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A-Tree: Distributed Indexing of Multi-dimensional
Data for Cloud Computing Environments

Andreas Papadopoulos and Dimitrios Katsaros

Abstract—Efficient querying of huge volumes of multi-dimensional data stored in cloud computing systems has become a
necessity, due to the widespread of cloud storage facilities. With clouds getting larger and available data growing larger and
larger it is mandatory to develop fast, scalable and efficient indexing schemes. In this paper, we present the A-Tree, a scalable
distributed indexing scheme for multi-dimensional data capable of handling both point and range queries, appropriate for cloud
computing environments, to also support insertions and deletions of multi-dimensional data. A performance evaluation of the
A-Tree against the state-of-the-art competitor attests its superiority, achieving significantly lowers latencies for both point and
range queries as well as insertions.
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1 Introduction

CLOUD computing and data centers are facing
unprecedented challenges due to huge amount of

data and number of users that must be handled. Several
thousands of computers, terabytes of data and several
millions of users comprise a typical cloud computing
system, offered as SaaS, PaaS, or IaaS [9]. Every user
allocates resources for his needs on demand from the
“infinite” cloud, and pays only for what it was really
used. Users and companies must as well consider the
privacy of their data and cost for the services that will
be used and select the most appropriate solution for
their needs [5]. The amount of stored data and the rate
of querying them, calls for new data structures that can
satisfy the needs of a cloud system.

The majority of current cloud storage systems e.g.,
Google’s GFS and BigTable [7], Hadoop’s HDFS, and
Amazon’s DYNAMO are based on key-value pairs, and
therefore they can only support point queries. Though
this type of query is not rich enough to fulfil the needs of
cloud users; more complex queries such as range queries
are needed. Answering this type of queries becomes
more complicated since the queried data are multi-
dimensional in nature and spread among several cloud
nodes.

As an example, in a cloud based employees database
a query could be a request for all the 35 years old
employeers with $30K salary (point query). In another
real world scenario, a user would ask for all the employ-
ees aged above 25 with salary between $25K and $35K
(range query).
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Even though the past literature on databases and
distributed systems is full of data structures capable
of dealing with point and range queries for multi-
dimensional data, the cloud environments poses new
challenges that make these solutions inappropriate.
First of all, cloud systems are distributed over wide
areas - even across different countries - with a (usually)
two-level hierarchy consisting of master and slave nodes
and therefore the centralized database solutions are
not an option. Secondly, proposals that are based on
peer-to-peer overlay structures, such as CAN [20], P-
Grid [2], BATON [14], are similarly not very efficient
since they possess one or more of the following draw-
backs: they do not support multi-dimensional data,
or they require time-consuming, communication-hungry
and careful balancing operations, or they do not dif-
ferentiate among nodes. Finally, the recently proposed
cloud-aware distributed structures, such as the EEM-
INC [27], incur high resources consumption and high
latencies.

In order to design a high performance distributed
index for cloud environments, we must use a cost and
space efficient indexing scheme capable of answering
queries with low latency. Specifically, this article makes
the following contributions:

• A new distributed indexing structure for cloud
computing environments, the A-Tree1, is de-
scribed. A-Tree is capable of answering both point
and range queries with low latency. A-Tree further
supports the insertions and deletions of data also
with low latency. It is based on the combination of
R-Tree [11] and Bloom filters [6].

• We describe algorithms that distribute the index
nodes to the cloud nodes, as well as well as the
relevant insertion and deletion algorithms.

• A performance evaluation of the proposed struc-

1. It is A-tree based on Bloom filters for Clouds.
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ture against the competing state-of-the-art struc-
ture is conducted, which attests the superiority of
the proposed structure.

The rest of the article is organized as follows: Sec-
tion 2 describes the relevant work; in Section 3 we
introduce a request framework to describe the basic
concepts of this work. Section 4 and 5 provide the
details of the local and global data structure that
comprise the A-Tree. Specifically, we describe the up-
date strategy, how R-Tree nodes are selected for being
indexed in the global index, how updates are built
and sent, and we also describe the process of update
handling and the construction of global index. Sec-
tion 6 provides the experimental evaluation of the A-
Tree and its comparison against the state-of-the-art
EEMINC. Our experimentations have shown that A-
Tree is a scalable, distributed, fast and space efficient
index for multi-dimensional data in cloud environments
supporting point and range querying as well as insertion
and deletion of records. Finally, Section 7 concludes the
present article.

2 Related Work
Firstly, we need to describe the A-Tree’s constituent
structures, namely Bloom filter and R-Tree, and then
the relevant cloud indexing structures. Bloom filter is a
bit array representing a set of items [6]. For each item in
a data set the hash values of independent hash functions
are calculated and for every value the corresponding bit
is set to 1. Bloom filters are being widely used in many
areas, such as databases and distributed systems [24].
Using Bloom filter a point query can be answered in
O(1) with a very small probability of false positives that
mostly depends on its size. Figure 1 demonstrates a sim-
ple Bloom filter with size ten bits and two independent
hash functions are used: modulo three and modulo ten.
Initially all values are set to zero and the diagram shows
which bits turn on due to the insertion of elements 57,
83 and 94. Querying whether element 38 belongs to the
set, we calculate both hash functions and we notice that
the eighth bit is not turned on, which means that 38
does not belong to the set.

