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The honeycomb conjecture 

 The honeycomb conjecture (open for about 2000 years) 

• Any partition of the plane into regions of equal area has 
perimeter at least that of the regular hexagonal honeycomb 
tiling 
 The first record of the conjecture dates back to 36 BC, from Marcus Terentius 

Varro 

 Pappus of Alexandria (290-350) presented an incomplete proof of the conjecture, 
based largely on the fact that only three regular polygons (the triangle, the square 
and the hexagon) fill out a plane 

• Proved by Thomas C. Hale in June 1999 
 https://link.springer.com/article/10.1007/s004540010071 

 He is the one who proved Kepler‟s conjecture as well 
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Kepler’s conjecture 

 Kepler‟s conjecture 

• It states that no arrangement of equally sized spheres filling 
space has a greater average density than that of the cubic 
close packing (face-centered cubic) and hexagonal close 
packing arrangements. The density of these arrangements is 
around 74.05% 
 It was first stated by Johannes Kepler (1611) in his paper 'On the six-cornered 

snowflake„, and mentioned by Hilbert in his famous 1900 problem list 

• Proved by Thomas C. Hale in August 9th, 1998 
 www.mat.univie.ac.at/~neum/contrib/fullkepler-1.pdf 

 https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-
proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC 

 https://link.springer.com/article/10.1007/s00454-009-9148-4 

 

 

Cannonballs stacked in a face-centred-cubic lattice 
(Arlington, Virginia, about 1863) 
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Κάλυψη και συμδεσμικότητα σε 3D 

ασύρματα δίκτυα 
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Motivation 

 Conventional network design 

• Almost all wireless terrestrial network based on 2D 

• In cellular system, hexagonal tiling is used to place 
base station for maximizing coverage with fixed radius 

 In Reality: Distributed over a 3D space 

• Length and width are not significantly larger than 
height 

• Deployed in space, atmosphere or ocean 

• Underwater acoustic ad hoc and sensor networks 

• Army: unmanned aerial vehicles with limited sensing 
range or underwater autonomous vehicles for 
surveillance 

• Climate monitoring in ocean and atmosphere 
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Problem Statement 
 Assumptions 

• All nodes have the same sensing range and same 
transmission range 

• Sensing range R ≤ transmission range 

• Sensing is omnidirectional, sensing region is sphere of radius 
R 

• Boundary effects are negligible: R<<L, R<<W, R<<H 

• Any point in 3D must be covered by (within R of) at least one 
node 

• Free to place a node at any location in the network 

 

 Two goals of the work 
• 1: Node Placement Strategy) Given R, minimize the number 

of nodes required for surveillance while guaranteeing 100% 
coverage. Also, determine the locations of the nodes. 

• 2: Minimum ratio) between the transmission range and the 
sensing range, such that all nodes are connected to their 
neighbors 



7 

Roadmap 
 Proving optimality in 3D problems 

• Very difficult, still open for the centuries! 

• E.g., Kepler‟s conjecture (1611) and proven only in 1998! 

• E.g., Kelvin‟s conjecture (1887) has not been proven yet! 
 It is the analogous of Honeycomb conjecture in 3D 

 Instead of proving optimality 

• Show similarity between our problem and Kelvin‟s problem.  

• Use Kelvin‟s conjecture to find an answer to the first question.  

• Any rigorous proof of our conjecture will be very difficult. 

• Instead of giving a proof: 

 provide detailed comparisons of the suggested solution with thre
e other  

plausible solutions, and  

 show that the suggested solution is indeed superior. 
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Space-Filling Polyhedron 
 Polyhedron 

• is a 3D shape consisting of a finite number of 
polygonal faces. E.g., cube, prism, pyramid 

 Space-Filling Polyhedron 
(https://mathworld.wolfram.com/Space-FillingPolyhedron.html) 

• is a polyhedron that can be used to fill a volume 
without any overlap or gap (a.k.a, tessellation or 
tiling) 

Cube (6{4}) is space-
filling 

In 350 BC, Aristotle claimed that 
the tetrahedron (4{3}) is 
space-filling, but his claim was 
incorrect. The mistake 
remained unnoticed until the 
16th century! 

• In general, it is not easy to show that a polyhedron 
has the space-filling property 
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Why Space-Filling?! 
 How is our problem related to space-filling 

polyhedra? 
• Sensing region of a node is spherical 

• Spheres do NOT tessellate in 3D 

• We want to find the space-filling polyhedron that 
“best approximates” a sphere. 

