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Binary Heap Basics

 A Heap viewed as (a) a binary tree, (b) an aray

 Heap Property

 for every node, other than the root, the value of a node is 

less/equal to the value of its parent node, 

 Value[Parent(i)] >= Value[i]

 Thus, the root node always store maximum value in the Heap
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Binary Heap Basics

 Heap/Binary Tree Properties:

 for N-sized heap, represented as an array, elements [N/2...N] 

are leaves

 for a heap/binary tree node i:

 parent(i) = i/2, left(i) = 2*i, right(i) = 2*i + 1

 size of N-height heap is 2^(N + 1)-1, 

where height N excludes root node!

 Minimum value heap can be created simply by storing 

negative values
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Heapify

 Assuming that left(i), right(i) are heaps, but node i may 

smaller than its children, heapify pushes down i

 Heapify of node 2:
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Basic Heap Operations
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Heap Insert Example
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Dijkstra’s Shortest Path Algorithm
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DIJKSTRA’s Shortest Path (Graph(V, E), source)

for each vertex v in Graph:              // Initializations 

dist[v] := infinity ;                  // Unknown distance function from source to v 

previous[v] := undefined ;             // Previous node in optimal path 

end for                                  // from source 

dist[source] := 0 ;                      // Distance from source to source 

Q := the set of all nodes in Graph ;     // All nodes in the graph are unoptimized

// thus are in Q 

while Q is not empty: // the main loop 

u := vertex in Q with smallest distance in dist[] ; // Source node in first case 

remove u from Q ; 

if dist[u] = infinity: 

break ;                             // all remaining vertices are 

end if // inaccessible from source 

for each neighbor v of u:             // where v has not yet been removed from Q. 

alt := dist[u] + dist_between(u, v) ; 

if alt < dist[v]:                  // Relax (u,v,a) 

dist[v] := alt ;  

previous[v] := u ;              // Store Shortest Path

decrease-key v in Q;            // Reorder v in the Queue 

end if

end for 

end while 

return dist; 
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STA Longest Path Algorithm
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STA Longest_Path(Graph(V, E), L, I, spec)

n = |V|; m = |E|; q = |I|;

for (v in V) { 

dist[v] := 0 ;

Dv = |v| ;

}

Q = I;

while (Q != 0) {

v = DEQUEUE(Q);

foreach (a in v) {

dist[a] = max(dist[a], (dist[v] + L(v, a)));

Da = Da – 1;

if (Da == 0) QUEUE(Q, a);

}

maxdist = maxv in V(dist[v]);

maxv = SELECT1(V, maxdist);

critical_path = BACK_TRACE(V, E, L, dist[], maxv, (spec – maxdist));

return (critical_path, dist[]);
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 L(v, u) is the edge length

 dist[v] is an iteratively increasing lower bound on the longest path length from the PIs to v

 Dv is the number of incoming edges to node v in V

 v  is the successors of v,  v the predecessors of v

STA Longest Path Algorithm and 

Backtracing

 The length of the longest path to any node maxdist is 

computed and passed to select one node, whereby

 dist[v] = maxdist

 spec is the RAT – Required Arrival Time

 (spec – maxdist) indicates path slack or violation

 Complete picture of delay evaluation includes

 Arrival Time

 Required Arrival Time

 The difference between the two is the slack
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Timing Graph Example
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Data Trace running Longest Path
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Edge and Node Slack

 Definition

 The slack if an edge (a, v) is the slack of v, plus the difference 

between the longest path length to v, and the longest path to v 

through (a, v):

 The slack if a node v is the minimum slack of its fanout edges

 Simpler Formula for Single Critical Path
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Back-Tracing – Slack Computation
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BACK_TRACE(Graph(V, E), L, maxdist, maxv, Rslack)

foreach (v in V) slack[v] = maxdist;

slack[maxv] = Rslack;

critical_path = {maxv};

QUEUE(Q, maxdist);

while (Q != 0) {

v = DEQUEUE(Q);

foreach (a in v) {

slack[a] = slack[v] + (dist[v] – (dist[a] + La,v));

if (slack[a] == Rslack) {

QUEUE(Q, a);

critical_path = {a} U critical_path;

break;

}

}

}

return (critical_path, slack[]);
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 maxv is a (any) node of maximum depth

 Rslack is the required Slack – could be 0
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Back-Tracing – Slack Computation

 For each active node v, as soon as a new 0-slack node a is 

encountered in the backward traversal

 a is put at the end of Q, and the for loop is exited by break

 Non critical nodes may not be updated

 Will still have their initialized slack values (Rslack)

 Final slack values also depend on the order in which 

nodes in the fanin v are processed

 Critical Path for example: {0, 4, 5, 6, 7, 9}

 Slack values:
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

slack 0 14 7 1 0 0 0 0 24 0 23

Related Issue: Zero Slack Assignment

 Establish timing budgets for nets

 Gate and wire delays must be optimized during timing driven 

layout design

 Wire delays depend on wire lengths

 Wire lengths are not known until after placement and routing

 Delay budgeting with the zero-slack algorithm  

 Let vi be the logic gates

 Let ei be the nets

 Let DELAY(v) and DELAY(e) be the delay of the gate and net, 

respectively

 Define the timing budget of a gate 

 TB(v) = DELAY(v) + DELAY(e) 
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ZSA Example