Fig. 1: Example: Bloom Filter
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Fig. 2: Example: R-Tree

The second structure A-Tree is based on is R-
Tree [11], [17]. R-Tree is a widely used data structure
for multi-dimensional data. R-Tree is the extension of
B-Tree to multi-dimensional data. Each node covers an
area in the multi-dimensional space, usually represented
as a hyper bounding box. In two-dimensional space the
hyper bounding box is a rectangle; in three-dimensional
space is a cuboid etc. A hyper bounding box is often
represented by the pairs of minimum and maximum
values for each dimension it covers. For R-Tree non-
leaf nodes, this bounding box covers all of its children’s
bounding boxes. Lastly, leaf nodes also contain pointers
to the actual data. The main disadvantage of R-Tree is
that non-leaf nodes’ bounding boxes overlap. Thus, in
contrast to other traditional tree structures, searching
requires a set of paths to be explored rather than
following a specific path from root to the leaf that
contains the data. This R-Tree specificity lead to a lot
of varieties to be studied, including R+-Tree [21] and
R∗-tree [4], with most of them trying to minimize the
overlap between nodes’ coverage. Both R+-Tree and
R∗-tree approaches successfully minimizes this overlap.
On the other hand, maintenance and insertion cost
increases. Figure 2 demonstrates a simple example of
an R-Tree in two-dimensional space that uses rectangles
to handle space partitions. R-Tree is extensively being
used on many indexing systems including geographical
information systems to provide spatial index operations
in the cloud [26].
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A solution to provide query services over peer-to-
peer networks is the Distributed Hash Table (DHT)
and some variances [1]. Another relevant data structure
is known as a scalable distributed B-tree [3]. With
these data structures though, we are limited only to
answering point queries and range queries over multi-
dimensional data cannot be processed. Furthermore, as
the Map-Reduce framework is widely used on cloud
systems, a decent index structure was proposed [15].
Although this solution is claimed to be suitable for
large datasets, the Map-Reduce framework itself adds
a significant overhead during processing, which makes
it inappropriate for extremely huge datasets. In addi-
tion, efforts to support standard SQL statements with
high performance global index have been made [19].
Other relevant indices include the RT-CAN [25], the
BR-Tree [12] and the QT-Chord [10]. Although these
structures can answer both point and range queries,
their drawback is that they organize the cloud nodes
as a structured peer-to-peer network, which requires
excessive communication overhead, may exhibit weak
even no consistency, and moreover they ignore the
inherent partitioning of the cloud nodes as master and
slaves. Therefore, they are not appropriate (native) for
cloud computing environments. Google’ Spanner [8],
and the SQL-like distributed database – named F1 [22]
– ontop of it, use traditional database indexes, tailored
for key-value pairs.

The most relevant work to ours is the EEMINC
index structure [27]. It exploits the separation of the
cloud nodes as masters and slaves. All nodes with
data, i.e., the slaves, make use of KD-tree as local
indexes. Every slave node is described by a node cube,
i.e., a set of ranges for every attribute of the data.
E.g., (10,20),(10,40),(30,80) is a node cube covering
two dimensional data where the first, second and third
attributes range from ten to twenty, from ten to forty
and from thirty to eighty, respectively. As a node cube
usually is very large in order to avoid forwarding queries
to irrelevant nodes, each node splits its own node cube
to smaller ones. The divisions-node cubes that cover
some data are sent over the network to master nodes.
Node cubes that are sent to master nodes are organized
in an R-Tree structure that comprises the global index.
Upon a request arrival at a master node, the local R-
Tree is searched to find the slave nodes where potential
results are stored. After accumulating a set of candidate
nodes, the request is forwarded to all of them for
further processing. Final results can be accumulated by
a central node or sent directly to the requester.

Although EEMINC took a first step towards address-
ing the problem of indexing multi-dimensional data in
clouds in a native way, it is inefficient since in the
relative nodes locating phase, EEMINC chooses all the
slave nodes in the cluster as the candidates of the query
since it does not have the information about the data
distribution on each slave node, and thus chooses all the
possible slave nodes as the candidate set. This selection

Fig. 3: The framework for query processing

results in a high number of false positives, especially
for point queries, which in turn implies larger latencies
during query processing and increases the amount of
waisted resources such as CPU processing time and
bandwidth.

3 Request-Response framework
In this section we describe the workflow during query
processing. Nodes are categorized as master nodes and
slave nodes. The difference between the two categories
is that if a node is a master node, it maintains some
metadata about the system. Although this selection
contradicts with the characteristic of cloud systems that
central servers are not needed, almost all the available
cloud platforms require the existence of central servers,
usually referred as controllers. Controllers are respon-
sible to hold the platform metadata and implement
the interfaces to interact with the users. This is a
typical approach in the clouds, e.g., in Map-Reduce
frameworks, in infrastructure and platform as a service
(IaaS and PaaS) approaches such as OpenStack and
Google AppScale; since it makes a lot of operations
easier and more efficient, despite the fact that the whole
system becomes “less” distributed.

In a cloud system, users will communicate and re-
quest results from any of the master nodes that im-
plement the user interaction interface. This node will
process the request and forward it to the appropriate
nodes on the platform for further processing. After
this step, any communication with the master node
terminates, and the users will communicate only with
the corresponding slave nodes. If a query is forwarded
to a node and its execution results in an empty set,
then it is said that a false positive occurred. For a
cloud index to be successful, false positives should be as
low as possible, because this also implies less latencies
and energy consumption as unnecessary calculations are
avoided.

