
3/8/2016

1

CAD Algorithms for Physical Design

– Longest Path and Max Flow

Christos P Sotiriou

8/3/2016CE439 - CAD Algorithms II1

Contents

 Dijkstra’s Shortest Path Algorithm

 Binary Heap Tree Basics

 Operations: Insert, Extract Max, Heapify, Delete?

 Complexity

 Longest Path Algorithm

 Traversed Edges Flag

 Priority Queue Operations

 Slack Computation (Back-Trace)

 Slack Definition

 Slack Computation

 Longest Path Complexity

8/3/2016CE439 - CAD Algorithms II2

3/8/2016

2

Binary Heap Basics

 A Heap viewed as (a) a binary tree, (b) an aray

 Heap Property

 for every node, other than the root, the value of a node is

less/equal to the value of its parent node,

 Value[Parent(i)] >= Value[i]

 Thus, the root node always store maximum value in the Heap

8/3/2016CE439 - CAD Algorithms II3

Binary Heap Basics

 Heap/Binary Tree Properties:

 for N-sized heap, represented as an array, elements [N/2...N]

are leaves

 for a heap/binary tree node i:

 parent(i) = i/2, left(i) = 2*i, right(i) = 2*i + 1

 size of N-height heap is 2^(N + 1)-1,

where height N excludes root node!

 Minimum value heap can be created simply by storing

negative values

8/3/2016CE439 - CAD Algorithms II4

3/8/2016

3

Heapify

 Assuming that left(i), right(i) are heaps, but node i may

smaller than its children, heapify pushes down i

 Heapify of node 2:

8/3/2016CE439 - CAD Algorithms II5

Basic Heap Operations

8/3/2016CE439 - CAD Algorithms II6

3/8/2016

4

Heap Insert Example

8/3/2016CE439 - CAD Algorithms II7

Dijkstra’s Shortest Path Algorithm

CE439 - CAD Algorithms II8

DIJKSTRA’s Shortest Path (Graph(V, E), source)

for each vertex v in Graph: // Initializations

dist[v] := infinity ; // Unknown distance function from source to v

previous[v] := undefined ; // Previous node in optimal path

end for // from source

dist[source] := 0 ; // Distance from source to source

Q := the set of all nodes in Graph ; // All nodes in the graph are unoptimized

// thus are in Q

while Q is not empty: // the main loop

u := vertex in Q with smallest distance in dist[] ; // Source node in first case

remove u from Q ;

if dist[u] = infinity:

break ; // all remaining vertices are

end if // inaccessible from source

for each neighbor v of u: // where v has not yet been removed from Q.

alt := dist[u] + dist_between(u, v) ;

if alt < dist[v]: // Relax (u,v,a)

dist[v] := alt ;

previous[v] := u ; // Store Shortest Path

decrease-key v in Q; // Reorder v in the Queue

end if

end for

end while

return dist;

8/3/2016

3/8/2016

5

STA Longest Path Algorithm

CE439 - CAD Algorithms II9

STA Longest_Path(Graph(V, E), L, I, spec)

n = |V|; m = |E|; q = |I|;

for (v in V) {

dist[v] := 0 ;

Dv = |v| ;

}

Q = I;

while (Q != 0) {

v = DEQUEUE(Q);

foreach (a in v) {

dist[a] = max(dist[a], (dist[v] + L(v, a)));

Da = Da – 1;

if (Da == 0) QUEUE(Q, a);

}

maxdist = maxv in V(dist[v]);

maxv = SELECT1(V, maxdist);

critical_path = BACK_TRACE(V, E, L, dist[], maxv, (spec – maxdist));

return (critical_path, dist[]);

8/3/2016

 L(v, u) is the edge length

 dist[v] is an iteratively increasing lower bound on the longest path length from the PIs to v

 Dv is the number of incoming edges to node v in V

 v is the successors of v, v the predecessors of v

STA Longest Path Algorithm and

Backtracing

 The length of the longest path to any node maxdist is

computed and passed to select one node, whereby

 dist[v] = maxdist

 spec is the RAT – Required Arrival Time

 (spec – maxdist) indicates path slack or violation

 Complete picture of delay evaluation includes

 Arrival Time

 Required Arrival Time

 The difference between the two is the slack

8/3/2016CE439 - CAD Algorithms II10

3/8/2016

6

Timing Graph Example

8/3/2016CE439 - CAD Algorithms II11

Data Trace running Longest Path

8/3/2016CE439 - CAD Algorithms II12

3/8/2016

7

Edge and Node Slack

 Definition

 The slack if an edge (a, v) is the slack of v, plus the difference

between the longest path length to v, and the longest path to v

through (a, v):

