

Importance of Circuit Partitioning

- Divide-and-conquer methodology
 - The most effective way to solve problems of high complexity
 - ▶ E.g.: min-cut based placement, partitioning-based test generation,...
- System-level partitioning for multi-chip designs
 - inter-chip interconnection delay dominates system performance.
- Circuit emulation/parallel simulation
 - partition large circuit into multiple FPGAs (e.g. Quickturn), or multiple special-purpose processors (e.g. Zycad).
- ▶ Parallel CAD development
 - Task decomposition and load balancing
- In deep-submicron designs, partitioning defines local and global interconnect, and has significant impact on circuit performance

5

CE439 - CAD Algorithms II 8/3/2016

Terminology

- ▶ Partitioning: Dividing bigger circuits into a small number of partitions (top down)
- ► **Clustering**: cluster small cells into bigger clusters (bottom up).
- ▶ Covering / Technology Mapping: Clustering such that each partitions (clusters) have some special structure (e.g., can be implemented by a cell in a cell library).
- **k-way Partitioning**: Dividing into k partitions.
- ▶ **Bipartitioning**: 2-way partitioning.
- ▶ **Bisectioning**: Bipartitioning such that the two partitions have the same size.

6

Circuit Representation

- Netlist:
 - Gates: A, B, C, D
 - Nets: {A,B,C}, {B,D}, {C,D}

- ▶ Hypergraph:
 - Vertices: A, B, C, D
 - ▶ Hyperedges: {A,B,C}, {B,D}, {C,D}
 - Vertex label: Gate size/area
 - Hyperedge label:
 - ▶ Importance of net (weight)

7

CE439 - CAD Algorithms II 8/3/2016

Circuit Partitioning Formulation

- ▶ Bi-partitioning formulation:
 - Minimize interconnections between partitions

- Minimum cut:
 - \rightarrow min c(x, x')
- minimum bisection:
 - $\qquad \text{min } c(x, x') \text{ with } |x| = |x'|$
- minimum ratio-cut:
 - min c(x, x') / |x||x'|

8

Bi-Partitioning Example

▶ Edge numbers reflect weight, i.e. number of connections

- ▶ Min-cut size=13
- ▶ Min-Bisection size = 300
- ▶ Min-ratio-cut size= 19
 - Ratio-cut helps to identify natural clusters

9

CE439 - CAD Algorithms II 8/3/2016

Circuit Partitioning Formulation - 2

- ▶ General multi-way partitioning formulation:
 - Partitioning a network N into N1, N2, ..., Nk such that
- ▶ Each partition has an area constraint

$$\sum_{n \in N_i} a(n) \le A_i$$

▶ Each partition has an I/O constraint

$$c(N_i, N - N_i) \le I_i$$

▶ Minimize the total interconnection:

$$\sum_{N_i} c(N_i, N - N_i)$$

10

Types of Partitioning Algorithms

- ▶ Combinatorial (Iterative) partitioning algorithms
 - SA-based
 - Most Effective:
 - ► Kernighan-Lin (KL)
 - ► Fiduccia-Mattheyses (FM)
- Spectral based partitioning algorithms
- Net partitioning vs. module partitioning
- Multi-way partitioning
- Multi-level partitioning
- Further study in partitioning techniques
 - ▶ Timing-driven ...

11

CE439 - CAD Algorithms II 8/3/2016

Restricted Partitioning Problem

- Restrictions:
 - ▶ For Bisectioning of circuit.
 - Assume all gates are of the same size.
- Works only for 2-terminal nets.
 - If all nets are 2-terminal,
 - the Hypergraph is a **Graph**

Graph C D

12

Problem Formulation

- Input: A graph with
 - Set vertices V. (|V| = 2n)
 - \rightarrow Set of edges E. (|E| = m)
 - ▶ Cost c_{AB} for each edge {A, B} in E.
- ▶ Output: 2 partitions X & Y such that
 - ▶ Total cost of edges cut is minimized.
 - Each partition has n vertices.
- ▶ NP-Complete Problem

13

CE439 - CAD Algorithms II 8/3/2016

Partitioning is NP

- ▶ Try <u>all</u> possible bisections. Find the best one.
- If there are 2n vertices,
 # of possibilities = (2n)! / n!² = n^{O(n)}

$$C(n,k) = \frac{P(n,k)}{P(k,k)} = \frac{n!}{(n-k)!k!}.$$

- ▶ For 4 vertices (A,B,C,D), 3 possibilities.
 - I. $X=\{A,B\} & Y=\{C,D\}$
 - II. 2. $X=\{A,C\} \& Y=\{B,D\}$
 - III. 3. $X=\{A,D\} \& Y=\{B,C\}$
- ▶ For 100 vertices, 5×10²⁸ possibilities.
 - Need 1.59x10¹³ years if one can try 100M possibilities per second.