 

• Once we know this polyhedron: 
Each cell is modeled by that polyhedron (for simplicity), 

where the distance from the center of a cell to its farthest 
corner is not greater than R 

Number of cells required to cover a volume is minimized 

This solves our first problem 

• The question still remains: What is this 
polyhedron?! 
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Kelvin’s Conjecture 

 In 1887, Lord Kelvin asked: 

• What is the optimal way to fill a 3D space with  

cells of equal volume, so that the surface area  

is minimized? 

Lord Kelvin  

(1824 - 
1907) 

• Essentially the problem of finding a space-filling 
structure having the highest isoperimetric quotient:  

     36 π V2 / S3 

   where V is the volume and S is the surface area 
• https://mathworld.wolfram.com/IsoperimetricQuotient.html 

• Sphere has the highest isoperimetric quotient = 1 

• Kelvin‟s answer: 14-sided truncated octahedron 
having a very slight curvature of the hexagonal 
faces and its isoperimetric quotient = 0.757 
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Truncated Octahedron 

Octahedron (8{3}) is 
NOT space-filling 

Kelvin's tetrakaidecahedron:  

Truncated Octahedron (6{4} + 
8{6}) is space-filling. The solid of 
edge length a can be formed from 
an octahedron of edge length 3a via 
truncation by removing six square 
pyramids, each with slant height 
and base = a 

Truncated Octahedra 

tessellating space 
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Weaire-Phelan foam 

Several views of the Weaire-Phelan partition. A fundamental region of 8 different colored cells is shown. 
Two cells (green and blue) are dodecahedra, and the other six are 14-sided with two opposite hexagonal 
faces and 12 pentagonal faces. The 14-sided cells stack into three sets of orthogonal columns, and the    
dodecahedra fit into the interstices between the columns 
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Voronoi Tessellation (Diagram) 

 Given a discrete set S of points in 
Euclidean space 

• Voronoi cell of point c of S: 

 is the set of all points closer to c than to 
any other point of S 

 A Voronoi cell is a convex polytope (polygon 
in 2D, polyhedron in 3D) 

• Voronoi tessellation corresponding to the s
et S: 

 is the set of such polyhedra 

 tessellate the whole space 

 

• We assume each Voronoi cell is identical 

Voronoi Diagram 

Hexagonal tessellation of a 
floor. All cells are 

identical. 



14 

Analysis 
 Total number of nodes for 3D coverage 

• Simply, ratio of volume to be covered to volume of one 
Voronoi cell 

• Minimizing no. of nodes by maximizing the volume of one 
cell V 

• With omnidirectional antenna: sensing range R  sphere 

• Radius of circumsphere of a Voronoi cell ≤ R 

• To achieve highest volume, radius of circumsphere = R 

• Volume of circumsphere of each Voronoi cell: 4πR3/3 

• Find space-filling polyhedron that has highest volumetric 
quotient; i.e., “best approximates” a sphere. 

 Volumetric quotient, q: 0 ≤ q ≤ 1 

• For any polyhedron, if the maximum distance from its 
center to any vertex is R and the volume of the 
polyhedron is V, then the volumetric quotient is, 
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Analysis 
 Similarity with Kelvin‟s Conjecture 

• Kelvin’s: find space-filling polyhedron with highest isoperimetric quotient 

 Sphere has the highest isoperimetric quotient = 1 

• Ours: find space-filling polyhedron with highest volumetric quotient  

 Sphere has the highest volumetric quotient = 1 

• Both problems: find space-filling polyhedron “best approximates” the sphere 

• Among all structures, the following claims hold: 

 For a given volume, sphere has the smallest surface area 

 For a given surface area, sphere has the largest volume 

 

• Claim/Argument: 

 Consider two space-filling polyhedrons: P1 and P2 such that VP1 = VP2 

 If SP1 < SP2, then P1 is a better approximation of a sphere than P2 

 If P1 is a better approximation of a sphere than P2, then P1 has a higher volumetric 

quotient than P2 

• Conclusion: Solution to Kelvin’s problem is essentially the solution to ours! 
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Analysis: choice of other polyhedra 

 Cube 
• Simplest, only regular polyhedron tessellating 3D 

space 

 Hexagonal prism 
• 2D optimum: hexagon, 3D extension, Used in [8] 

