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The honeycomb conjecture 

 The honeycomb conjecture (open for about 2000 years) 

• Any partition of the plane into regions of equal area has 
perimeter at least that of the regular hexagonal honeycomb 
tiling 
 The first record of the conjecture dates back to 36 BC, from Marcus Terentius 

Varro 

 Pappus of Alexandria (290-350) presented an incomplete proof of the conjecture, 
based largely on the fact that only three regular polygons (the triangle, the square 
and the hexagon) fill out a plane 

• Proved by Thomas C. Hale in June 1999 
 https://link.springer.com/article/10.1007/s004540010071 

 He is the one who proved Kepler‟s conjecture as well 
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Kepler’s conjecture 

 Kepler‟s conjecture 

• It states that no arrangement of equally sized spheres filling 
space has a greater average density than that of the cubic 
close packing (face-centered cubic) and hexagonal close 
packing arrangements. The density of these arrangements is 
around 74.05% 
 It was first stated by Johannes Kepler (1611) in his paper 'On the six-cornered 

snowflake„, and mentioned by Hilbert in his famous 1900 problem list 

• Proved by Thomas C. Hale in August 9th, 1998 
 www.mat.univie.ac.at/~neum/contrib/fullkepler-1.pdf 

 https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-
proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC 

 https://link.springer.com/article/10.1007/s00454-009-9148-4 

 

 

Cannonballs stacked in a face-centred-cubic lattice 
(Arlington, Virginia, about 1863) 
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Κάλυψη και συμδεσμικότητα σε 3D 

ασύρματα δίκτυα 
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Motivation 

 Conventional network design 

• Almost all wireless terrestrial network based on 2D 

• In cellular system, hexagonal tiling is used to place 
base station for maximizing coverage with fixed radius 

 In Reality: Distributed over a 3D space 

• Length and width are not significantly larger than 
height 

• Deployed in space, atmosphere or ocean 

• Underwater acoustic ad hoc and sensor networks 

• Army: unmanned aerial vehicles with limited sensing 
range or underwater autonomous vehicles for 
surveillance 

• Climate monitoring in ocean and atmosphere 
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Problem Statement 
 Assumptions 

• All nodes have the same sensing range and same 
transmission range 

• Sensing range R ≤ transmission range 

• Sensing is omnidirectional, sensing region is sphere of radius 
R 

• Boundary effects are negligible: R<<L, R<<W, R<<H 

• Any point in 3D must be covered by (within R of) at least one 
node 

• Free to place a node at any location in the network 

 

 Two goals of the work 
• 1: Node Placement Strategy) Given R, minimize the number 

of nodes required for surveillance while guaranteeing 100% 
coverage. Also, determine the locations of the nodes. 

• 2: Minimum ratio) between the transmission range and the 
sensing range, such that all nodes are connected to their 
neighbors 
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Roadmap 
 Proving optimality in 3D problems 

• Very difficult, still open for the centuries! 

• E.g., Kepler‟s conjecture (1611) and proven only in 1998! 

• E.g., Kelvin‟s conjecture (1887) has not been proven yet! 
 It is the analogous of Honeycomb conjecture in 3D 

 Instead of proving optimality 

• Show similarity between our problem and Kelvin‟s problem.  

• Use Kelvin‟s conjecture to find an answer to the first question.  

• Any rigorous proof of our conjecture will be very difficult. 

• Instead of giving a proof: 

 provide detailed comparisons of the suggested solution with thre
e other  

plausible solutions, and  

 show that the suggested solution is indeed superior. 
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Space-Filling Polyhedron 
 Polyhedron 

• is a 3D shape consisting of a finite number of 
polygonal faces. E.g., cube, prism, pyramid 

 Space-Filling Polyhedron 
(https://mathworld.wolfram.com/Space-FillingPolyhedron.html) 

• is a polyhedron that can be used to fill a volume 
without any overlap or gap (a.k.a, tessellation or 
tiling) 

Cube (6{4}) is space-
filling 

In 350 BC, Aristotle claimed that 
the tetrahedron (4{3}) is 
space-filling, but his claim was 
incorrect. The mistake 
remained unnoticed until the 
16th century! 

• In general, it is not easy to show that a polyhedron 
has the space-filling property 
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Why Space-Filling?! 
 How is our problem related to space-filling 

polyhedra? 
• Sensing region of a node is spherical 

• Spheres do NOT tessellate in 3D 

• We want to find the space-filling polyhedron that 
“best approximates” a sphere. 