14

KL/FM Ideas - 1

- ▶ Define D_A = Decrease in cut value (cost), if moving node A to the alternative partition
 - Divide into
 - ► External cost (connection) E_A Internal cost I_A
 - Moving node A from partition X to partition Y would increase the value of the cutsize (or cutset) by E_A and decrease it by I_A

15

CE439 - CAD Algorithms II 8/3/2016

KL/FM Ideas - 2

- > Specifically, in KL we want to balance two partitions
 - Perform node swaps instead of moves
- If nodes A and B are swapped

 - ▶ where c_{AB} edge cost for AB

16

Kernighan-Lin Algorithm - 1

- Gain-based cell swap
 - Gain represents cutline change for a candidate swap
 - At every swap, algorithms select maximum gain swap
- Pass Concept
 - A set of complete swaps, i.e. all cells swapped once
 - ▶ Swapped cells are **locked**; may not be swapped again
- At the end of a Pass, the best cost through the movements log is selected
 - Limited negative swaps are accepted until the end of the pass
 - Least negative when no positive moves are possible
 - ▶ Hill-climbing part of the algorithm

17

CE439 - CAD Algorithms II 8/3/2016

Kernighan-Lin Algorithm - 2

- Start with any initial legal partitions X and Y.
- ▶ A pass (exchanging each vertex exactly once) is described below:
 - I. For i := I to n do From the unlocked (unexchanged) vertices, choose a pair (A,B) s.t. Gain(A,B) is largest. Exchange A and B. Lock A and B. Let gi = gain(A,B).
 - \triangleright 2. Find the k s.t. Gain = gI + ... + gk is maximum.
 - ▶ 3. Switch the first k pairs up to the maximum Gain
- ▶ Repeat the pass until there is no improvement (G=0).

18

KL and Hypergraph Representation

- ▶ For a hypergraph representation
 - ▶ the k-clique model may be used
- A net containing k connections
 - Single gate output fans out to (k − I) gate inputs forms a k-clique
 - Each edge in the clique gets a weight of 1/(k-1)
 - If an edge already exists, the weight is added, instead of adding a new parallel edge
- Edges may also possess individual weights
 - Integer or floating-point numbers

21

CE439 - CAD Algorithms II 8/3/2016

Complexity of KL Algorithm

- For each pass,
 - \triangleright O(n²) time to find the best pair to exchange.
 - n pairs exchanged.
 - ▶ Total time is O(n³) per pass.
- ▶ Better implementation can get O(n²log n) time per pass.
- Number of passes is usually small.
- Useful Survey Paper
 - Charles Alpert and Andrew Kahng, "Recent Directions in Netlist Partitioning: A Survey", Integration: the VLSI Journal, 19(1-2), 1995, pp. 1-81.

22

Kernighan-Lin Algorithm Example

- ▶ Perform single KL pass on the following circuit:
 - ▶ KL needs undirected graph (clique-based weighting)

23

CE439 - CAD Algorithms II 8/3/2016

Kernighan-Lin Algorithm Example

▶ First Swap

pair	$E_x - I_x$	$E_y - I_y$	c(x,y)	gain
(a,c)	0.5 - 0.5	2.5 - 0.5	0.5	1
(a, f)	0.5 - 0.5	1.5 - 1.5	0	0
(a,g)	0.5 - 0.5	1 - 1	0	0
(a, h)	0.5 - 0.5	0 - 1	0	-1
(b,c)	0.5 - 0.5	2.5 - 0.5	0.5	1
(b, f)	0.5 - 0.5	1.5 - 1.5	0	0
(b,g)	0.5 - 0.5	1 - 1	0	0
(b, h)	0.5 - 0.5	0 - 1	0	-1
$\overline{(d,c)}$	1.5 - 0.5	2.5 - 0.5	0.5	2
(d, f)	1.5 - 0.5	1.5 - 1.5	1	-1
(d,g)	1.5 - 0.5	1 - 1	0	1
(d, h)	1.5 - 0.5	0 - 1	0	0
(e,c)	2.5 - 0.5	2.5 - 0.5	1	2
(e, f)	2.5 - 0.5	1.5 - 1.5	0.5	1
(e,g)	2.5 - 0.5	1 - 1	1	0
(e,h)	2.5 - 0.5	0 - 1	0	1

