database-System Applications
	1.2 Purpose of Database Systems
	1.3 View of Data
	1.4 Database Languages
	1.5 Relational Databases
	1.6 Database Design
	1.7 Data Storage and Querying
	1.8 Transaction Management
	1.9 Database Architecture
	1.10 Data Mining and Information Retrieval
	1.11 Specialty Databases
	1.12 Database Users and Administrators
	1.13 History of Database Systems
	1.14 Summary
	Exercises
	Bibliographical Notes

	PART ONE: RELATIONAL DATABASES
	Chapter 2 Introduction to the Relational Model
	2.1 Structure of Relational Databases
	2.2 Database Schema
	2.3 Keys
	2.4 Schema Diagrams
	2.5 Relational Query Languages
	2.6 Relational Operations
	2.7 Summary
	Exercises
	Bibliographical Notes

	Chapter 3 Introduction to SQL
	3.1 Overview of the SQL Query Language
	3.2 SQL Data Definition
	3.3 Basic Structure of SQL Queries
	3.4 Additional Basic Operations
	3.5 Set Operations
	3.6 Null Values
	3.7 Aggregate Functions
	3.8 Nested Subqueries
	3.9 Modification of the Database
	3.10 Summary
	Exercises
	Bibliographical Notes

	Chapter 4 Intermediate SQL
	4.1 Join Expressions
	4.2 Views
	4.3 Transactions
	4.4 Integrity Constraints
	4.5 SQL Data Types and Schemas
	4.6 Authorization
	4.7 Summary
	Exercises
	Bibliographical Notes

	Chapter 5 Advanced SQL
	5.1 Accessing SQL From a Programming Language
	5.2 Functions and Procedures
	5.3 Triggers
	5.4 Recursive Queries**
	5.5 Advanced Aggregation Features**
	5.6 OLAP**
	5.7 Summary
	Exercises
	Bibliographical Notes

	Chapter 6 Formal Relational Query Languages
	6.1 The Relational Algebra
	6.2 The Tuple Relational Calculus
	6.3 The Domain Relational Calculus
	6.4 Summary
	Exercises
	Bibliographical Notes

	PART TWO: DATABASE DESIGN
	Chapter 7 Database Design and the E-R Model
	7.1 Overview of the Design Process
	7.2 The Entity-Relationship Model
	7.3 Constraints
	7.4 Removing Redundant Attributes in Entity Sets
	7.5 Entity-Relationship Diagrams
	7.6 Reduction to Relational Schemas
	7.7 Entity-Relationship Design Issues
	7.8 Extended E-R Features
	7.9 Alternative Notations for Modeling Data
	7.10 Other Aspects of Database Design
	7.11 Summary
	Exercises
	Bibliographical Notes

	Chapter 8 Relational Database Design
	8.1 Features of Good Relational Designs
	8.2 Atomic Domains and First Normal Form
	8.3 Decomposition Using Functional Dependencies
	8.4 Functional-Dependency Theory
	8.5 Algorithms for Decomposition
	8.6 Decomposition Using Multivalued Dependencies
	8.7 More Normal Forms
	8.8 Database-Design Process
	8.9 Modeling Temporal Data
	8.10 Summary
	Exercises
	Bibliographical Notes

	Chapter 9 Application Design and Development
	9.1 Application Programs and User Interfaces
	9.2 Web Fundamentals
	9.3 Servlets and JSP
	9.4 Application Architectures
	9.5 Rapid Application Development
	9.6 Application Performance
	9.7 Application Security
	9.8 Encryption and Its Applications
	9.9 Summary
	Exercises
	Bibliographical Notes

	PART THREE: DATA STORAGE AND QUERYING
	Chapter 10 Storage and File Structure
	10.1 Overview of Physical Storage Media
	10.2 Magnetic Disk and Flash Storage
	10.3 RAID
	10.4 Tertiary Storage
	10.5 File Organization
	10.6 Organization of Records in Files
	10.7 Data-Dictionary Storage
	10.8 Database Buffer
	10.9 Summary
	Exercises
	Bibliographical Notes

	Chapter 11 Indexing and Hashing
	11.1 Basic Concepts
	11.2 Ordered Indices
	11.3 B[sub(+)]-Tree Index Files
	11.4 B[sub(+)]-Tree Extensions
	11.5 Multiple-Key Access
	11.6 Static Hashing
	11.7 Dynamic Hashing
	11.8 Comparison of Ordered Indexing and Hashing
	11.9 Bitmap Indices
	11.10 Index Definition in SQL
	11.11 Summary
	Exercises
	Bibliographical Notes