 Rhombic dodecahedron 
• Used in [6] 

 

 Analysis 
• Compare truncated octahedron with these 

polyhedra 

• Show that the truncated octahedron has a higher 
volumetric quotient, hence requires fewer nodes 
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• Given R, compute a 

• Sensing range:  

    R = 

• a=           =1.1547R 

 

 Cube 

• Length: a 

• Radius of circumsphere = R =  

• Volumetric quotient: 

 

Analysis: volumetric quotient 1 

2/3a

a
a

2/3a

a

a2

2/3a

3/2R
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 Hexagonal Prism 

• Length: a, height: h 

• Volume = area of base * height 

• Radius of circumsphere = R = 

• Volumetric quotient 

 

                                                                               

• Optimal h: Set first derivative of volumetric quotient to 
zero 

 

 

 

 

• Optimum volumetric quotient,  

 

Analysis: volumetric quotient 2 

2ah 
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Analysis: volumetric quotient 3 

 Rhombic dodecahedron 

• 12 rhombic face 

• Length: a 

• Radius of circumsphere: a 

• Volumetric quotient  
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Analysis: volumetric quotient 4 

 Truncated Octahedron 

• 14 faces, 8 hexagonal, 6 square space 

• Length: a 

• Radius of circumsphere: 

• Volumetric quotient  

a
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Analysis: Comparison 
Inverse proportion 
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Analysis: Placement strategies 
 Node placement 

• Where to place the nodes such that the Voronoi cells are our 

chosen space-filling polyhedrons? 

• Choose an arbitrary point (e.g., the center of the space to be 
covered): (cx, cy, cz). Place a node there. 

• Idea: Determine the locations of other nodes relative to this 
center node. 

• New coordinate system (u, v, w). Nodes placed at integer 
coordinates of this coordinate system. 

• Input to the node placement algorithm: 

 (cx, cy, cz)  

 Sensing range R  

• Output of the node placement algorithm: 

 (x, y, z) coordinates of the nodes 

Distance between two nodes (needed to calculate transmission 
range. Prob. 2) 
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Analysis: Placement strategies 1 

 Cube 

• Recall: Radius of circumsphere = R =  

• Unit distance in each axis = a =  

• (u, v, w) are parallel to (x, y, z) 

• A node at (u1, v1, w1) in the new  

coordinate system should be placed in the  

original (x, y, z) coordinate system at  

                                                   

 

• Distance between two nodes 

 

3/2R

2/3a
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 Hexagonal Prism 

• Recall:             , R =                   =        

 

• Hence, a =          ,  h =  

 

• New coordinate system (u, v, w): 

 v-axis is parallel to y-axis. 

 Angle between u-axis and x-axis is 300 

w-axis is parallel to z-axis 

  Unit distance along v-axis = Unit distance along u-axis =  

  Unit distance along z-axis = h =  

 

Analysis: Placement strategies 2 

2ah 
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 Hexagonal Prism (cont‟d) 

• A node at (u1, v1, w1) in the new coordinate system 
should be placed in the original (x, y, z) coordinate 
system at 

 

 

 

 

 

 

• Distance between two nodes =  

 

 

Analysis: Placement strategies 2 
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 Rhombic Dodecahedron 

• Unit distance along each axis: 

• New coordinate system placed in the original coordinate 
system at                                                   (3) 

 

 

• Distance between two nodes 

 

 

Analysis: Placement strategies 3 
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 Truncated octahedron 

• Unit distance in both u and v axes:          , w axis: 

• New coordinate system placed in the original coordinate 
system at  

                                                                              (4)                                  

 

• Distance between two nodes 

 

 

Analysis: Placement strategies 4 

5/4R 5/32 R
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Analysis: Transmission vs. Sensing Range 

 Required transmission range  

• To maintain connectivity among neighboring nodes 

• Depend on the choice of the polyhedron  
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Conclusion 

 Performance comparison 
• Truncated octahedron: higher volumetric quotient (0.683) 

than others(0.477, 0.367) 

• Required much fewer nodes (others more than 43%)  

 Maintain full connectivity 
• Optimal placement strategy for each polyhedron 

• Truncated octahedron: requires the transmission range 
to be at least 1.7889 times the sensing range 

 Further applications 
• Fixed: initial node deployment 

• Mobile: dynamically place to desired location 

• Node ID: u,v,w coordination  location-based routing 
protocol 

 