In this framework (presented in Figure 3), the task of
query processing on a master node can be divided into
two phases: a) locate relevant nodes; and b) forward the
query to these nodes. Relevant nodes will process the re-
ceived query locally, and will return the results directly
to the user. In this way further resource consumption on
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Fig. 4: A-Tree framework and data flow for query
processing

master nodes, which in a large-scale system have heavy
load by accepting and assigning queries to slave nodes,
is minimized.

Every slave node is responsible to share any data
updates with all master nodes that fully cover the data
located at this particular slave node. An update is sent
after a node starts up and according to the changes that
will be made partial or full updates will be exchanged.
In case of deletions and insertions, it is mandatory that
master nodes are informed in order to keep the global
index updated.

Due to the distributed and replicated nature of
our method, we detect inconsistencies using Merkle
trees [18], similar to other distributed replicated ser-
vices, such as Amazon’s Dynamo. Another important
aspect, which is beyond the scope of this paper, is
load balancing. Load balancing must be also given
attention, and there are already some proposals such
as PASSION [16], which can be easily adopted to raise
the performance of the described framework.

Our indexing scheme, A-Tree, is composed of an R-
Tree and a Bloom filter on each slave node and an array
of updates on each master node (which is different than
the approach of EEMINC), as shown in Figure 4. In
order to introduce how master nodes handle requests
we must first introduce how slave nodes handle data
and how updates are sent and maintained. Our global
index can be updated fast and respond to the demands
of modern cloud indices where virtual machines (VMs)
can be dynamically added or removed on demand in
order to boost utilization and cost. Furthermore, clouds
provide infinite resources, both in memory and cpu, and
as shown in experiments section, adding more servers-

vms (slaves and/or masters) in more cases (except
deletions) results in lower or the same latencies.

4 Operations on Slave Nodes
4.1 Local Operations on Slave Nodes
Slave nodes are the place where actually data are and
query processing is performed. The data structure that
will be used on the slave nodes must be capable to
handle point and range query, as well as insertion and
deletion of records. For this purpose we use the R-Tree
data structure. Because R-Trees use hyper bounding
boxes to describe a node’s coverage, we will have high
false positives for point queries. To avoid this we also
use a Bloom filter, a very space efficient structure
which allows with O(1) time complexity to determine
if a point belongs to a dataset or not with a small
probability of false positive.

Every slave node is capable to process point and
range query, insertion and deletion requests. Upon re-
ceiving a request the R-Tree operations and algorithms
for searching, inserting and deleting data are those that
are involved. Any of these operations may trigger the
need to inform the master nodes about the changes.
The information sent to master nodes are referred
as updates and the process for constructing them is
described in the next section.

For every insertion on the data set, we moreover add
the record to the Bloom filter of the node. If necessary
an update is sent to master nodes.

Point and range queries are processed locally and the
result set are published directly to the user. For point
and range queries a traditional search over the R-Tree
costs O(log n). This is the cost for range queries, but for
point queries since Bloom filters are used the processing
cost is less. If a point does not belong to the dataset,
then the search using the R-Tree structure is avoided,
resulting in faster point queries processing. For points
that according to Bloom filter belong to the dataset,
then the R-Tree is searched to avoid false positives. If
the system allows a small probability of errors, then
only the Bloom filter is used resulting in O(1) cost for
point queries.

Record deletion is more complicated due to the fact
that simple Bloom filter does not support deletion of
data. Deletions are handled as well by our indexing
system. The deletion handling process firstly deletes
the appropriate record from the tree and secondly
increases a counter of deleted records by one. When
counter reaches a threshold we update the node Bloom
filter and send a new update to master nodes. It is
recommended that the threshold is set dynamically
according to workload on the system. The intuition is
that the higher the counter is the higher the probability
of a false positive occurrence. Thus, depending on the
workload of the system, an update maybe sent in order
to avoid a small or a high number of false positives.
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Algorithm 1 Benefit for indexing children of node n

1: function double BenefitForIndexingChil-
dren(Node n)

2: children volume = 0.0;
3: children overlap volume = 0.0;
4: for i = 0→ #children do
5: childrens volume = childrens volume +

child[i].getV olume();
6: for j = i + 1→ #children do
7: children overlap volume =

children overlap volume +
child[i].overlapV olume(child[j]);

8: end for
9: end for

10: benefit = n.getV olume() −
(children volume− children overlap volume);

11: return benefit;
12: end function

4.2 Distributing R-Tree Nodes
In this section we describe our algorithm for construct-
ing and publishing the aforementioned updates, that
involves selecting and distributing R-Tree nodes to
master nodes.

Every slave node must structure an update and send
it over the network to all master nodes. Based on the
information provided by the updates, master nodes will
select the appropriate slaves for query processing. As
a hyper bounding box describes every R-Tree node, an
update is a combination of some hyper bounding boxes.
To avoid high false positives rate for point queries, the
Bloom filter of the node is also included in the update
that will be sent.

