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The honeycomb conjecture

= The honeycomb conjecture (open for about 2000 years)

e Any partition of the plane into regions of equal area has
perimeter at least that of the regular hexagonal honeycomb
tiling

v' The first record of the conjecture dates back to 36 BC, from Marcus Terentius
Varro

v' Pappus of Alexandria (290-350) presented an incomplete proof of the conjecture,
based largely on the fact that only three regular polygons (the triangle, the square
and the hexagon) fill out a plane

e Proved by Thomas C. Hale in June 1999
v https://link.springer.com/article/10.1007/s004540010071
v He is the one who proved Kepler’s conjecture as well




Kepler’s conjecture

= Kepler's conjecture

o It states that no arrangement of equally sized spheres filling
space has a greater average density than that of the cubic
close packing (face-centered cubic) and hexagonal close
packing arrangements. The density of these arrangements is
around 74.05%

v It was first stated by Johannes Kepler (1611) in his paper 'On the six-cornered
snowflake', and mentioned by Hilbert in his famous 1900 problem list

e Proved by Thomas C. Hale in August 9", 1998

v www.mat.univie.ac.at/~neum/contrib/fullkepler-1.pdf

v https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-
proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8EOD5B0C463C9FBC

v https://link.springer.com/article/10.1007/s00454-009-9148-4

Cannonballs stacked in a face—centred-cubic lattice 3
(Arlington, Virginia, about 1863)
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Motivation

= Conventional network design
e Almost all wireless terrestrial network based on 2D

In cellular system, hexagonal tiling is used to place
base station for maximizing coverage with fixed radius

= In Reality: Distributed over a 3D space

Length and width are not significantly larger than
height

Deployed in space, atmosphere or ocean
Underwater acoustic ad hoc and sensor networks

Army: unmanned aerial vehicles with limited sensing
range or underwater autonomous vehicles for
surveillance

Climate monitoring in ocean and atmosphere



Problem Statement
= Assumptions

e All nodes have the same sensing range and same
transmission range

e Sensing range R < transmission range

e Sensing is omnidirectional, sensing region is sphere of radius
R

e Boundary effects are negligible: R<<L, R<<W, R<<H

e Any point in 3D must be covered by (within R of) at least one
node

e Free to place a node at any location in the network

= Two goals of the work

e 1: Node Placement Strategy) Given R, minimize the number
of nodes required for surveillance while guaranteeing 100%
coverage. Also, determine the locations of the nodes.

e 2: Minimum ratio) between the transmission range and the
sensing range, such that all nodes are connected to their,
neighbors




Roadmap

= Proving optimality in 3D problems
e Very difficult, still open for the centuries!
e E.g., Kepler’s conjecture (1611) and proven only in 1998!
e E.g., Kelvin’s conjecture (1887) has not been proven yet!
v It is the analogous of Honeycomb conjecture in 3D
= Instead of proving optimality
e Show similarity between our problem and Kelvin’s problem.
e Use Kelvin’s conjecture to find an answer to the first question.
e Any rigorous proof of our conjecture will be very difficult.

e Instead of giving a proof:

v provide detailed comparisons of the suggested solution with thre
e other

plausible solutions, and
v' show that the suggested solution is indeed superior.



Space-Filling Polyhedron
= Polyhedron

e is a 3D shape consisting of a finite number of
polygonal faces. E.g., cube, prism, pyramid
= Space-Filling Polyhedron
(https://mathworld.wolfram.com/Space-FillingPolyhedron.html)
e is a polyhedron that can be used to fill a volume
without any overlap or gap (a.k.a, tessellation or
tiling)

e In general, it is not easy to show that a polyhedron
has the space-filling property

In 350 BC, Aristotle claimed that
“ _ the tetrahedron (4{3}) is
Cube (6{4}) is space- space-filling, but his claim was

filling incorrect. The mistake
remained unnoticed until the
16th century! "




Why Space-Filling?!

= How is our problem related to space-filling
polyhedra?
e Sensing region of a node is spherical
e Spheres do NOT tessellate in 3D

e We want to find the space-filling polyhedron that
“best approximates” a sphere.

e Once we know this polyhedron:

v'Each cell is modeled by that polyhedron (for simplicity),
where the distance from the center of a cell to its farthest
corner is not greater than R

v"Number of cells required to cover a volume is minimized
v'This solves our first problem

e The question still remains: What is this
polyhedron?! 9



Kelvin’s Conjecture

= In 1887, Lord Kelvin asked:
e What is the optimal way to fill a 3D space w =

cells of equal volume, so that the surface area Lord kelvin

. . . . 1824 -
IS minimized? (1907)

e Essentially the problem of finding a space-filling
structure having the highest /isoperimetric gquotient:
36 nV2/S3
where V is the volume and S is the surface area
e https://mathworld.wolfram.com/IsoperimetricQuotient.htmi
e Sphere has the highest isoperimetric quotient = 1
e Kelvin's answer: 14-sided truncated octahedron

having a very slight curvature of the hexagonal
faces and its isoperimetric quotient = 0.757




