
3/8/2016

1

CAD Algorithms for Physical Design

- Partitioning

Christos P Sotiriou

8/3/2016CE439 - CAD Algorithms II1

System Hierarchy

8/3/2016CE439 - CAD Algorithms II2

3/8/2016

2

Partitioning Levels

8/3/2016CE439 - CAD Algorithms II3

System Level Partitioning

Board Level Partitioning

Chip Level Partitioning

System

PCBs

Chips

Subcircuits
/ Blocks

Circuit Partitioning

8/3/2016CE439 - CAD Algorithms II4

3/8/2016

3

Importance of Circuit Partitioning

8/3/2016CE439 - CAD Algorithms II5

 Divide-and-conquer methodology

 The most effective way to solve problems of high complexity

 E.g.: min-cut based placement, partitioning-based test generation,…

 System-level partitioning for multi-chip designs

 inter-chip interconnection delay dominates system performance.

 Circuit emulation/parallel simulation

 partition large circuit into multiple FPGAs (e.g. Quickturn), or

multiple special-purpose processors (e.g. Zycad).

 Parallel CAD development

 Task decomposition and load balancing

 In deep-submicron designs, partitioning defines local and global

interconnect, and has significant impact on circuit performance

Terminology

8/3/2016CE439 - CAD Algorithms II6

 Partitioning: Dividing bigger circuits into a small number

of partitions (top down)

 Clustering: cluster small cells into bigger clusters

(bottom up).

 Covering / Technology Mapping: Clustering such that

each partitions (clusters) have some special structure

(e.g., can be implemented by a cell in a cell library).

 k-way Partitioning: Dividing into k partitions.

 Bipartitioning: 2-way partitioning.

 Bisectioning: Bipartitioning such that the two partitions

have the same size.

3/8/2016

4

Circuit Representation

8/3/2016CE439 - CAD Algorithms II7

 Netlist:

 Gates: A, B, C, D

 Nets: {A,B,C}, {B,D}, {C,D}

 Hypergraph:

 Vertices: A, B, C, D

 Hyperedges: {A,B,C}, {B,D}, {C,D}

 Vertex label: Gate size/area

 Hyperedge label:

 Importance of net (weight)

A
B

C D

A

B

C D

Circuit Partitioning Formulation

8/3/2016CE439 - CAD Algorithms II8

 Bi-partitioning formulation:

 Minimize interconnections between partitions

 Minimum cut:

 min c(x, x’)

 minimum bisection:

 min c(x, x’) with |x|= |x’|

 minimum ratio-cut:

 min c(x, x’) / |x||x’|

X X’

c(X,X’)

3/8/2016

5

Bi-Partitioning Example

8/3/2016CE439 - CAD Algorithms II9

 Edge numbers reflect weight, i.e. number of connections

 Min-cut size=13

 Min-Bisection size = 300

 Min-ratio-cut size= 19

 Ratio-cut helps to identify natural clusters

a

b

c e

d f

mini-ratio-cut min-bisection

min-cut
9

10

100

100 100
100100

100

4

Circuit Partitioning Formulation - 2

8/3/2016CE439 - CAD Algorithms II10

 General multi-way partitioning formulation:

 Partitioning a network N into N1, N2, …, Nk such that

 Each partition has an area constraint

 Each partition has an I/O constraint

 Minimize the total interconnection:

𝑛∈𝑁𝑖

𝑎(𝑛) ≤ 𝐴𝑖

𝑐(𝑁𝑖 , 𝑁 − 𝑁𝑖) ≤ 𝐼𝑖

𝑁𝑖

𝑐(𝑁𝑖 , 𝑁 − 𝑁𝑖)

3/8/2016

6

Types of Partitioning Algorithms

8/3/2016CE439 - CAD Algorithms II11

 Combinatorial (Iterative) partitioning algorithms

 SA-based

 Most Effective:

 Kernighan-Lin (KL)

 Fiduccia-Mattheyses (FM)

 Spectral based partitioning algorithms

 Net partitioning vs. module partitioning

 Multi-way partitioning

 Multi-level partitioning

 Further study in partitioning techniques

 Timing-driven …

Restricted Partitioning Problem

8/3/2016CE439 - CAD Algorithms II12

 Restrictions:

 For Bisectioning of circuit.