With the assumption that the number of queries that
will be forwarded to a node for processing are propor-
tional to the volume of space covered by the hyper
bounding boxes included in the update, we developed
an algorithm (Algorithm 1) for calculating the benefit of
indexing the children of an R-Tree node. We define the
benefit for indexing a node as the volume of the space
that we will avoid searching if we index its children.
That is its volume minus its children volume plus their
overlap. Thus, the benefit for indexing the children of
a node n is given by the following equation:

Benefit(n) = V olume(n)− (V olume(children)
−Overlap(children))

(1)

Now that we are able to determine the expected
benefit of distributing a node, the recursive Algorithm 2
is proposed for selecting the R-Tree nodes that will be
distributed. Algorithm 2 takes three parameters: (a)
an R-Tree node; (b) the benefit threshold; and (c) the
number of nodes that can be indexed (remaining space)

Algorithm 2 Select indexing nodes
1: function SelectIndexNodes (Node n,

SET<BoundingBox> indexedNodes, int
remainingSpace, double minBenefit)

2: if getBenefitForIndexingChildrens(n) >
minBenefit and !n.hasLeafChild() and
n.#childrens ≤ remainingSpace then

3: currentSize = indexedNodes.size();
4: more free slots = 0;
5: slotsPerChild = remainingSpace

n.#children ;
6: for i = 0→ n.#children do
7: SelectIndexNodes(n.child[i], indexNodes,

slotsPerChild, minBenefit);
8: more free slots =

indexedNodes.size()− currentSize;
9: perChild+ = more free slots

n.#children−i ;
10: currentSize = indexedNodes.size();
11: end for
12: else
13: indexNodes.add(n.boundingBox);
14: end if
15: end function

and returns a set with the selected nodes. Algorithm
2 is based on the idea that available space is equally
split to the nodes children. Since a recursive call may
select fewer nodes than the remaining space, remaining
space is calculated prior every call. In that sense, initial
remaining space is an upper bound of the final update
size. In real cloud computing systems, an R-Tree may be
configured with a high fan out, e.g. 100. We face a trade-
off for the number of nodes that will be indexed, as
more nodes will result to higher resource consumption
on master nodes for finding relevant nodes to a query,
while on the other hand false positives and resource
consumption on slave nodes are further minimized.
Specifically, if we index only the root of the R-Tree, we
have a large number of false positives, and if we index all
tree nodes above leaves, we have a high processing cost
for locating relevant nodes. As this is mostly depended
on the system, we use as parameters the maximum
number of hyper bounding boxes and the minimum
expected benefit for indexing children.

It is also noted that even if we set the update space
high and the benefit low leaf nodes are not indexed. We
will not index leaf nodes because such an indexing will
end up with all the data in the global index. Algorithm
2, in the worst case, has time complexity O(|V |), where
V is the number of nodes in the R-Tree.

Upon starting the system every node executes Algo-
rithm 2 to determine which tree nodes should be dis-
tributed. The selected nodes are distributed to the mas-
ter nodes along with the Bloom filter of the node. The
time complexity for publishing an update is O(|V |) +
Θ(n), where n is the number of master nodes running
on the system.
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Algorithm 3 Point Deletions
1: function Delete (Point p)
2: local rtree.delete(p);
3: if ++deleted records > thresshold then
4: deleted records = 0;
5: rebuilt local bloom filter;
6: Invoke Algorithm 2;
7: end if
8: end function

Algorithm 4 Point Insertions
1: function Insert (Point p)
2: current state = get state (p);
3: local rtree.insert(p);
4: bf change = local bloom filter.insert(p);
5: if current state == (b) then
6: publish(local bloom filter);
7: end if
8: if current state == (c) || current state == (d)

then
9: extra bb.add(p);

10: if extra bb.volume > threshold then
11: Delete extra bb;
12: Invoke Algorithm 2;
13: return;
14: end if
15: if bf change then
16: publish(local bloom filter);
17: end if
18: publish(extra bb);
19: end if
20: end function

4.3 Partial Updates
The aforementioned two algorithms describe the pro-
cess of selecting the R-Tree nodes for distribution. Upon
insertion or deletion, a change on a local index (R-Tree)
occurs. Any change must be taken into consideration
if it is going to lead to inconsistency in the global
index. Hence, a new update should be constructed
and published. Instead of constructing new updates to
deal with these changes we propose the use of partial
updates. A partial update is an update that is necessary
to be published in order to keep the global index
updated while it uses less network traffic and resource
consumption on slave nodes.

As mentioned earlier, upon a deletion request a
counter of deleted records is increased by one. Based on
the counter threshold nodes’ Bloom filter is rebuilt and
Algorithm 2 is invoked to send a new update. Algorithm
3 presents the pseudocode for deletion requests.

In case of an insertion the possible situations are:
(a) newly inserted record is completely covered by the
last sent update; (b) newly inserted record is covered
by the bounding box sent with the last update and

is not covered by the Bloom filter; (c) newly inserted
record is not covered by the bounding box sent with the
last update and is covered by the Bloom filter; and (d)
newly inserted record is not covered at all. For each of
these four cases different type of partial update is sent
to the master nodes. For the first case, no update is
required. For the second case the node sends only the
updated Bloom filter to master nodes. For the rest two
cases, a node keeps an extra hyper bounding box. Upon
insertion, and since the inserted record is not covered
by the previously sent update, the extra bounding box
is expanded to cover it. As partial update this extra
bounding box is sent with the Bloom filter if it changed.
Because the volume of this extra bounding box as the
system is running may get very big we set a threshold. If
the threshold is reached then the extra bounding box is
ignored and Algorithm 2 is invoked in order to calculate
and send a fresh new update from scratch. Algorithm
4 presents the steps of the insertion process.

