

## System Hierarchy




## Circuit Partitioning


(a)

(b)

## Importance of Circuit Partitioning

- Divide-and-conquer methodology
- The most effective way to solve problems of high complexity
- E.g.: min-cut based placement, partitioning-based test generation,...
- System-level partitioning for multi-chip designs
- inter-chip interconnection delay dominates system performance.
- Circuit emulation/parallel simulation
- partition large circuit into multiple FPGAs (e.g. Quickturn), or multiple special-purpose processors (e.g. Zycad).
- Parallel CAD development
- Task decomposition and load balancing
- In deep-submicron designs, partitioning defines local and global interconnect, and has significant impact on circuit performance


## Terminology

- Partitioning: Dividing bigger circuits into a small number of partitions (top down)
- Clustering: cluster small cells into bigger clusters (bottom up).
- Covering / Technology Mapping: Clustering such that each partitions (clusters) have some special structure (e.g., can be implemented by a cell in a cell library).
- k-way Partitioning: Dividing into k partitions.
- Bipartitioning: 2-way partitioning.
- Bisectioning: Bipartitioning such that the two partitions have the same size.


## Circuit Representation

- Netlist:
- Gates:A, B, C, D
- Nets: $\{A, B, C\},\{B, D\},\{C, D\}$
- Hypergraph:

- Vertices:A, B, C, D
- Hyperedges: $\{A, B, C\},\{B, D\},\{C, D\}$
- Vertex label: Gate size/area
- Hyperedge label:
- Importance of net (weight)


## Circuit Partitioning Formulation

- Bi-partitioning formulation:
- Minimize interconnections between partitions

- Minimum cut:
- $\min c\left(x, x^{\prime}\right)$
- minimum bisection:
- $\min c\left(x, x^{\prime}\right)$ with $|x|=\left|x^{\prime}\right|$
- minimum ratio-cut:
- $\min c\left(x, x^{\prime}\right) /|x|\left|x^{\prime}\right|$


## Bi-Partitioning Example

- Edge numbers reflect weight, i.e. number of connections

- Min-cut size= 13
- Min-Bisection size $=300$
- Min-ratio-cut size= 19
- Ratio-cut helps to identify natural clusters


## Circuit Partitioning Formulation - 2

- General multi-way partitioning formulation:
- Partitioning a network N into NI, N2, ..., Nk such that
- Each partition has an area constraint

$$
\sum_{n \in N_{i}} a(n) \leq A_{i}
$$

- Each partition has an I/O constraint

$$
c\left(N_{i}, N-N_{i}\right) \leq I_{i}
$$

- Minimize the total interconnection:

$$
\sum_{N_{i}} c\left(N_{i}, N-N_{i}\right)
$$

## Types of Partitioning Algorithms

- Combinatorial (Iterative) partitioning algorithms
- SA-based
- Most Effective:
- Kernighan-Lin (KL)
- Fiduccia-Mattheyses (FM)
- Spectral based partitioning algorithms
- Net partitioning vs. module partitioning
- Multi-way partitioning
- Multi-level partitioning
- Further study in partitioning techniques
- Timing-driven ...


## Restricted Partitioning Problem

- Restrictions:
- For Bisectioning of circuit.
- Assume all gates are of the same size.
- Works only for 2-terminal nets.
- If all nets are 2-terminal,
- the Hypergraph is a Graph


Graph
Representation

CE439-CAD Algorithms II 8/3/2016

## Problem Formulation

- Input:A graph with
- Set vertices V . $(|\mathrm{V}|=2 n)$
- Set of edges $E$. ( $|E|=m$ )
- Cost $c_{A B}$ for each edge $\{A, B\}$ in $E$.
- Output: 2 partitions $X \& Y$ such that
- Total cost of edges cut is minimized.
- Each partition has $n$ vertices.

NP-Complete Problem

## Partitioning is NP

- Try all possible bisections. Find the best one.
- If there are $2 n$ vertices, $\#$ of possibilities $=(2 n)!/ n!^{2}=n O(n)$
$C(n, k)=\frac{P(n, k)}{P(k, k)}=\frac{n!}{(n-k)!k!}$.
- For 4 vertices (A,B,C,D), 3 possibilities.