	Chapter 12 Query Processing
	12.1 Overview
	12.2 Measures of Query Cost
	12.3 Selection Operation
	12.4 Sorting
	12.5 Join Operation
	12.6 Other Operations
	12.7 Evaluation of Expressions
	12.8 Summary
	Exercises
	Bibliographical Notes

	Chapter 13 Query Optimization
	13.1 Overview
	13.2 Transformation of Relational Expressions
	13.3 Estimating Statistics of Expression Results
	13.4 Choice of Evaluation Plans
	13.5 Materialized Views**
	13.6 Advanced Topics in Query Optimization**
	13.7 Summary
	Exercises
	Bibliographical Notes

	PART FOUR: TRANSACTION MANAGEMENT
	Chapter 14 Transactions
	14.1 Transaction Concept
	14.2 A Simple Transaction Model
	14.3 Storage Structure
	14.4 Transaction Atomicity and Durability
	14.5 Transaction Isolation
	14.6 Serializability
	14.7 Transaction Isolation and Atomicity
	14.8 Transaction Isolation Levels
	14.9 Implementation of Isolation Levels
	14.10 Transactions as SQL Statements
	14.11 Summary
	Exercises
	Bibliographical Notes

	Chapter 15 Concurrency Control
	15.1 Lock-Based Protocols
	15.2 Deadlock Handling
	15.3 Multiple Granularity
	15.4 Timestamp-Based Protocols
	15.5 Validation-Based Protocols
	15.6 Multiversion Schemes
	15.7 Snapshot Isolation
	15.8 Insert Operations, Delete Operations, and Predicate Reads
	15.9 Weak Levels of Consistency in Practice
	15.10 Concurrency in Index Structures**
	15.11 Summary
	Exercises
	Bibliographical Notes

	Chapter 16 Recovery System
	16.1 Failure Classification
	16.2 Storage
	16.3 Recovery and Atomicity
	16.4 Recovery Algorithm
	16.5 Buffer Management
	16.6 Failure with Loss of Nonvolatile Storage
	16.7 Early Lock Release and Logical Undo Operations
	16.8 ARIES**
	16.9 Remote Backup Systems
	16.10 Summary
	Exercises
	Bibliographical Notes

	PART FIVE: SYSTEM ARCHITECTURE
	Chapter 17 Database-System Architectures
	17.1 Centralized and Client–Server Architectures
	17.2 Server System Architectures
	17.3 Parallel Systems
	17.4 Distributed Systems
	17.5 Network Types
	17.6 Summary
	Exercises
	Bibliographical Notes

	Chapter 18 Parallel Databases
	18.1 Introduction
	18.2 I/O Parallelism
	18.3 Interquery Parallelism
	18.4 Intraquery Parallelism
	18.5 Intraoperation Parallelism
	18.6 Interoperation Parallelism
	18.7 Query Optimization
	18.8 Design of Parallel Systems
	18.9 Parallelism on Multicore Processors
	18.10 Summary
	Exercises
	Bibliographical Notes

	Chapter 19 Distributed Databases
	19.1 Homogeneous and Heterogeneous Databases
	19.2 Distributed Data Storage
	19.3 Distributed Transactions
	19.4 Commit Protocols
	19.5 Concurrency Control in Distributed Databases
	19.6 Availability
	19.7 Distributed Query Processing
	19.8 Heterogeneous Distributed Databases
	19.9 Cloud-Based Databases
	19.10 Directory Systems
	19.11 Summary
	Exercises
	Bibliographical Notes

	PART SIX: DATA WAREHOUSING, DATA MINING, AND INFORMATION RETRIEVAL
	Chapter 20 Data Warehousing and Mining
	20.1 Decision-Support Systems
	20.2 Data Warehousing
	20.3 Data Mining
	20.4 Classification
	20.5 Association Rules
	20.6 Other Types of Associations
	20.7 Clustering
	20.8 Other Forms of Data Mining
	20.9 Summary
	Exercises
	Bibliographical Notes