5 Operations on Master Nodes
5.1 Construction of Global Index
This section describes how master nodes handle the
updates in order to build the global index and how the
relevant nodes are located. The approach used here is
to keep it as simple as possible in order to obtain fast
processing, low complexity as well as low storage space.

Every master node maintains a copy of the global
index. The global index is represented as an array
that stores the updates received by slave nodes. Each
position in this array is assigned to a slave node and
holds the last update that was sent from this node.
Organizing updates in an array allows access to a
particular node’s update in O(1) as well as avoiding
the need for more space for pointers if the updates
were stored in a tree structure. The array approach is
also extremely useful and fast when processing a newly
arrived update.

Upon the arrival of an update u from node with
id n id the only required action is to store it at the
appropriate position: global index[n id] = u. Similar
actions are required for a partial update with the differ-
ence that only the extra bounding box is changed and
maybe the Bloom filter too. Hence, at every position
of the array we store a set of hyper bounding boxes
and the id and the Bloom filter of the slave node. It
is noted that this is lowest possible cost for handling
updates since the processing of a new update has time
complexity O(1).

Even though the number of master nodes is small
compared to the number of slave nodes, master nodes
must keep the same copy of the global index. To achieve
data consistency, some already proposed methods can
be used [13].

5.2 Processing of Point and Range Queries
According to the described framework, processing a
request at a master node is equivalent to locating
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Algorithm 5 Find relevant nodes for a point query
1: function SET GetRelativeNodesPoint-

Query (Point p)
2: SET nodes = ∅;
3: for all UPDATE u in global Index do
4: if u.bloomfilter.membershipTest(p) then
5: nodes.add(u.node id);
6: end if
7: end for
8: return nodes;
9: end function

relevant nodes and forwarding the request to them.
Due to the fact that an update is a combination of a

Bloom filter and some bounding boxes, the processes for
finding relevant nodes for a point query or a range query
are not identical. Using Bloom filters, included in each
update, the process of finding relevant nodes can be
performed with complexity Θ(n) where n is the number
of updates in the global index and equals to the number
of slave nodes in the system. For range queries, Bloom
filters cannot be used and the bounding boxes stored
in the global index must be searched. It is noted that if
a value for a dimension is not specified then the lowest
and the highest values of the data in the dataset are
used. In the worst case the complexity is Θ(n·B) and in
the best case Θ(n), where B is the number of bounding
boxes in a stored update. Worst case occurs when the
master node has to search all the bounding boxes for all
the nodes. On the other hand, the best case is when the
query is covered by the first bounding box in the update
of every node. The upper bound can be lowered to Θ(n·
log(B)) if an appropriate index structure, such as R-
Tree, for the bounding boxes of the updates is used.
The described approach is preferred over it since such
a selection will increase the cost of updates processing.

Algorithm 5 and Algorithm 6 show the processes for
finding the set of relevant nodes to a point query and a
range query, respectively. Algorithm 5 searches every
update u in the global index if its Bloom filters covers
the requested point p. If the Bloomfilter covers p then
the node that has published the update u is added to
the set of relevant nodes. Similarly, for range queries
(Algorithm 6) a node is added to relevant nodes set
if any of the bounding boxes box overlaps with the
requested range query rq.

5.3 Insertion and Deletion of Records
To process an insertion or deletion request the same
procedure is followed. Master node that received the
request must first find a set of slave nodes to forward
the request. In order to avoid triggering new updates on
insertions and deletions Algorithm 5 for finding relevant
nodes to the point ’query’ is used.

As soon as the set of candidate nodes is built, the
query is forwarded to them. If it is an insertion query,

Algorithm 6 Find relevant nodes for a range query
1: function SET GetRelativeNodesRange-

Query (Query rq)
2: SET nodes = ∅;
3: for all UPDATE u in global Index do
4: for all Bounding Box box in u do
5: if box.overlaps(rq) then
6: nodes.add(u.node id);
7: continue with next Update;
8: end if
9: end for

10: end for
11: return nodes;
12: end function

because selected nodes using Algorithm 5 already cover
the new record a new update will not be triggered.
In case the number of relevant nodes is less than
the replication factor of the platform, more nodes can
be added randomly or by choosing nodes that cover
near data, using k-nearest neighbors algorithm over the
bounding boxes of the updates in the global index. In
the scenario of deletion request the relevant slave nodes
process the deletion according to the aforementioned
process in Section 4. If any of the relevant slave nodes
send an update then it is handled by master nodes as
described previously with O(1) time cost.

6 Performance Evaluation
In this section we evaluate the performance and scala-
bility of A-Tree in comparison to EEMINC, since this
is the state-of-the-art cloud computing-native indexing
structure. The GridSim toolkit [23], an open source
and widely used simulation tool for grid networks, was
used to simulate a data intensive grid environment
and evaluate the performance of A-Tree. Simulation
allowed us to measure point and range queries latency
taking into consideration network delay according to
links capacity, the size of the dataset and the number
of nodes in the system as well as the utilization of both
master and slave resources.