 The slack if a node v is the minimum slack of its fanout edges

 Simpler Formula for Single Critical Path

8/3/2016CE439 - CAD Algorithms II13

Back-Tracing – Slack Computation

CE439 - CAD Algorithms II14

BACK_TRACE(Graph(V, E), L, maxdist, maxv, Rslack)

foreach (v in V) slack[v] = maxdist;

slack[maxv] = Rslack;

critical_path = {maxv};

QUEUE(Q, maxdist);

while (Q != 0) {

v = DEQUEUE(Q);

foreach (a in v) {

slack[a] = slack[v] + (dist[v] – (dist[a] + La,v));

if (slack[a] == Rslack) {

QUEUE(Q, a);

critical_path = {a} U critical_path;

break;

}

}

}

return (critical_path, slack[]);

8/3/2016

 maxv is a (any) node of maximum depth

 Rslack is the required Slack – could be 0

3/8/2016

8

Back-Tracing – Slack Computation

 For each active node v, as soon as a new 0-slack node a is

encountered in the backward traversal

 a is put at the end of Q, and the for loop is exited by break

 Non critical nodes may not be updated

 Will still have their initialized slack values (Rslack)

 Final slack values also depend on the order in which

nodes in the fanin v are processed

 Critical Path for example: {0, 4, 5, 6, 7, 9}

 Slack values:

8/3/2016CE439 - CAD Algorithms II15

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

slack 0 14 7 1 0 0 0 0 24 0 23

Related Issue: Zero Slack Assignment

 Establish timing budgets for nets

 Gate and wire delays must be optimized during timing driven

layout design

 Wire delays depend on wire lengths

 Wire lengths are not known until after placement and routing

 Delay budgeting with the zero-slack algorithm

 Let vi be the logic gates

 Let ei be the nets

 Let DELAY(v) and DELAY(e) be the delay of the gate and net,

respectively

 Define the timing budget of a gate

 TB(v) = DELAY(v) + DELAY(e)

8/3/2016CE439 - CAD Algorithms II16

3/8/2016

9

ZSA Example

 Tuple is <AT, Slack, RAT>

8/3/2016CE439 - CAD Algorithms II17

ZSA Example

 Identify minimum slack path > 0

8/3/2016CE439 - CAD Algorithms II18

3/8/2016

10

ZSA Example

 Distribute slacks, and update timing budgets

8/3/2016CE439 - CAD Algorithms II19

ZSA Example

 Identify again the minimum slack path > 0

8/3/2016CE439 - CAD Algorithms II20

3/8/2016

11

ZSA Example

 Distribute slacks, and update timing budgets

8/3/2016CE439 - CAD Algorithms II21

ZSA Example

 Identify new minimum slack path > 0

8/3/2016CE439 - CAD Algorithms II22

3/8/2016

12

ZSA Example

 … distribute slacks, update local timing budgets

8/3/2016CE439 - CAD Algorithms II23

ZSA Example

 … Identify new minimum slack path > 0

8/3/2016CE439 - CAD Algorithms II24

3/8/2016

13

ZSA Example

 … distribute

8/3/2016CE439 - CAD Algorithms II25

ZSA Example

 … new minimum slack > 0 path

8/3/2016CE439 - CAD Algorithms II26

3/8/2016

14

ZSA Example

 … distribute

8/3/2016CE439 - CAD Algorithms II27

ZSA Example

 … identify

8/3/2016CE439 - CAD Algorithms II28

3/8/2016

15

ZSA Example

 … distribute

8/3/2016CE439 - CAD Algorithms II29

ZSA Wire Delays

 Wire delays render placement feasible

 Translate to wire bound constraints

 This example is infeasible as certain wires have 0 delay

 Zero WL constraint

8/3/2016CE439 - CAD Algorithms II30

3/8/2016

16

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

J

Q

Q

K

SET

CLR0

(0.1,0.0)

(0.1,0.0)

(0.1,0.0)

(0.1,0.0)

(0.1,0.0)

(0.1,0.0)
≤ d1

≤ d3

≤ d2

≤ d7

≤ d10≤ d6

≤ d12

≤ d5

≤ d4

≤ d11

≤ d8

≤ d9

ZSA and Bounds

 Wire Bounds correspond to Slack converted to Wire Delay

CE439 - CAD Algorithms II31

1.2

1

0.7

1

1.5

1.8

0.5

1

0.7

8/3/2016

Maximum Flow

8/3/2016CE439 - CAD Algorithms II32

3/8/2016

17

Flow Networks and Flows

 A flow network G = (V, E) is a DAG, where each edge,

(u, v) in E has a non-negative capacity c(u, v) >= 0

 Two vertices are special: a source s, and a sink t

 Typically, each vertex lies on a source to sink path

 A flow in G is a real valued function f: (V x V) R, s.t.:

