

Contents

- Dijkstra's Shortest Path Algorithm
- Binary Heap Tree Basics
, Operations: Insert, Extract Max, Heapify, Delete?
, Complexity
- Longest Path Algorithm
, Traversed Edges Flag
- Priority Queue Operations
- Slack Computation (Back-Trace)
- Slack Definition
- Slack Computation
- Longest Path Complexity

Binary Heap Basics

- A Heap viewed as (a) a binary tree, (b) an aray

- Heap Property

- for every node, other than the root, the value of a node is less/equal to the value of its parent node,
- Value[Parent(i)] >=Value[i]
- Thus, the root node always store maximum value in the Heap

Binary Heap Basics

- Heap/Binary Tree Properties:
b for N-sized heap, represented as an array, elements [N/2...N] are leaves
- for a heap/binary tree node i:
- $\operatorname{parent}(\mathrm{i})=\mathrm{i} / 2, \operatorname{left}(\mathrm{i})=2 *_{i}, \operatorname{right}(\mathrm{i})=2 *_{i}+1$
> size of N -height heap is $2^{\wedge}(\mathrm{N}+\mathrm{I})-\mathrm{I}$, where height N excludes root node!
- Minimum value heap can be created simply by storing negative values

Heapify

- Assuming that left(i), right(i) are heaps, but node i may smaller than its children, heapify pushes down i
- Heapify of node 2:

Basic Heap Operations

HEAPIFY (A, i)	
1	$l \leftarrow \operatorname{LeFt}(i)$
2	$r \leftarrow \operatorname{RiGHt}(i)$
3	if $l \leq$ heap-size $[A]$ and $A[l]>A[i]$
4	then largest $\leftarrow l$
5	else largest $\leftarrow i$
6	if $r \leq$ heap-size $[A]$ and $A[r]>A[$ largest $]$
7	then largest $\leftarrow r$
8	if largest $\neq i$
9	then exchange $A[i] \leftrightarrow A[$ largest $]$
10	$\operatorname{Heapify}(A$, largest $)$

```
Heap-Extract-Max(A)
    if heap-size[A]<1
        then error "heap underflow"
    max}\leftarrowA[1
    A[1]}\leftarrowA[\mathrm{ heap-size[A]]
5 heap-size[A]\leftarrowheap-size[A]-1
6 HEAPIFY ( }A,1
    return max
```

```
Heap-Insert \((A, k e y)\)
I heap-size \([A] \leftarrow\) heap-size \([A]+1\)
\(i \leftarrow\) heap-size \([A]\)
while \(i>1\) and \(A[\operatorname{PaRENT}(i)]<k e y\)
        do \(A[i] \leftarrow A[\operatorname{Parent}(i)]\)
            \(i \leftarrow \operatorname{PaRENT}(i)\)
    \(A[i] \leftarrow k e y\)
```


Heap Insert Example

(a)

(c)

(b)

(d)

Dijkstra's Shortest Path Algorithm

DIJKSTRA's Shortest Path (Graph(V, E), source)

```
for each vertex v in Graph: // Initializations
    dist[v] := infinity ; // Unknown distance function from source to v
    previous[v] := undefined ; // Previous node in optimal path
end for // from source
dist[source] := 0 ; // Distance from source to source
Q := the set of all nodes in Graph ; // All nodes in the graph are unoptimized
// thus are in Q
while Q is not empty: // the main loop
    u := vertex in Q with smallest distance in dist[] ; // Source node in first case
    remove u from Q ;
    if dist[u] = infinity:
        break ; // all remaining vertices are
    end if // inaccessible from source
    for each neighbor v of u: // where v has not yet been removed from Q.
        alt := dist[u] + dist between(u, v) ;
        if alt < dist[v]: / // Relax (u,v,a)
            dist[v] := alt ;
            previous[v] := u ; // Store Shortest Path
            decrease-key v in Q; // Reorder v in the Queue
        end if
    end for
end while
return dist;
```


STA Longest Path Algorithm

STA Longest_Path(Graph(V, E), L, I, spec)

```
n = |V|; m = |E|; q = |I|;
for (v in V) {
    dist[v] := 0 ;
    D
}
Q = I;
while (Q != 0) {
    v = DEQUEUE(Q);
    foreach (a in v}->\mathrm{ ) {
        dist[a] = max(dist[a], (dist[v] + L(v, a)));
        Da}= Da-1
        if ( }\mp@subsup{D}{a}{}== 0) QUEUE (Q, a)
}
maxdist = max vin v (dist[v]);
maxv = SELECT1(V, maxdist);
critical_path = BACK_TRACE(V, E, L, dist[], maxv, (spec - maxdist));
return (critical_path, dist[]);
```

- $L(v, u)$ is the edge length
v dist[$[\mathrm{v}]$ is an iteratively increasing lower bound on the longest path length from the Pls to v
- Dv is the number of incoming edges to node v in V
v $v \rightarrow$ is the successors of $v, \rightarrow v$ the predecessors of v