Fig. 5: Network topology used for the experiments
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(a) Average Point Queries Latency with Five master nodes
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(b) Average Range Queries Latency with Five master nodes
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(c) Average Point Queries Latency with Ten master nodes
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(d) Average Range Queries Latency with Ten master nodes

Fig. 6: Average point and range queries latency to the number of nodes

In all experiments, the EEMINC’s uniform cutting
for node cubes was used and uniformly distributed data.
Used data set resides at 6-dimensional space unless
explicitly stated otherwise. R-Tree fan out was set to
fifty and for A-Tree Bloom filter size was 30.5 bytes.
Each node was a simulation resource, extending Grid-
Sim resource class, with network capabilities. Network
was consisted of five routers and four links. Every
master node was connected to the master servers’ router
with a link of 100Mbps. This router had links to two
other routers where all slave nodes were connected with
100Mbps speed. The speed of the links between the
routers was initially 1Gbps and altered later to measure
the effect of network speed on performance. Users were
connected to two other routers with links to the master
nodes’ router with speed 100Mbps. The bandwidth of
each user to the router is connected is 100Mbps. MTU
was set to 1500 bytes for all links. Figure 5 shows the
network topology. A user sends requests to a specific
master node, defined at initialization state, and receives
results from any, usually more than one, slave node.
After the result for the previous request returns then
another request is sent until the predefined number of
requests (i.e. 100 point queries) for the experiment is
reached. In all experiments requests number was set
to 50. The latency for each request is recorded and
when all users finish the last one calculates the total
average latency. All master nodes receive request from
equal number of users. Each slave node also keeps two
counters for false positives for point and range queries.

Experiments were executed on a computer system

TABLE 1: Average False positives as Nodes Increase
with Ten Masters

#Nodes Range queries Point queries
A-Tree EEMINC A-Tree EEMINC

100 49813 49707 3 49943
200 74809 74972 7 74894
300 99861 99958 10 99931
400 124702 124830 11 124484
500 149583 149716 13 149836

equipped with four Quad-Core AMD Opteron(tm) Pro-
cessor 8350, 16 GB RAM and 320 GB storage capacity.
Operating system was SUSE Linux Enterprise Server
10 (x86 64) running kernel version 2.6.16.21. All ex-
periments were executed ten times and the average of
the results is used for plotting the charts.

In the first experiment, the latency for point and
range queries is measured as the number of nodes in the
system increases. The total average of false positives is
also measured as it is very important for minimizing
network usage, and results in significantly faster query
processing if data set does not contain the requested
points. Fifteen users are connected to the system and
each one executes one hundred point queries and one
hundred range queries. There are five master nodes,
each one responsible for three users. User requests are
uniformly distributed to master nodes; uniform distri-
bution of requests (incoming traffic) realistically repre-
sents a real world cloud system that includes a simple
and easy to be configured front end implementing a
load balancer. Each slave node is responsible for ten
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thousand records meaning that the size of the collection
also increases as the number of nodes increases. Due to
the use of Bloom filters, point queries are forwarded to
slave nodes with a very small probability of false pos-
itive, resulting in a dramatic decrease of resource con-
sumption and lower average latency for point queries.
Unfortunately, for range queries Bloom filters cannot be
used, but still the A-Tree performs faster especially for
large number of slave nodes showing that the proposed
algorithm for distributing R-Tree nodes is efficient.
Figure 6a and Figure 6b show the average latency for
point and range queries respectively revealing that A-
Tree can handle point and range queries efficiently with
very low latency, especially for point queries.

In order to evaluate how the number of master
nodes affects queries latency, the same experiment was
repeated five more times with the difference that ten
master nodes exist now in the system. Results are shown
in Figure 6c and Figure 6d. Firstly, we notice that,
similarly to the previous experiment, latency is lower for
A-Tree in contrast to EEMINC where latency is more
when more master nodes exist in the system. Secondly,
we notice that for small number of slave nodes with ten
master nodes, the latency for range queries is almost the
same with EEMINC but as the system gets larger A-
Tree responds significantly faster. It is noticeable that
latency increases for EEMINC for both point and range
queries while A-Tree performance remains the same.
For example when the system is made of 350 nodes
EMMINC point queries latency has been increased from
77 to 88 and range queries latency from 54 to 64.

Concerning point queries, EEMINC performs worst
when more nodes exist in the system, in contrast to A-
Tree where little performance is gained. Table 1 shows
the total average number of false positives for range
and point queries. False positives for range queries are
very close but the difference for point queries is very
high because of the use of Bloom filters. Although the
difference of false positives rates for range queries is
not high, the latency is getting higher for more than
one hundred nodes in the system. Even few less false
positives can have a huge impact on large systems
where possible disk accesses can be avoided as well as
network resources. The most important conclusion from
the above experiments is that A-Tree scales linearly as
system is getting larger and responds faster to requests
even with more master nodes in contrast to EEMINC
where exponential behavior was recorded.

Another very important aspect for a global index
performance is how latency is affected by the amount
of data records handled by each node. In the following
lines, the performance of A-Tree is measured as the
data set is getting bigger. Although in the previous
experiment, the data set was getting larger as nodes
increase, in this setup the number of nodes remains
the same and the data stored on each node increase.
The configuration for this experiment is: five master
nodes, fifteen users, each users makes fifty point queries
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Fig. 7: Average queries latency as data set size increases.
Total 50 slave nodes.