 

• Once we know this polyhedron: 
Each cell is modeled by that polyhedron (for simplicity), 

where the distance from the center of a cell to its farthest 
corner is not greater than R 

Number of cells required to cover a volume is minimized 

This solves our first problem 

• The question still remains: What is this 
polyhedron?! 
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Kelvin’s Conjecture 

 In 1887, Lord Kelvin asked: 

• What is the optimal way to fill a 3D space with  

cells of equal volume, so that the surface area  

is minimized? 

Lord Kelvin  

(1824 - 
1907) 

• Essentially the problem of finding a space-filling 
structure having the highest isoperimetric quotient:  

     36 π V2 / S3 

   where V is the volume and S is the surface area 
• https://mathworld.wolfram.com/IsoperimetricQuotient.html 

• Sphere has the highest isoperimetric quotient = 1 

• Kelvin‟s answer: 14-sided truncated octahedron 
having a very slight curvature of the hexagonal 
faces and its isoperimetric quotient = 0.757 
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Truncated Octahedron 

Octahedron (8{3}) is 
NOT space-filling 

Kelvin's tetrakaidecahedron:  

Truncated Octahedron (6{4} + 
8{6}) is space-filling. The solid of 
edge length a can be formed from 
an octahedron of edge length 3a via 
truncation by removing six square 
pyramids, each with slant height 
and base = a 

Truncated Octahedra 

tessellating space 



12 

Weaire-Phelan foam 

Several views of the Weaire-Phelan partition. A fundamental region of 8 different colored cells is shown. 
Two cells (green and blue) are dodecahedra, and the other six are 14-sided with two opposite hexagonal 
faces and 12 pentagonal faces. The 14-sided cells stack into three sets of orthogonal columns, and the    
dodecahedra fit into the interstices between the columns 
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Voronoi Tessellation (Diagram) 

 Given a discrete set S of points in 
Euclidean space 

• Voronoi cell of point c of S: 

 is the set of all points closer to c than to 
any other point of S 

 A Voronoi cell is a convex polytope (polygon 
in 2D, polyhedron in 3D) 

• Voronoi tessellation corresponding to the s
et S: 

 is the set of such polyhedra 

 tessellate the whole space 

 

• We assume each Voronoi cell is identical 

Voronoi Diagram 

Hexagonal tessellation of a 
floor. All cells are 

identical. 
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Analysis 
 Total number of nodes for 3D coverage 

• Simply, ratio of volume to be covered to volume of one 
Voronoi cell 

• Minimizing no. of nodes by maximizing the volume of one 
cell V 

• With omnidirectional antenna: sensing range R  sphere 

• Radius of circumsphere of a Voronoi cell ≤ R 

• To achieve highest volume, radius of circumsphere = R 

• Volume of circumsphere of each Voronoi cell: 4πR3/3 

• Find space-filling polyhedron that has highest volumetric 
quotient; i.e., “best approximates” a sphere. 

 Volumetric quotient, q: 0 ≤ q ≤ 1 

• For any polyhedron, if the maximum distance from its 
center to any vertex is R and the volume of the 
polyhedron is V, then the volumetric quotient is, 
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Analysis 
 Similarity with Kelvin‟s Conjecture 

• Kelvin’s: find space-filling polyhedron with highest isoperimetric quotient 

 Sphere has the highest isoperimetric quotient = 1 

• Ours: find space-filling polyhedron with highest volumetric quotient  

 Sphere has the highest volumetric quotient = 1 

• Both problems: find space-filling polyhedron “best approximates” the sphere 

• Among all structures, the following claims hold: 

 For a given volume, sphere has the smallest surface area 

 For a given surface area, sphere has the largest volume 

 

• Claim/Argument: 

 Consider two space-filling polyhedrons: P1 and P2 such that VP1 = VP2 

 If SP1 < SP2, then P1 is a better approximation of a sphere than P2 

 If P1 is a better approximation of a sphere than P2, then P1 has a higher volumetric 

quotient than P2 

• Conclusion: Solution to Kelvin’s problem is essentially the solution to ours! 
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Analysis: choice of other polyhedra 

 Cube 
• Simplest, only regular polyhedron tessellating 3D 

space 

 Hexagonal prism 
• 2D optimum: hexagon, 3D extension, Used in [8] 