	Chapter 21 Information Retrieval
	21.1 Overview
	21.2 Relevance Ranking Using Terms
	21.3 Relevance Using Hyperlinks
	21.4 Synonyms, Homonyms, and Ontologies
	21.5 Indexing of Documents
	21.6 Measuring Retrieval Effectiveness
	21.7 Crawling and Indexing the Web
	21.8 Information Retrieval: Beyond Ranking of Pages
	21.9 Directories and Categories
	21.10 Summary
	Exercises
	Bibliographical Notes

	PART SEVEN: SPECIALTY DATABASES
	Chapter 22 Object-Based Databases
	22.1 Overview
	22.2 Complex Data Types
	22.3 Structured Types and Inheritance in SQL
	22.4 Table Inheritance
	22.5 Array and Multiset Types in SQL
	22.6 Object-Identity and Reference Types in SQL
	22.7 Implementing O-R Features
	22.8 Persistent Programming Languages
	22.9 Object-Relational Mapping
	22.10 Object-Oriented versus Object-Relational
	22.11 Summary
	Exercises
	Bibliographical Notes

	Chapter 23 XML
	23.1 Motivation
	23.2 Structure of XML Data
	23.3 XML Document Schema
	23.4 Querying and Transformation
	23.5 Application Program Interfaces to XML
	23.6 Storage of XML Data
	23.7 XML Applications
	23.8 Summary
	Exercises
	Bibliographical Notes

	PART EIGHT: ADVANCED TOPICS
	Chapter 24 Advanced Application Development
	24.1 Performance Tuning
	24.2 Performance Benchmarks
	24.3 Other Issues in Application Development
	24.4 Standardization
	24.5 Summary
	Exercises
	Bibliographical Notes

	Chapter 25 Spatial and Temporal Data and Mobility
	25.1 Motivation
	25.2 Time in Databases
	25.3 Spatial and Geographic Data
	25.4 Multimedia Databases
	25.5 Mobility and Personal Databases
	25.6 Summary
	Exercises
	Bibliographical Notes

	Chapter 26 Advanced Transaction Processing
	26.1 Transaction-Processing Monitors
	26.2 Transactional Workflows
	26.3 E-Commerce
	26.4 Main-Memory Databases
	26.5 Real-Time Transaction Systems
	26.6 Long-Duration Transactions
	26.7 Summary
	Exercises
	Bibliographical Notes

	PART NINE: CASE STUDIES
	Chapter 27 PostgreSQL
	27.1 Introduction
	27.2 User Interfaces
	27.3 SQL Variations and Extensions
	27.4 Transaction Management in PostgreSQL
	27.5 Storage and Indexing
	27.6 Query Processing and Optimization
	27.7 System Architecture
	Bibliographical Notes

	Chapter 28 Oracle
	28.1 Database Design and Querying Tools
	28.2 SQL Variations and Extensions
	28.3 Storage and Indexing
	28.4 Query Processing and Optimization
	28.5 Concurrency Control and Recovery
	28.6 System Architecture
	28.7 Replication, Distribution, and External Data
	28.8 Database Administration Tools
	28.9 Data Mining
	Bibliographical Notes

	Chapter 29 IBM DB2 Universal Database
	29.1 Overview
	29.2 Database-Design Tools
	29.3 SQL Variations and Extensions
	29.4 Storage and Indexing
	29.5 Multidimensional Clustering
	29.6 Query Processing and Optimization
	29.7 Materialized Query Tables
	29.8 Autonomic Features in DB2
	29.9 Tools and Utilities
	29.10 Concurrency Control and Recovery
	29.11 System Architecture
	29.12 Replication, Distribution, and External Data
	29.13 Business Intelligence Features
	Bibliographical Notes

	Chapter 30 Microsoft SQL Server
	30.1 Management, Design, and Querying Tools
	30.2 SQL Variations and Extensions
	30.3 Storage and Indexing
	30.4 Query Processing and Optimization
	30.5 Concurrency and Recovery
	30.6 System Architecture
	30.7 Data Access
	30.8 Distributed Heterogeneous Query Processing
	30.9 Replication
	30.10 Server Programming in .NET
	30.11 XML Support
	30.12 SQL Server Service Broker
	30.13 Business Intelligence
	Bibliographical Notes

	PART TEN: APPENDICES
	Appendix A: Detailed University Schema
	A.1 Full Schema
	A.2 DDL
	A.3 Sample Data

	Bibliography
	Index