TABLE 2: Average False Positives as Data Set Size
Increase with Ten Masters

#Records Range queries Point queries
/Node A-Tree EEMINC A-Tree EEMINC
15000 37325 37339 199 37434
30000 37189 37212 707 37500
45000 37049 37123 1509 37500
60000 36911 36918 2516 37481
75000 36791 36803 3577 37499

and fifty range queries, the number of slave nodes was
set to fifty, data dimension was set to two and data
size was set from fifteen thousand records to seventy
five thousands records per slave node, resulting to total
3750000 records.

We notice that there is a small increase in latency for
A-Tree as the collection is getting bigger due to high
number of false positives, especially for point queries.
This is due to the fact that the Bloom filter, which
was set to default size of 30.5Kb, is getting full and
false positives probability is getting higher. The average
latency for both range and point queries is shown in
Figure 7. A-Tree is still capable of answering both
point and range queries efficiently and scales as the
system and data set are getting larger. Table 2 presents
the number of false positives for both point and range
queries. It is obvious that there is a great difference in
the number of false positives for point queries. Despite
the fact that false positives rates, for both point and
range queries, are lower in A-Tree than in EEMINC,
this small increment for point queries along with the
fact that data set is larger on every nodes are the
extenuation for the small increment of latency. Using
bigger Bloom filters and setting the maximum number
of bounding boxes in updates higher can easily avoid
this small increase of latency.

In addition, we evaluate A-Tree for insertions and
deletions. We use the same configuration as the previous
experiment and setting data dimension to six. Figure 8
shows in log scale the insertion latency as the system
is getting larger. It is clear that A-Tree also performs
significantly faster for insertions. This is somehow ex-
pected as the cost of insertions is as low as possible.
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Fig. 8: Insertion Latency vs. #nodes
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Fig. 9: Deletion Latency vs. #nodes
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(a) Average queries latency as number of users increases
with Five master nodes

0
20
40
60
80

100
120
140

20 40 60 80 100 120 140 160 180 200

Si
m

ul
at

io
n

T
im

e

#Users

A-Tree Range Queries

A-Tree Point Queries

EEMINC Range Queries

EEMINC Point Queries

(b) Average queries latency as number of users increases
with Ten master nodes

Fig. 10: Average queries latency as number of users increases
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Fig. 11: Average queries latency for different network speeds with ten master nodes.

The insertion cost is low due to the process of selecting
relevant nodes and the partial updates process. On
the other hand, as shown in Figure 9, A-Tree results
in slightly higher latencies for deletions. This slight
increase is due to the higher cost of deleting data from
an R-Tree than a KD-Tree.

Comparing the results from previous experiments, we
notice that we have better performance when fewer
nodes are used with more records on each of them.
This behavior is somehow expected because when more
nodes with less record exist, the whole system is not
fully utilized. However, if nodes are overloaded oper-
ations will take longer and result in higher latencies.
As far as each node is not overloaded, it is shown that

adding more records to the node will lower latencies and
increase performance of the whole system.

The next experiment’s purpose is to measure latency
as the number of users on the system increases. The
number of users in our simulation scenario is equivalent
to the number of queries being concurrently processed
on the system. The system size was set to one hundred
slave nodes, each one responsible for ten thousand
records, and five master nodes. The other parameters
are set to the same values as in previous experiments. In
this experiment the affection of the number of master
nodes is also measured. Figure 10a and Figure 10b show
the results of this experiment for five and ten master
nodes respectively. According to this experiment, the
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Fig. 13: Queries latency vs. dimension of data
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Fig. 12: Average queries latency as users increase for
different networks

A-Tree also scales as the number of users - concurrent
queries - increases. We notice the large difference for
point queries latency between A-Tree and EEMINC
for both configurations. Concerning range queries A-
Tree performs slightly faster. It is also noticeable that
the number of master nodes slightly affects the queries
latency, driving us to the conclusion that only very
few master nodes are necessary and that increasing the
number of master nodes will only gain a little to noth-
ing performance. Furthermore, in order to gain more
performance and lower latency the search procedure on
slave nodes should be further optimized.

Another very important aspect is the capacity and
speed of the network. An efficient index should not be
affected very much from changes to networks connec-
tions and links speed. The purpose of next experiment

is to evaluate how the links speed affects latency. The
same network topology shown in Figure 5 is used with
links speed altered. As speed from users to a datacenter
is mostly an external factor, only the speed of links
between masters and slaves nodes routers has been
changed from 1Gbps to 100Mbps. The reason for se-
lecting low bandwidth is because for faster connections
latency would be much less affected by network traffic.
In this experiment ten master nodes exist. We refer to
this configuration as Network 2.

Figure 11a shows the average latency for point queries
for both network configurations. As expected latency is
higher, because of limited network capacity for both
approaches. A-Tree is not affected very much from this
change since the use of Bloom filters avoids a lot of
unnecessary network traffic. Based on this experiment,
the use and inclusion of Bloom filters in the updates
is proven to be more appropriate than the EEMINC
cubes split approach. On the other hand, for range
queries latency, shown in Figure 11b, A-Tree cannot
take advantage of Bloom filters and is more affected by
network change than EEMINC. A-Tree still performs
better than EEMINC, especially for large systems.

Figure 12 shows the latency for point and range
queries for both the above network configurations. Ten
master nodes and one hundred slave nodes, each re-
sponsible for ten thousand records, exist in the system.
Each user makes a hundred point queries and a hundred
range queries. Average latency as the number of users
in the system increases is shown in Figure 12 revealing
that A-Tree is not affected very much from network
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Fig. 14: Resources Utilization for point and range Queries (left), Insertions (center) and Deletions (right) to the
Data Dimension

changes as more users send requests simultaneously.
This behavior is expected, as A-Tree keeps network
usage as low as possible, especially for point queries,
because it uses Bloom filters and keeps false positives
rate very low.