STA Longest Path Algorithm and Backtracing

- The length of the longest path to any node maxdist is computed and passed to select one node, whereby - dist[v] = maxdist
- spec is the RAT - Required Arrival Time
- (spec - maxdist) indicates path slack or violation
- Complete picture of delay evaluation includes
- Arrival Time
- Required Arrival Time
- The difference between the two is the slack

Timing Graph Example

Data Trace running Longest Path

Line	$\begin{gathered} \hline v, \lambda^{*} \\ 6 \end{gathered}$	$\begin{gathered} v \rightarrow \\ 6 \end{gathered}$	$\begin{gathered} \left(\lambda_{a}, D_{a}\right) \\ 10 \\ \hline \end{gathered}$										
k			0	1	2	3	4	5	6	7	8	9	10
1	0/0	1,2,3,4	0/0	1/0	2/0	3/0	4/0	0/2	0/4	0/2	0/2	0/3	0/0
2	10/0	9										1/2	
3	1/1	6							2/3				
4	2/2	6							9/2				
5	$3 / 3$	5,6						8/1	11/1				
6	4/4	5,7,9						9/0		13/1		7/1	
7	5/9	6							16/0				
8	6/16	7,8								20/0	17/1		
9	7/20	8,9									23/0	24/0	
10	8/23	\emptyset											
11	9/24	\emptyset											
	final	λ :	0	1	2	3	4	9	16	20	23	24	0

Edge and Node Slack

- Definition
- The slack if an edge (a, v) is the slack of \mathbf{v}, plus the difference between the longest path length to \mathbf{v}, and the longest path to \mathbf{v} through (a, v):

$$
\operatorname{slack}_{a, v}=\operatorname{slack}_{v}+\left(\operatorname{dist}[v]-\left(\operatorname{dist}[a]+L_{a, v}\right)\right)
$$

* The slack if a node v is the minimum slack of its fanout edges

$$
\operatorname{slack}_{a}=\min _{v \text { in } a \rightarrow} \operatorname{slack}_{a, v}
$$

- Simpler Formula for Single Critical Path

$$
\operatorname{slack}_{a}=\operatorname{slack}_{v}+\left(\operatorname{dist}[v]-\left(\operatorname{dist}[a]+L_{a, v}\right)\right)
$$

Back-Tracing - Slack Computation

BACK_TRACE(Graph(V, E), L, maxdist, maxv, Rslack)

```
foreach (v in V) slack[v] = maxdist;
slack[maxv] = Rslack;
critical_path = {maxv};
QUEUE(Q, maxdist);
while (Q != 0) {
    v = DEQUEUE (Q);
    foreach (a in v}->\mathrm{ ) {
        slack[a] = slack[v] + (dist[v] - (dist[a] + La,v));
        if (slack[a] == Rslack) {
            QUEUE(Q, a);
            critical_path = {a} U critical_path;
            break;
        }
    }
}
return (critical_path, slack[]);
```

maxv is a (any) node of maximum depth
Rslack is the required Slack - could be 0

Back-Tracing - Slack Computation

- For each active node v , as soon as a new 0 -slack node a is encountered in the backward traversal । a is put at the end of Q , and the for loop is exited by break
- Non critical nodes may not be updated - Will still have their initialized slack values (Rslack)
- Final slack values also depend on the order in which nodes in the fanin $\rightarrow v$ are processed
- Critical Path for example: $\{0,4,5,6,7,9\}$
- Slack values:

	v0	v1	v2	v3	v4	v5	v6	v7	v8	v9	v10
slack	0	14	7	$\mathbf{1}$	0	0	0	0	24	0	23

Related Issue: Zero Slack Assignment

- Establish timing budgets for nets
- Gate and wire delays must be optimized during timing driven layout design
- Wire delays depend on wire lengths
- Wire lengths are not known until after placement and routing
- Delay budgeting with the zero-slack algorithm
- Let vi be the logic gates
- Let ei be the nets
- Let $\operatorname{DELAY}(v)$ and $\operatorname{DELAY}(\mathrm{e})$ be the delay of the gate and net, respectively
- Define the timing budget of a gate
- TB(v) $=\operatorname{DELAY}(\mathrm{v})+\operatorname{DELAY}(\mathrm{e})$