 Capacity Constraint: for all u, v in V, f(u, v) <= c(u, v)

 Skew Symmetry: for all u, v in V, f(u, v) = -f(v, u)

 Flow Conservation: for all u in V – {s, t},

 The quantity f(u, v) is the net flow from u to v

 The value of flow f is defined as:

 The total net flow out of the source

 Maximum Flow: find flow of maximum value from s to t
8/3/2016CE439 - CAD Algorithms II33

𝑣∈𝑉

𝑓 𝑢, 𝑣 = 0

𝑓 =

𝑣∈𝑉

𝑓 𝑠, 𝑣

Flow Network Example – not a Flow!

 Each edge is labelled with its capacity

 Only positive net flows are shown

 Flow in G is |f| = 19

 Slash notation separates flow and capacity

 Positive net flow entering vertex v:

8/3/2016CE439 - CAD Algorithms II34

𝑢∈𝑉,𝑓(𝑢,𝑣)>0

𝑓(𝑢, 𝑣)

3/8/2016

18

Actual Network Flow

 Flow magnitude |f| = 11 + 8 = 19

 For an actual network flow, Flow Conservation holds

 e.g. Node v1: (11 + 1 – 12) = 0

 Node v2: (8 + 4 – 1 – 11) = 0

 Node v3: (12 + 7 – 4 – 15) = 0

 Node v4: (11 – 7 – 4) = 0

8/3/2016CE439 - CAD Algorithms II35

12

11

4

1

11
4

7

15

Ford-Fulkerson Method

 Augmenting Path: a s to t path through which the flow

can be increased

 Residual capacity of (u, v)

 Additional net flow we can push from u to v <= c(u, v)

 cf(u, v) = c(u, v) – f(u, v)

 Residual Network G(V, Ef):

 Ef = {(u, v) in V x V, s.t. cf(u, v) > 0}

8/3/2016CE439 - CAD Algorithms II36

3/8/2016

19

Residual Network

 Residual network of initial flow

8/3/2016CE439 - CAD Algorithms II37

Residual Network and Modified Flow

8/3/2016CE439 - CAD Algorithms II38

3/8/2016

20

Optimised Network Actual Flow

 Flow Magnitude |f| = 11 + 12 = 23

 For an actual network flow, Flow Conservation holds

 e.g. Node v1: (11 + 1 – 12) = 0

 Node v2: (12 + 0 – 1 – 11) = 0

 Node v3: (12 + 7 – 0 – 19) = 0

 Node v4: (11 – 7 – 4) = 0

8/3/2016CE439 - CAD Algorithms II39

12

11

11
7

4

19

0

12

1

Ford-Fulkerson Algorithm

 Efficiency depends on augmenting path

 Edmonds-Karp variation

 Shortest path from s to t, where edge distance is 1

 O(VE2) Complexity = O(E x VE) (shortest path)

8/3/2016CE439 - CAD Algorithms II40

3/8/2016

21

Ford-Fulkerson Algorithm Execution

Example

8/3/2016CE439 - CAD Algorithms II41

Ford-Fulkerson Degenerate Example

 If we keep adding WC augmenting path of 1 when

identifying a path from s to t the algorithm will take

O(E x |f*|)

 Use shortest unit edge weight path from s to t

8/3/2016CE439 - CAD Algorithms II42

3/8/2016

22

Cuts of Flow Networks

 A cut (S, T) of flow network G = (V, E) is a partition of V

into S and T = V – S, such what s is in S and t is in T

 The netflow across the cut (S, T) is f(S, T)

 The capacity of the cut (S,T) is c(S,T)

 Always positive, from S to T

 Max-Flow Min-Cut Theorem

 If f is a flow in a flow network G = (V, E) with source s and sink

t, then the following conditions are equivalent:

 F is a maximum flow in G

 The residual network Gf contains no augmenting paths

 |f| = c(S, T) for some cut (S, T) of G

8/3/2016CE439 - CAD Algorithms II43

Cut Example

 Cut across original flow network

 Net flow across (S, T) is 19 (12 + 11 – 4)

 Cutsize is 26 (12 + 14)

8/3/2016CE439 - CAD Algorithms II44