In our next experiment, we evaluate the performance
of A-Tree, A∗-Tree and EEMINC to the dimension of
data. A∗-Tree is A-Tree using the same global index
and update strategy but instead of R-Tree slave nodes
use R∗-Tree for local indices. As expected, dimension
of data affects the queries latency since all the tree
operations are proportional to the dimension of data
they hold. In this experiment we use the network
configuration presented in Figure 5 with 50 slave nodes
and 5 master nodes. Figure 13a and Figure 13b show
the average latency for point and range queries to the
dimension of data. It is noticeable that A-Tree and A*-
Tree outperform EEMINC for point queries while all
scale linearly to the dimension of the data. Concerning
range queries, A-Tree not only performs better but also
keeps latency low independently of the data dimension
while there is a small increase for EEMINC. This is a
crucial aspect to the success of the proposed structure.
We also note that A*-Tree performs slightly worse than
A-Tree for both point and range queries.

Lastly, in Figure 13c the insertion latency is pre-
sented. It is noted that simulation time axis is in log
scale. A-Tree and A*-Tree keep the insertion latency to
the dimension of data steady while A*-Tree performs
airily worse because insertions in R*-Tree cost more
than in R-Tree. Although for low dimensional data
EEMINC is significantly faster (also presented in Figure
8), as data dimension is getting higher A-Tree results
in very much lower latencies. It is also shown that

A-Tree latency for insertions, as well as the latency
for range queries, is not affected by the dimension of
data. Figure 13d presents the deletions latency to the
data dimension. In this case, EEMINC is faster. This
is due to the increment of false positives as data are
deleted, which causes unnecessary calculations to take
place. Furthermore, deletions sometimes cause R-Tree
to perform recursive merges that in the worst case
end up to the root of the index. The most important
conclusions from this experiment are: (a) A-Tree has
approximately the same performance as A*-Tree; and
(b) A-Tree scales linearly as data dimension is getting
higher and responds faster to point, range and insertion
requests in contrast to EEMINC.

We further extend our experiments to analyze the
resources utilization for A-Tree, A*-Tree and EEMINC
as it is another crucial aspect for a cloud index. The
utilization factor, presented in Figure 14, is the average
ratio of the time that resources are in use to the
total time of the simulation. We have seen that A-Tree

0
200
400
600
800

1000
1200
1400
1600
1800
2000

2 4 6 8 10

M
em

or
y

U
se

d
(M

b)

Data Dimension

EEMINC
A-Tree

Fig. 15: Actual Memory Used for Simulations



FIRST AUTHOR et al.: A-TREE: DISTRIBUTED INDEXING OF MULTI-DIMENSIONAL DATA FOR CLOUD COMPUTING ENVIRONMENTS 13

requires less resources for both master nodes (Figure
14a) and slave nodes (Figure 14b) for queries, insertions
and deletions while A*-Tree and EEMINC. A*-Tree
requires more resources on master nodes because of
the update strategy of A-Tree; since R*-Tree minimizes
overlap the algorithm for building and distributing
updates is often diving to just one level above leafs.
Hence, updates are consisted by more bounding boxes
than in A-Tree approach resulting in high master re-
sources utilization. EEMINC also fails to keep master
utilization low because the use of R-Tree as global
index requires more resources than searching the A-Tree
global index. On the other hand, A*-Tree requires little
more resources on slave nodes for insertions because of
the R*-Tree structure being used for local indices. Con-
cerning deletions A-Tree and A*-Tree perform the same
because of the partial updates strategy for deletions
since unnecessary computations are avoided. EEMINC
is by far the most resource hungry at both master and
slave nodes.

Finally, Figure 15 presents the actual memory used
during the simulations. The used memory can be con-
sidered as a good indicator of the actual memory needs.
We notice the high memory consumption of EEMINC
especially for data in high dimensional spaces. The
memory consumption for A*-Tree is the same as A-
Tree. Concluding the last two experiments A-Tree is
much more efficient concerning both memory and com-
putational resources.

7 Conclusions and Future Work
In this paper the A-Tree is presented. The proposed A-
Tree is a combination of R-Tree and Bloom filter and
support storing and querying large multi-dimensional
data sets in large datacenters. Based on the update
strategy introduced, it is capable of fast processing of
both point and range queries. Our experiments proved
that A-Tree is an efficient, distributed data structure for
multi-dimensional data stored in clouds, which scales
linearly as the system grows larger, data volume is
getting bigger and data dimension is getting higher.
In addition, the A-Tree is capable of handling a lot of
requests at the same time taking full advantage of data-
center resources. As network usage is minimized, the A-
Tree performs very well for slow network configurations,
especially for point queries and results in less energy
consumption as a lot of unnecessary calculation as well
as packages transmissions are avoided. Furthermore,
our experimentation has shown that A-Tree not only
minimizes network usage but also both the master and
slave nodes utilization as well as memory usage.

We pose our future directions to the use of dynamic
Bloom filters and smart data balancing algorithms. It is
expected that these changes will lower false positives’
rates for point and range as well as deletion queries,
resulting in a trade-off between more essential space
and preprocessing time and faster query processing.
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