ZSA Example

- Tuple is <AT, Slack, RAT>

ZSA Example

- Identify minimum slack path >0

ZSA Example

- Distribute slacks, and update timing budgets

ZSA Example

- Identify again the minimum slack path >0

ZSA Example

- Distribute slacks, and update timing budgets

ZSA Example

- Identify new minimum slack path >0

ZSA Example

- ... distribute slacks, update local timing budgets

ZSA Example

- ... Identify new minimum slack path >0

ZSA Example

- ... distribute

ZSA Example

- ... new minimum slack >0 path

ZSA Example

- ... distribute

ZSA Example

- ... identify

ZSA Example

, ... distribute

ZSA Wire Delays

- Wire delays render placement feasible
- Translate to wire bound constraints

- This example is infeasible as certain wires have 0 delay - Zero WL constraint

ZSA and Bounds

- Wire Bounds correspond to Slack converted to Wire Delay

Flow Networks and Flows

- A flow network $G=(V, E)$ is a DAG, where each edge, (u, v) in E has a non-negative capacity $c(u, v)>=0$
- Two vertices are special:a source s, and a sink t
- Typically, each vertex lies on a source to sink path
- A flow in G is a real valued function $f:(V \times V) \rightarrow R$, s.t.:
- Capacity Constraint: for all u, v in $V, f(u, v)<=c(u, v)$
- Skew Symmetry: for all u, v in $\mathrm{V}, \mathrm{f}(\mathrm{u}, \mathrm{v})=-\mathrm{f}(\mathrm{v}, \mathrm{u})$
, Flow Conservation: for all u in $V-\{s, t\}, \sum_{v \in \mathrm{~V}} f(u, v)=0$
- The quantity $f(u, v)$ is the net flow from u to v
- The value of flow f is defined as: $|f|=\sum_{v \in V} f(s, v)$
- The total net flow out of the source

Maximum Flow: find flow of maximum value from s to t

Flow Network Example - not a Flow!

- Each edge is labelled with its capacity
- Only positive net flows are shown
- Flow in G is $|f|=19$
- Slash notation separates flow and capacity
- Positive net flow entering vertex $\mathrm{v}: \sum_{u \in V, f(u, v)>0} f(u, v)$

Actual Network Flow

- Flow magnitude $|\mathrm{f}|=\mathrm{II}+8=19$
- For an actual network flow, Flow Conservation holds
- e.g. Node vI: $(I I+I-I 2)=0$
- Node v2: $(8+4-\mathrm{I}-\mathrm{I} \mathrm{I})=0$
- Node v3: $(12+7-4-15)=0$
- Node v4: $(11-7-4)=0$

Ford-Fulkerson Method

- Augmenting Path:as to t path through which the flow can be increased

Ford-Fulkerson-Method (G, s, t)
1 initialize flow f to 0
2 while there exists an augmenting path p
3 do augment flow f along p
4 return f

- Residual capacity of (u, v)
- Additional net flow we can push from u to $v<=c(u, v)$
* $c f(u, v)=c(u, v)-f(u, v)$
- Residual Network G(V, Ef):
- $E f=\{(u, v)$ in $V x V$, s.t. cf($u, v)>0\}$

Residual Network

- Residual network of initial flow

Residual Network and Modified Flow

Optimised Network Actual Flow

- Flow Magnitude $|f|=I I+I 2=23$
- For an actual network flow, Flow Conservation holds
- e.g. Node vI: $(11+1-\mid 2)=0$
- Node v2: $(12+0-I-I I)=0$
- Node v3: $(12+7-0-19)=0$
- Node v4: $(\mathrm{II}-7-4)=0$

Ford-Fulkerson Algorithm

Ford-Fulkerson (G, s, t)

$$
\begin{gathered}
\text { for each edge }(u, v) \in E[G] \\
\text { do } f[u, v] \leftarrow 0 \\
f[v, u] \leftarrow 0
\end{gathered}
$$

while there exists a path p from s to t in the residual network G_{f} do $c_{f}(p) \leftarrow \min \left\{c_{f}(u, v):(u, v)\right.$ is in $\left.p\right\}$ for each edge (u, v) in p do $f[u, v] \leftarrow f[u, v]+c_{f}(p)$ $f[v, u] \leftarrow-f[u, v]$

- Efficiency depends on augmenting path
- Edmonds-Karp variation
- Shortest path from s to t, where edge distance is I
- $\mathrm{O}\left(\mathrm{VE}^{2}\right)$ Complexity $=\mathrm{O}(\mathrm{E} \times \mathrm{VE})$ (shortest path)

Ford-Fulkerson Degenerate Example

- If we keep adding WC augmenting path of I when identifying a path from s to t the algorithm will take $\mathrm{O}\left(\mathrm{E} \times\left|\mathrm{f}^{*}\right|\right)$
- Use shortest unit edge weight path from s to t

Cuts of Flow Networks

- A cut (S, T) of flow network $G=(V, E)$ is a partition of V into S and $T=V-S$, such what s is in S and t is in T
- The netflow across the cut (S, T) is $f(S, T)$
* The capacity of the cut (S, T) is $c(S, T)$
- Always positive, from S to T
- Max-Flow Min-Cut Theorem
- If f is a flow in a flow network $G=(V, E)$ with source s and sink t , then the following conditions are equivalent:
- F is a maximum flow in G
- The residual network Gf contains no augmenting paths
- $|f|=c(S, T)$ for some cut (S, T) of G

Cut Example

- Cut across original flow network
- Net flow across (S, T) is $19(12+\mathrm{II}-4)$
- Cutsize is $26(12+14)$