 Rhombic dodecahedron 
• Used in [6] 

 

 Analysis 
• Compare truncated octahedron with these 

polyhedra 

• Show that the truncated octahedron has a higher 
volumetric quotient, hence requires fewer nodes 
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• Given R, compute a 

• Sensing range:  

    R = 

• a=           =1.1547R 

 

 Cube 

• Length: a 

• Radius of circumsphere = R =  

• Volumetric quotient: 

 

Analysis: volumetric quotient 1 

2/3a

a
a

2/3a

a

a2

2/3a

3/2R
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 Hexagonal Prism 

• Length: a, height: h 

• Volume = area of base * height 

• Radius of circumsphere = R = 

• Volumetric quotient 

 

                                                                               

• Optimal h: Set first derivative of volumetric quotient to 
zero 

 

 

 

 

• Optimum volumetric quotient,  

 

Analysis: volumetric quotient 2 

2ah 
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Analysis: volumetric quotient 3 

 Rhombic dodecahedron 

• 12 rhombic face 

• Length: a 

• Radius of circumsphere: a 

• Volumetric quotient  
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Analysis: volumetric quotient 4 

 Truncated Octahedron 

• 14 faces, 8 hexagonal, 6 square space 

• Length: a 

• Radius of circumsphere: 

• Volumetric quotient  

a
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Analysis: Comparison 
Inverse proportion 
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Analysis: Placement strategies 
 Node placement 

• Where to place the nodes such that the Voronoi cells are our 

chosen space-filling polyhedrons? 

• Choose an arbitrary point (e.g., the center of the space to be 
covered): (cx, cy, cz). Place a node there. 

• Idea: Determine the locations of other nodes relative to this 
center node. 

• New coordinate system (u, v, w). Nodes placed at integer 
coordinates of this coordinate system. 

• Input to the node placement algorithm: 

 (cx, cy, cz)  

 Sensing range R  

• Output of the node placement algorithm: 

 (x, y, z) coordinates of the nodes 

Distance between two nodes (needed to calculate transmission 
range. Prob. 2) 
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Analysis: Placement strategies 1 

 Cube 

• Recall: Radius of circumsphere = R =  

• Unit distance in each axis = a =  

• (u, v, w) are parallel to (x, y, z) 

• A node at (u1, v1, w1) in the new  

coordinate system should be placed in the  

original (x, y, z) coordinate system at  

                                                   

 

• Distance between two nodes 

 

3/2R

2/3a
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 Hexagonal Prism 

• Recall:             , R =                   =        

 

• Hence, a =          ,  h =  

 

• New coordinate system (u, v, w): 

 v-axis is parallel to y-axis. 

 Angle between u-axis and x-axis is 300 

w-axis is parallel to z-axis 

  Unit distance along v-axis = Unit distance along u-axis =  

  Unit distance along z-axis = h =  

 

Analysis: Placement strategies 2 

2ah 
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 Hexagonal Prism (cont‟d) 

• A node at (u1, v1, w1) in the new coordinate system 
should be placed in the original (x, y, z) coordinate 
system at 

 

 

 

 

 

 

• Distance between two nodes =  

 

 

Analysis: Placement strategies 2 
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 Rhombic Dodecahedron 

• Unit distance along each axis: 

• New coordinate system placed in the original coordinate 
system at                                                   (3) 

 

 

• Distance between two nodes 

 

 

Analysis: Placement strategies 3 
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 Truncated octahedron 

• Unit distance in both u and v axes:          , w axis: 

• New coordinate system placed in the original coordinate 
system at  

                                                                              (4)                                  

 

• Distance between two nodes 

 

 

Analysis: Placement strategies 4 

5/4R 5/32 R
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Analysis: Transmission vs. Sensing Range 

 Required transmission range  

• To maintain connectivity among neighboring nodes 

• Depend on the choice of the polyhedron  
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Conclusion 

 Performance comparison 
• Truncated octahedron: higher volumetric quotient (0.683) 

than others(0.477, 0.367) 

• Required much fewer nodes (others more than 43%)  

 Maintain full connectivity 
• Optimal placement strategy for each polyhedron 

• Truncated octahedron: requires the transmission range 
to be at least 1.7889 times the sensing range 

 Further applications 
• Fixed: initial node deployment 

• Mobile: dynamically place to desired location 

• Node ID: u,v,w coordination  location-based routing 
protocol 

 