24

Kernighan-Lin Algorithm Example

Second Swap

pair	$E_x - I_x$	$E_y - I_y$	c(x, y)	gain
$\overline{(a,f)}$	0 - 1	1 - 2	0	-2
(a,g)	0 - 1	1 - 1	0	-1
(a, h)	0 - 1	0 - 1	0	-2
$\overline{(b,f)}$	0.5 - 0.5	1 - 2	0	-1
(b,g)	0.5 - 0.5	1 - 1	0	0
(b,h)	0.5 - 0.5	0 - 1	0	-1
$\overline{(e,f)}$	1.5 - 1.5	1 - 2	0.5	-2
(e,g)	1.5 - 1.5	1 - 1	1	-2
(e,h)	1.5 - 1.5	0 - 1	0	-1

25

CE439 - CAD Algorithms II 8/3/2016

Kernighan-Lin Algorithm Example

▶ Third Swap

pair	$E_x - I_x$	$E_y - I_y$	c(x,y)	gain
$\overline{(a,f)}$	0 - 1	1.5 - 1.5	0	-1
(a, h)	0 - 1	0.5 - 0.5	0	-1
e,f	0.5 - 2.5	1.5 - 1.5	0.5	-3
(e,h)	0.5 - 2.5	0.5 - 0.5	0	-2

26

Kernighan-Lin Algorithm Example

▶ Fourth Swap

Last swap does not require gain computation

27

CE439 - CAD Algorithms II 8/3/2016

Kernighan-Lin Algorithm Example

▶ Cutsize reduced from 5 to 3

Two best solutions found (solutions are always area-balanced)

\overline{i}	pair	gain(i)	$\sum gain(i)$	cutsize
0	-	-	-	5
1	(d,c)	2	2	3
2	(b,g)	0	2	3
3	(a, f)	-1	1	4
4	(e,h)	-1	0	5

28

Fiduccia-Mattheyses Algorithm

Modification of KL Algorithm:

- Can handle non-uniform vertex weights (areas)
- Allow unbalanced partitions
- Extended to handle hypergraphs
- Clever way to select vertices to move, run much faster.

Input: A hypergraph with

- Set vertices V (|V| = m)
- Set of hyperedges E. (total # nets in netlist = n)
- Area a, for each vertex u in V.
- Cost c_e for each hyperedge in e.
- An area ratio r.

Output: 2 partitions X & Y such that

- Total cost of hyperedges cut is minimized.
- area(X) / (area(X) + area(Y)) is about r.

29

CE439 - CAD Algorithms II 8/3/2016

Fiduccia-Mattheyses Algorithm

Similar to KL:

- Work in passes.
- Lock vertices after moved.
- Actually, only move those vertices up to the maximum partial sum of gain.

Difference from KL:

- Not exchanging pairs of vertices.
 Move only one vertex at each time.
- ▶ The use of gain bucket data structure.

30

FM Algorithm in Detail

- Perform the following three steps before the first pass begins:
 - (i) unlock all cells,
 - (ii) compute the gain of all cells based on the initial partitioning,
 - (iii) add the cells to the bucket structure.
- Once the pass begins, Repeat the following four steps at every move until all cells are locked:
 - (i) we choose the "legal" cell with maximum gain (A cell move is legal if moving it to the other partition does not violate the area constraint),
 - (ii) move the chosen cell and **lock it** in the destination partition,
 - (iii) update the gain values of the neighbors of the moved cell and update their positions in the bucket, and
 - (iv) record the gain and the current cutsize.
- At the end of the pass, identify and accept the first K moves that lead to minimum cutsize discovered during the entire pass.
- If the initial cutsize has reduced during the current pass
 - attempt another pass using the best solution discovered from the current pass as initial solution; otherwise terminate.