1. I. $X=\{A, B\} \& Y=\{C, D\}$
2. 2. $X=\{A, C\} \& Y=\{B, D\}$
iII. 3. $X=\{A, D\} \& Y=\{B, C\}$

- For 100 vertices, $5 \times 10^{28}$ possibilities.
- Need $1.59 \times 10^{13}$ years if one can try 100 M possibilities per second.


## KL/FM Ideas - 1

- Define $D_{A}=$ Decrease in cut value (cost), if moving node $A$ to the alternative partition
- Divide into
- External cost (connection) $\mathrm{E}_{\mathrm{A}}$ - Internal cost $\mathrm{I}_{\mathrm{A}}$
- Moving node $A$ from partition $X$ to partition $Y$ would increase the value of the cutsize (or cutset) by $\mathrm{E}_{\mathrm{A}}$ and decrease it by $\mathrm{I}_{\mathrm{A}}$



## KL/FM Ideas - 2

- Specifically, in KL we want to balance two partitions
- Perform node swaps instead of moves
- If nodes $A$ and $B$ are swapped
- gain $(A, B)=D_{A}+D_{B}-2 \times c_{A B}$
b where $c_{A B}$ : edge cost for $A B$



## Kernighan-Lin Algorithm - 1

- Gain-based cell swap
- Gain represents cutline change for a candidate swap
- At every swap, algorithms select maximum gain swap
- Pass Concept
- A set of complete swaps, i.e. all cells swapped once
- Swapped cells are locked; may not be swapped again
- At the end of a Pass, the best cost through the movements log is selected
- Limited negative swaps are accepted until the end of the pass
- Least negative when no positive moves are possible
- Hill-climbing part of the algorithm


## Kernighan-Lin Algorithm - 2

- Start with any initial legal partitions X and Y .
- A pass (exchanging each vertex exactly once) is described below:
- I. For $\mathrm{i}:=\mathrm{I}$ to n do

From the unlocked (unexchanged) vertices, choose a pair ( $\mathrm{A}, \mathrm{B}$ ) s.t. Gain $(\mathrm{A}, \mathrm{B})$ is largest. Exchange $A$ and $B$. Lock $A$ and $B$.
Let gi $=\operatorname{gain}(A, B)$.

- 2. Find the k s.t. Gain $=\mathrm{gl}+\ldots+\mathrm{gk}$ is maximum.
- 3. Switch the first k pairs up to the maximum Gain
- Repeat the pass until there is no improvement ( $\mathrm{G}=0$ ).


## Kernighan-Lin Algorithm - 3



## KL Example



## KL and Hypergraph Representation

- For a hypergraph representation
- the k-clique model may be used
- A net containing k connections
- Single gate output fans out to ( $\mathrm{k}-\mathrm{I}$ ) gate inputs forms a k-clique
- Each edge in the clique gets a weight of $I /(k-I)$
- If an edge already exists, the weight is added, instead of adding a new parallel edge
- Edges may also possess individual weights
- Integer or floating-point numbers


## Complexity of KL Algorithm

For each pass,
, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time to find the best pair to exchange.

- n pairs exchanged.
- Total time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ per pass.
- Better implementation can get $O\left(n^{2} \log n\right)$ time per pass.
- Number of passes is usually small.
- Useful Survey Paper
- Charles Alpert and Andrew Kahng,"Recent Directions in Netlist Partitioning:A Survey", Integration: the VLSI Journal, 19(I-2), I995, pp. I-8I.


## Kernighan-Lin Algorithm Example

- Perform single KL pass on the following circuit:
- KL needs undirected graph (clique-based weighting)

(a)

(b)