 Tuple is <AT, Slack, RAT>
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ZSA Example

 Identify minimum slack path > 0
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ZSA Example

 Distribute slacks, and update timing budgets
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ZSA Example

 Identify again the minimum slack path > 0
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ZSA Example

 Distribute slacks, and update timing budgets
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ZSA Example

 Identify new minimum slack path > 0
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ZSA Example

 … distribute slacks, update local timing budgets

8/3/2016CE439 - CAD Algorithms II23

ZSA Example

 … Identify new minimum slack path > 0
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ZSA Example

 … distribute

8/3/2016CE439 - CAD Algorithms II25

ZSA Example

 … new minimum slack > 0 path
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ZSA Example

 … distribute
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ZSA Example

 … identify
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ZSA Example

 … distribute
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ZSA Wire Delays

 Wire delays render placement feasible

 Translate to wire bound constraints

 This example is infeasible as certain wires have 0 delay

 Zero WL constraint
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ZSA and Bounds

 Wire Bounds correspond to Slack converted to Wire Delay
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Flow Networks and Flows

 A flow network G = (V, E) is a DAG, where each edge, 

(u, v) in E has a non-negative capacity c(u, v) >= 0

 Two vertices are special: a source s, and a sink t

 Typically, each vertex lies on a source to sink path

 A flow in G is a real valued function f:  (V x  V)  R, s.t.:

 Capacity Constraint: for all u, v in V, f(u, v) <= c(u, v)

 Skew Symmetry: for all u, v in V, f(u, v) = -f(v, u)

 Flow Conservation: for all u in V – {s, t},

 The quantity f(u, v) is the net flow from u to v

 The value of flow f is defined as:

 The total net flow out of the source

 Maximum Flow: find flow of maximum value from s to t 
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𝑣∈𝑉

𝑓 𝑢, 𝑣 = 0

𝑓 =  

𝑣∈𝑉

𝑓 𝑠, 𝑣

Flow Network Example – not a Flow!

 Each edge is labelled with its capacity

 Only positive net flows are shown

 Flow in G is |f| = 19

 Slash notation separates flow and capacity

 Positive net flow entering vertex v:
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Actual Network Flow

 Flow magnitude |f| = 11 + 8 = 19

 For an actual network flow, Flow Conservation holds

 e.g.  Node v1: (11 + 1 – 12) = 0

 Node v2: (8 + 4 – 1 – 11) = 0

 Node v3: (12 + 7 – 4 – 15) = 0

 Node v4: (11 – 7 – 4) = 0
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Ford-Fulkerson Method

 Augmenting Path: a s to t path through which the flow 

can be increased

 Residual capacity of (u, v)

 Additional net flow we can push from u to v <= c(u, v)

 cf(u, v) = c(u, v) – f(u, v)

 Residual Network G(V, Ef):

 Ef = {(u, v) in V x V, s.t. cf(u, v) > 0}
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Residual Network

 Residual network of initial flow
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Residual Network and Modified Flow
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Optimised Network Actual Flow

 Flow Magnitude  |f| = 11 + 12 = 23

 For an actual network flow, Flow Conservation holds

 e.g.  Node v1: (11 + 1 – 12) = 0

 Node v2: (12 + 0 – 1 – 11) = 0

 Node v3: (12 + 7 – 0 – 19) = 0

 Node v4: (11 – 7 – 4) = 0
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Ford-Fulkerson Algorithm

 Efficiency depends on augmenting path

 Edmonds-Karp variation

 Shortest path from s to t, where edge distance is 1

 O(VE2) Complexity = O(E x VE) (shortest path)
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Ford-Fulkerson Algorithm Execution 

Example
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Ford-Fulkerson Degenerate Example

 If we keep adding WC augmenting path of 1 when

identifying a path from s to t the algorithm will take

O(E x |f*|)

 Use shortest unit edge weight path from s to t
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Cuts of Flow Networks

 A cut (S, T) of flow network G = (V, E) is a partition of V

into S and T = V – S, such what s is in S and t is in T

 The netflow across the cut (S, T) is f(S, T)

 The capacity of the cut (S,T) is c(S,T)

 Always positive, from S to T

 Max-Flow Min-Cut Theorem

 If f is a flow in a flow network G = (V, E) with source s and sink 

t, then the following conditions are equivalent:

 F is a maximum flow in G

 The residual network Gf contains no augmenting paths

 |f| = c(S, T) for some cut (S, T) of G
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Cut Example

 Cut across original flow network

 Net flow across (S, T) is 19 (12 + 11 – 4)

 Cutsize is 26 (12 + 14)
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