Truncated ctahedron

Octahedron (8{3}) is
NOT space-filling
. /

7 = I’f-:u:tahe-ﬂ::-:-n - & L'rsquare preaciid

? Kelvin's tetrakaidecahedron:

Truncated Octahedron (6{4} +
8{6}) is space-filling. The solid of
edge length a can be formed from
an octahedron of edge length 3a via
truncation by removing six square
pyramids, each with slant height
and base = a

octabedron m 2 I:E .:I:I Q ﬁ ﬁg

quuare prrarnid = %ﬂ,g. A = ;—-JE -:If3

o= IJJ'|:-n:t:ul'uauﬂ.'::-:-n_5 L’?square prracnid. = BAJE ui‘g

Truncated Octahedra

0 = 36 71 14 _ 64 7 o 0753367 tessellating space

5 31 +243T
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Weaire-Phelan foam

Several views of the Weaire-Phelan partition. A fundamental region of 8 different colored cells is shown.
Two cells (green and blue) are dodecahedra, and the other six are 14-sided with two opposite hexagonal
faces and 12 pentagonal faces. The 14-sided cells stack into three sets of orthogonal columns, and the
dodecahedra fit into the interstices between the columns 12



Voronoi Tessellation (Diagr

= Given a discrete set S of points in
Euclidean space

e Voronoi cell of point c of S:

v'is the set of all points closer to c than to
any other point of S

v" A Voronoi cell is a convex polytope (polygon
in 2D, polyhedron in 3D)

e Voronoi tessellation corresponding to the s
et S:
v'is the set of such polyhedra
v tessellate the whole space

Voronoi Diagram

e We assume each Voronoi cell is identical Hexagonal tessellation of a
floor. All cells are
identical.
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Analysis

= Total number of nodes for 3D coverage

= Volumetric quotient, g: 0 < g =<1

Simply, ratio of volume to be covered to volume of one
Voronoi cell

Minimizing no. of nodes by maximizing the volume of one
cell V

With omnidirectional antenna: sensing range R - sphere
Radius of circumsphere of a Voronoi cell £ R

To achieve highest volume, radius of circumsphere = R
Volume of circumsphere of each Voronoi cell: 4xR3/3

Find space-filling polyhedron that has highest volumetric
quotient; i.e., “best approximates” a sphere. v

For any polyhedron, if the maximum distance from — 7R’
center to any vertex is R and the volume of the 3
polyhedron is V, then the volumetric quotient is, 14



Analysis

Similarity with Kelvin’s Conjecture

Kelvin's: find space-filling polyhedron with highest isoperimetric quotient
v Sphere has the highest isoperimetric quotient = 1
Ours: find space-filling polyhedron with highest volumetric quotient
v Sphere has the highest volumetric quotient = 1
Both problems: find space-filling polyhedron “best approximates” the sphere
Among all structures, the following claims hold:
v For a given volume, sphere has the smallest surface area
v’ For a given surface area, sphere has the largest volume

Claim/Argument:
v" Consider two space-filling polyhedrons: P1 and P2 such that Vp, = Vp,
v If Spy < Sp,, then P1 is a better approximation of a sphere than P2

v If P1 is a better approximation of a sphere than P2, then P1 has a higher volumetric
guotient than P2

Conclusion: Solution to Kelvin’s problem is essentially the solution to ours!

15



Analysis: choice of other polyhedra
= Cube

e Simplest, only regular polyhedron tessellating 3D
space
= Hexagonal prism
e 2D optimum: hexagon, 3D extension, Used in [8]

= Rhombic dodecahedron
e Used in [6]

= Analysis
e Compare truncated octahedron with these
polyhedra

e Show that the truncated octahedron has a higher
volumetric quotient, hence requires fewer node&s



Analysis: volumetric quotient

= Cube

e Length: a
e Radius of circumsphere = R/3a/2

. . -
Volumetric quotient:  /, (/3
a — 7T —4a
3 2
pe— ~J3al2
\\O:\ a

%
= 0.36755.
} N
e Given R, compute a

e Sensing range:
R :\@alz

« a=2R/+/3=1.1547R
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Analysis: volumetric quotient :
Hexagonal Prism

e Length: a, height: h Figure 1. A Hexagonal Prism

e VVolume = area of base * height
e Radius of circumsphere = \fa +h*/4
e Volumetric quotient
%\/_ a’h ;"{ a’ + hL
2 3 4

e Optimal h: Set first derivatlve of volumetric quotient to

Zero z( z(
C;
4 { } 24 \/ih
572' a + — a + ——
=a’+h /4_3h /4 h=a+2

- nv\-l-:m
3 4 a(/ﬂ © 0477 18



Analysis: volumetric quotient

= Rhombic dodecahedron
e 12 rhombic face
e Length: a
e Radius of circumsphere: a
e Volumetric quotient

2c113/:L ra® =6/4r =0477

Figure 2. Construction of a rhombic dodecahedron
from two identical cubes
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Analysis: volumetric quotient
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Figure 3. Truncated Octahedron.