Kernighan-Lin Algorithm Example

- First Swap

initial partitioning

| pair | $E_{x}-I_{x}$ | $E_{y}-I_{y}$ | $c(x, y)$ | gain |
| :--- | :---: | :---: | :---: | :---: |
| $(a, c)$ | $0.5-0.5$ | $2.5-0.5$ | 0.5 | 1 |
| $(a, f)$ | $0.5-0.5$ | $1.5-1.5$ | 0 | 0 |
| $(a, g)$ | $0.5-0.5$ | $1-1$ | 0 | 0 |
| $(a, h)$ | $0.5-0.5$ | $0-1$ | 0 | -1 |
| $(b, c)$ | $0.5-0.5$ | $2.5-0.5$ | 0.5 | 1 |
| $(b, f)$ | $0.5-0.5$ | $1.5-1.5$ | 0 | 0 |
| $(b, g)$ | $0.5-0.5$ | $1-1$ | 0 | 0 |
| $(b, h)$ | $0.5-0.5$ | $0-1$ | 0 | -1 |
| $(d, c)$ | $\mathbf{1 . 5 - 0 . 5}$ | $\mathbf{2 . 5}-\mathbf{0 . 5}$ | $\mathbf{0 . 5}$ | $\mathbf{2}$ |
| $(d, f)$ | $1.5-0.5$ | $1.5-1.5$ | 1 | -1 |
| $(d, g)$ | $1.5-0.5$ | $1-1$ | 0 | 1 |
| $(d, h)$ | $1.5-0.5$ | $0-1$ | 0 | 0 |
| $(e, c)$ | $2.5-0.5$ | $2.5-0.5$ | 1 | 2 |
| $(e, f)$ | $2.5-0.5$ | $1.5-1.5$ | 0.5 | 1 |
| $(e, g)$ | $2.5-0.5$ | $1-1$ | 1 | 0 |
| $(e, h)$ | $2.5-0.5$ | $0-1$ | 0 | 1 |

## Kernighan-Lin Algorithm Example

- Second Swap


| pair | $E_{x}-I_{x}$ | $E_{y}-I_{y}$ | $c(x, y)$ | gain |
| :--- | :---: | :---: | :---: | :---: |
| $(a, f)$ | $0-1$ | $1-2$ | 0 | -2 |
| $(a, g)$ | $0-1$ | $1-1$ | 0 | -1 |
| $(a, h)$ | $0-1$ | $0-1$ | 0 | -2 |
| $(b, f)$ | $0.5-0.5$ | $1-2$ | 0 | -1 |
| $(b, \boldsymbol{g})$ | $\mathbf{0 . 5}-\mathbf{0 . 5}$ | $\mathbf{1}-\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| $(b, h)$ | $0.5-0.5$ | $0-1$ | 0 | -1 |
| $(e, f)$ | $1.5-1.5$ | $1-2$ | 0.5 | -2 |
| $(e, g)$ | $1.5-1.5$ | $1-1$ | 1 | -2 |
| $(e, h)$ | $1.5-1.5$ | $0-1$ | 0 | -1 |

Kernighan-Lin Algorithm Example

- Third Swap


| pair | $E_{x}-I_{x}$ | $E_{y}-I_{y}$ | $c(x, y)$ | gain |
| :---: | :---: | :---: | :---: | :---: |
| $(\boldsymbol{a}, \boldsymbol{f})$ | $\mathbf{0}-\mathbf{1}$ | $\mathbf{1 . 5}-\mathbf{1 . 5}$ | $\mathbf{0}$ | $\mathbf{- 1}$ |
| $(a, h)$ | $0-1$ | $0.5-0.5$ | 0 | -1 |
| $(e, f)$ | $0.5-2.5$ | $1.5-1.5$ | 0.5 | -3 |
| $(e, h)$ | $0.5-2.5$ | $0.5-0.5$ | 0 | -2 |

## Kernighan-Lin Algorithm Example

- Fourth Swap
- Last swap does not require gain computation

(a)

(b)

Kernighan-Lin Algorithm Example

- Cutsize reduced from 5 to 3
- Two best solutions found (solutions are always area-balanced)

| $i$ | pair | gain $(i)$ | $\sum$ gain $(i)$ | cutsize |
| :--- | :---: | :---: | :---: | :---: |
| 0 | - | - | - | 5 |
| $\mathbf{1}$ | $(\boldsymbol{d}, \boldsymbol{c})$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| $\mathbf{2}$ | $(\boldsymbol{b}, \boldsymbol{g})$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| 3 | $(a, f)$ | -1 | 1 | 4 |
| $\mathbf{4}$ | $(e, h)$ | -1 | 0 | 5 |