33

CE439 - CAD Algorithms II 8/3/2016

FM Partitioning Example - 1

- Moves are based on object gain
 - The amount of change in cut crossings that will occur if an object is moved from its current partition into the other partition
- each object is assigned a gain
 - objects are put into a sorted gain list
- the object with the highest gain from the larger of the two sides is selected and moved.
 - the moved object is "locked"
 - gains of "touched" objects are recomputed
 - gain lists are resorted

CE439 - CAD Algorithms II 8/3/2016

34

Complexity of FM

- For each pass,
 - Constant time to find the best vertex to move.
 - After each move, time to update gain buckets is proportional to degree of vertex moved.
 - Total time is O(n), where n is total number of nets
- Number of passes is usually small.

49

CE439 - CAD Algorithms II 8/3/2016

Fiduccia-Mattheyses Algorithm Example

- ▶ Perform FM algorithm on the following circuit:
 - ► Area constraint = [3,5]
 - Break ties in alphabetical order.

50

▶ Initial Partitioning

Random initial partitioning is given.

51

CE439 - CAD Algorithms II 8/3/2016

Fiduccia-Mattheyses Algorithm Example

▶ Gain Computation and Bucket Set Up

cell c: c is contained in net $n_1 = \{a, c, e\}$, $n_2 = \{b, c, d\}$, and $n_3 = \{c, f, e\}$. n_3 contains c as its only cell located in the left partition, so FS(c) = 1. In addition, none of these three nets are located entirely in the left partition. So, TE(c) = 0. Thus, gain(c) = 1.

52

▶ First Move

move 1: From the initial bucket we see that both cell g and e have the maximum gain and can be moved without violating the area constraint. We move e based on alphabetical order. We update the gain of the unlocked neighbors of e, $N(e) = \{a, c, g, f\}$, as follows: gain(a) = FS(a) - TE(a) = 0 - 1 = -1, gain(c) = 0 - 1 = -1, gain(g) = 1 - 1 = 0, gain(f) = 2 - 0 = 2.

53

CE439 - CAD Algorithms II 8/3/2016

Fiduccia-Mattheyses Algorithm Example

Second Move

move 2: f has the maximum gain, but moving f will violate the area constraint. So we move d. We update the gain of the unlocked neighbors of d, $N(d) = \{b, c, f\}$, as follows: gain(b) = 0 - 0 = 0, gain(c) = 1 - 1 = 0, gain(f) = 1 - 1 = 0.

54

▶ Third Move

move 3: Among the maximum gain cells $\{g,c,h,f,b\}$, we choose b based on alphabetical order. We update the gain of the unlocked neighbors of b, $N(b) = \{c\}$ as follows: gain(c) = 0 - 1 = -1.

55

CE439 - CAD Algorithms II 8/3/2016

Fiduccia-Mattheyses Algorithm Example

Fourth Move

move 4: Among the maximum gain cells $\{g,h,f\}$, we choose g based on the area constraint. We update the gain of the unlocked neighbors of g, $N(g) = \{f,h\}$, as follows: gain(f) = 1 - 2 = -1, gain(h) = 0 - 1 = -1.

56

▶ Fifth Move

move 5: We choose a based on alphabetical order. We update the gain of the unlocked neighbors of a, $N(a) = \{c\}$, as follows: gain(c) = 0 - 0 = 0.

57

CE439 - CAD Algorithms II 8/3/2016

Fiduccia-Mattheyses Algorithm Example

Sixth Move

move 6: We choose f based on the area constraint and alphabetical order. We update the gain of the unlocked neighbors of f, $N(f) = \{h, c\}$, as follows: gain(h) = 0 - 0 = 0, gain(c) = 0 - 1 = -1.

58

Seventh Move

move 7: We move h. h has no unlocked neighbor.

1 0 -1 -2 -3

59

CE439 - CAD Algorithms II 8/3/2016

Fiduccia-Mattheyses Algorithm Example

Last Move

move 8: We move c.

60

- Summary
 - Found three best solutions.
 - Cutsize reduced from 6 to 3.
 - ▶ Solutions after move 2 and 4 are better balanced.

\overline{i}	cell	g(i)	$\sum g(i)$	cutsize
0	-	-	-	6
1	e	2	2	4
2	d	1	3	3
3	\boldsymbol{b}	0	3	3
4	\boldsymbol{g}	0	3	3
5	a	-1	2	4
6	f	-1	1	5
7	h	0	1	5
8	c	-1	0	6

61