= Truncated Octahedron
e 14 faces, 8 hexagonal, 6 square space
e Length: a
e Radius of circumsphere: \/Ea/2
e Volumetric quotient

8\5(13/2 ﬂ(é\@aj = 24/5\57 = 0.68329
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Analysis: Comparison

Inverse proportion]

Table I: Volumetric Quotient of Different wpace-fﬂﬁng

Polyhedrons
Polyhedron Volumetric / Number of nodes
quotient <> needed
Compared to
truncated octahedron
Cube 0.36755 85.9% more
Hexagonal Prism | 0.477 43.25% more
Rhombic 0.477 43.25% more
Dodecahedron
Truncated 0.68329 same
Octahedron
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Analysis: Placement strategies

= Node placement
e Where to place the nodes such that the Voronoi cells are our
chosen space-filling polyhedrons?

e Choose an arbitrary point (e.g., the center of the space to be
covered): (cx, cy, cz). Place a node there.

e Idea: Determine the locations of other nodes relative to this
center node.

e New coordinate system (u, v, w). Nodes placed at integer
coordinates of this coordinate system.
e Input to the node placement algorithm:
v (cx, ¢y, €z)
v’ Sensing range R
e QOutput of the node placement algorithm:
v (X, Y, z) coordinates of the nodes

v Distance between two nodes (needed to calculate transmissi%l
range. Prob. 2)



Analysis: Placement strategies -

= Cube
e Recall: Radius of circumsphere = R3a/2

e Unit distance in each axis = &R4/3
e (u, v, w) are parallel to (x, vy, z)
e A node at (uy, vy, Wy) in the new
coordinate system should be placed i

original (X, y, z) coordinate system al |« 3

2R 2R 2R

CX+'L{1)<T_’C);+V1X .z + Wy X i =<
| ; 5 7 A

e Distance between two nodes

2

V3

dl"zb = R\/(u2 —141)2 +(v, _V1)2 +(w, —W1)2
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Analysis: Placement strategies :

= Hexagonal Prism
2 2 3
e Recallh=av2 \/a-+h/4 \g —

2R
e Hence, a =\/%R —=

A

e New coordinate system (u, v, w):
v v-axis is parallel to y-axis.
v Angle between u-axis and x-axis is 309
v  w-axis is parallel to z-axis
v' Unit distance along v-axis = Unit distance along R\F =
v' Unit distance along z-axis =2k =

V3
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Analysis: Placement strategies :

= Hexagonal Prism (cont'd)

e A node at (uy, v{, wy) in the new coordinate system
should be placed in the original (X, y, z) coordinate

cvickrarm 2t

X +u, X R\E sin 60°,
2R

cy + 1, x RN2cos 60° +v, x RN2, cz +w, x — << [

V3 | TR %fz;;@

e i e, S N

R I3 £ +20) R N 2Rw, B = s 2 i T
=|CcX T U 1 —,Cy U 1 Vl —.,CZ - R IR :f:;:z?;.:-_:?:.~
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Analysis: Placement strategies

= Rhombic Dodecahedron
e Unit distance along each a; R~/ 2

e New coordinate system placed in the original coordinate

system at cx + (2u, +1/1/1)£,c;v+(2v1 +w1)£ (3)

I 2
S ",
- =
A

V2

cz+wR

e Distance between two nodes

R\/E (u, —ul)2 + (v, _V1)2 + (w, —w])2 +

(u, —ul)(w2 —w1)+ (v, —vl)(w2 — wl)




Analysis: Placement strategies 4

= Truncated octahedron
e Unit distance in both u and v as®@s+/5 , I3RS

e New coordinate system placed in the original coordinate
system at

cx + (2141 + W, )E cy +(2v1 + W, )— cz +w,

J5

e Distance between two nodes

(1, —1,)" + (v, —v,)” +
iR (U, —uy ) (W, —wy) +

V5

(v, =v)(w, —w) + Z (Wz — Wl)




Analysis: Transmission vs. Sensing Range

= Required transmission range

e To maintain connectivity among neighboring nodes
e Depend on the choice of the polyhedron

Table II: Minimum Transmission Range for Different Polyhedrons

Polyhedron Minimum Transmission Range Max of Min

u-axis v-axis w-axis Transmission
Range

Cube 1.1547R 1.1547R 1.1547R 1.1547R

Hexagonal Prism 1.4142R 1.4142R 1.1547R 1.4142R

Rhombic 1.4142R 1.4142R 1.4142R 1.4142R

Dodecahedron

Truncated 1.7889R 1.7889R 1.5492R 1.7889R

Octahedron
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Conclusion

= Performance comparison

e Truncated octahedron: higher volumetric quotient (0.683)
than others(0.477, 0.367)

e Required much fewer nodes (others more than 43%)

= Maintain full connectivity
e Optimal placement strategy for each polyhedron
e Truncated octahedron: requires the transmission range
to be at least 1.7889 times the sensing range
= Further applications
e Fixed: initial node deployment
e Mobile: dynamically place to desired location

e Node ID: u,v,w coordination = location-based routing
protocol
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