## Fiduccia-Mattheyses Algorithm

- Modification of KL Algorithm:
- Can handle non-uniform vertex weights (areas)
- Allow unbalanced partitions
- Extended to handle hypergraphs
- Clever way to select vertices to move, run much faster.
- Input:A hypergraph with
- Set vertices $\mathrm{V}(|\mathrm{V}|=\mathrm{m})$
- Set of hyperedges E . (total \# nets in netlist = n)
- Area $\mathrm{a}_{\mathrm{u}}$ for each vertex u in V .
- Cost $c_{e}$ for each hyperedge in $e$.
- An area ratio r.
- Output: 2 partitions $X \& Y$ such that
- Total cost of hyperedges cut is minimized.
- $\operatorname{area}(\mathrm{X}) /(\operatorname{area}(\mathrm{X})+\operatorname{area}(\mathrm{Y}))$ is about r .


## Fiduccia-Mattheyses Algorithm

## - Similar to KL:

b Work in passes.

- Lock vertices after moved.
- Actually, only move those vertices up to the maximum partial sum of gain.


## - Difference from KL:

- Not exchanging pairs of vertices.

Move only one vertex at each time.

- The use of gain bucket data structure.


## Gain Bucket Data Structure



## FM External and Internal Vertex Cost

$$
E(i):=\sum_{e \in E_{e \times t}, i} c(e)
$$

where

$$
E_{\text {ext }, i}:=\left\{e \in E \mid\left\{v_{i}\right\}=e \cap A\right\}
$$

Analogously, the internal hyperedge cost of vertex $v_{i}$ is defined as

$$
I(i):=\sum_{e \in E_{\mathrm{int}, i}} c(e)
$$

where
$E_{\text {int }, i}:=\left\{e \in E \mid v_{i} \in e\right.$ and $\left.e \cap B=\emptyset\right\}$
Definition 6.2 (Gain) The gain of $v_{i}$ is defined as

$$
D(i):=E(i)-I(i)
$$

- For cell $i$ in Partition PI
- $\mathrm{E}(\mathrm{i})=\mathrm{FS}(\mathrm{i})=$
> number of nets that have $i$ as the only cell in Partition PI
- $l(i)=T E(i)=$
- number of nets containing cell $i$ and are entirely located in PI

32 CE439 - CAD Algorithms II 8/3/2016

## FM Algorithm in Detail

- Perform the following three steps before the first pass begins:
- (i) unlock all cells,
- (ii) compute the gain of all cells based on the initial partitioning,
b (iii) add the cells to the bucket structure.
- Once the pass begins, Repeat the following four steps at every move until all cells are locked:
- (i) we choose the "legal" cell with maximum gain (A cell move is legal if moving it to the other partition does not violate the area constraint),
b (ii) move the chosen cell and lock it in the destination partition,
- (iii) update the gain values of the neighbors of the moved cell and update their positions in the bucket, and
- (iv) record the gain and the current cutsize.
- At the end of the pass, identify and accept the first $K$ moves that lead to minimum cutsize discovered during the entire pass.
- If the initial cutsize has reduced during the current pass
- attempt another pass using the best solution discovered from the current pass as initial solution; otherwise terminate.


## FM Partitioning Example - 1

- Moves are based on object gain
- The amount of change in cut crossings that will occur if an object is moved from its current partition into the other partition
- each object is assigned a gain
- objects are put into a sorted gain list
- the object with the highest gain from the larger of the two sides is selected and moved.
v the moved object is "locked"
- gains of "touched" objects are recomputed
- gain lists are resorted


FM Partitioning Example - 2

FM Partitioning Example - 3



FM Partitioning Example - 5


FM Partitioning Example - 7



FM Partitioning Example - 9



FM Partitioning Example - 11



FM Partitioning Example - 13


46
CE439 - CAD Algorithms II 8/3/2016


FM Partitioning Example - 15


## Complexity of FM

- For each pass,
- Constant time to find the best vertex to move.
- After each move, time to update gain buckets is proportional to degree of vertex moved.
- Total time is $\mathrm{O}(\mathrm{n})$, where n is total number of nets
- Number of passes is usually small.


## Fiduccia-Mattheyses Algorithm Example

- Perform FM algorithm on the following circuit:
- Area constraint $=[3,5]$
- Break ties in alphabetical order.

(a)

(b)


## Fiduccia-Mattheyses Algorithm Example

## - Initial Partitioning

- Random initial partitioning is given.


Fiduccia-Mattheyses Algorithm Example

- Gain Computation and Bucket Set Up
cell $c: c$ is contained in net $n_{1}=\{a, c, e\}, n_{2}=\{b, c, d\}$, and $n_{3}=$ $\{c, f, e\} . n_{3}$ contains $c$ as its only cell located in the left partition, so $F S(c)=1$. In addition, none of these three nets are located entirely in the left partition. So, $T E(c)=0$. Thus, $\operatorname{gain}(c)=1$.



## Fiduccia-Mattheyses Algorithm Example

- First Move
move 1: From the initial bucket we see that both cell $g$ and $e$ have the maximum gain and can be moved without violating the area constraint. We move $e$ based on alphabetical order. We update the gain of the unlocked neighbors of $e, N(e)=\{a, c, g, f\}$, as follows: gain $(a)=$ $\operatorname{FS}(a)-\operatorname{TE}(a)=0-1=-1, \operatorname{gain}(c)=0-1=-1, \operatorname{gain}(g)=$ $1-1=0, \operatorname{gain}(f)=2-0=2$.



## Fiduccia-Mattheyses Algorithm Example

## - Second Move

move 2: $f$ has the maximum gain, but moving $f$ will violate the area constraint. So we move $d$. We update the gain of the unlocked neighbors of $d, N(d)=\{b, c, f\}$, as follows: $\operatorname{gain}(b)=0-0=0$, $\operatorname{gain}(c)=1-1=0, \operatorname{gain}(f)=1-1=0$.


## Fiduccia-Mattheyses Algorithm Example

## - Third Move

move 3: Among the maximum gain cells $\{g, c, h, f, b\}$, we choose $b$ based on alphabetical order. We update the gain of the unlocked neighbors of $b, N(b)=\{c\}$ as follows: gain $(c)=0-1=-1$.


Fiduccia-Mattheyses Algorithm Example

## - Fourth Move

move 4: Among the maximum gain cells $\{g, h, f\}$, we choose $g$ based on the area constraint. We update the gain of the unlocked neighbors of $g, N(g)=\{f, h\}$, as follows: $\operatorname{gain}(f)=1-2=-1, \operatorname{gain}(h)=$ $0-1=-1$.


## Fiduccia-Mattheyses Algorithm Example

- Fifth Move move 5: We choose $a$ based on alphabetical order. We update the gain of the unlocked neighbors of $a, N(a)=\{c\}$, as follows: gain $(c)=$ $0-0=0$.


Fiduccia-Mattheyses Algorithm Example

## - Sixth Move

move 6: We choose $f$ based on the area constraint and alphabetical order. We update the gain of the unlocked neighbors of $f, N(f)=$ $\{h, c\}$, as follows: $\operatorname{gain}(h)=0-0=0, \operatorname{gain}(c)=0-1=-1$.


## Fiduccia-Mattheyses Algorithm Example

- Seventh Move
move 7: We move $h . h$ has no unlocked neighbor.


Fiduccia-Mattheyses Algorithm Example

- Last Move move 8: We move $c$.



## Fiduccia-Mattheyses Algorithm Example

## - Summary

- Found three best solutions.
- Cutsize reduced from 6 to 3 .
- Solutions after move 2 and 4 are better balanced.

| $i$ | cell | $g(i)$ | $\sum g(i)$ | cutsize |
| :---: | :---: | :---: | :---: | :---: |
| 0 | - | - | - | 6 |
| 1 | $e$ | 2 | 2 | 4 |
| $\mathbf{2}$ | $d$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{3}$ |
| $\mathbf{3}$ | $b$ | $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ |
| $\mathbf{4}$ | $g$ | $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ |
| 5 | $a$ | -1 | 2 | 4 |
| 6 | $f$ | -1 | 1 | 5 |
| 7 | $h$ | 0 | 1 | 5 |
| 8 | $c$ | -1 | 0 | 6 |