 Assume all gates are of the same size.

 Works only for 2-terminal nets.

 If all nets are 2-terminal,

 the Hypergraph is a Graph

A

B

C D

Hypergraph

Representation

Graph

Representation

A

B

C D

3/8/2016

7

Problem Formulation

8/3/2016CE439 - CAD Algorithms II13

 Input: A graph with

 Set vertices V. (|V| = 2n)

 Set of edges E. (|E| = m)

 Cost cAB for each edge {A, B} in E.

 Output: 2 partitions X & Y such that

 Total cost of edges cut is minimized.

 Each partition has n vertices.

 NP-Complete Problem

Partitioning is NP

8/3/2016CE439 - CAD Algorithms II14

 Try all possible bisections. Find the best one.

 If there are 2n vertices,

of possibilities = (2n)! / n!2 = nO(n)

 For 4 vertices (A,B,C,D), 3 possibilities.

I. 1. X={A,B} & Y={C,D}

II. 2. X={A,C} & Y={B,D}

III. 3. X={A,D} & Y={B,C}

 For 100 vertices, 5x1028 possibilities.

 Need 1.59x1013 years if one can try 100M

possibilities per second.

3/8/2016

8

KL/FM Ideas - 1

8/3/2016CE439 - CAD Algorithms II15

 Define DA = Decrease in cut value (cost),

if moving node A to the alternative partition

 Divide into

 External cost (connection) EA – Internal cost IA

 Moving node A from partition X to partition Y would increase

the value of the cutsize (or cutset) by EA and decrease it by IA

A

B
C

D

X Y

A

B

C

D

X Y

DA = 2-1 = 1

DB = 1-1 = 0

KL/FM Ideas - 2

8/3/2016CE439 - CAD Algorithms II16

 Specifically, in KL we want to balance two partitions

 Perform node swaps instead of moves

 If nodes A and B are swapped

 gain(A,B) = DA + DB – 2 x cAB

 where cAB : edge cost for AB

A

B

C

D

X Y

A

B

C
D

X Y

gain(A,B) = 1+0-2 = -1

3/8/2016

9

Kernighan-Lin Algorithm - 1

8/3/2016CE439 - CAD Algorithms II17

 Gain-based cell swap

 Gain represents cutline change for a candidate swap

 At every swap, algorithms select maximum gain swap

 Pass Concept

 A set of complete swaps, i.e. all cells swapped once

 Swapped cells are locked; may not be swapped again

 At the end of a Pass, the best cost through the

movements log is selected

 Limited negative swaps are accepted until the end of the pass

 Least negative when no positive moves are possible

 Hill-climbing part of the algorithm

Kernighan-Lin Algorithm - 2

8/3/2016CE439 - CAD Algorithms II18

 Start with any initial legal partitions X and Y.

 A pass (exchanging each vertex exactly once) is described

below:

 1. For i := 1 to n do

From the unlocked (unexchanged) vertices,

choose a pair (A,B) s.t. Gain(A,B) is largest.

Exchange A and B. Lock A and B.

Let gi = gain(A,B).

 2. Find the k s.t. Gain = g1 + ... + gk is maximum.

 3. Switch the first k pairs up to the maximum Gain

 Repeat the pass until there is no improvement (G=0).

3/8/2016

10

Kernighan-Lin Algorithm - 3

8/3/2016CE439 - CAD Algorithms II19

KL Example

8/3/2016CE439 - CAD Algorithms II20

3/8/2016

11

KL and Hypergraph Representation

8/3/2016CE439 - CAD Algorithms II21

 For a hypergraph representation

 the k-clique model may be used

 A net containing k connections

 Single gate output fans out to (k – 1) gate inputs forms

a k-clique

 Each edge in the clique gets a weight of 1/(k – 1)

 If an edge already exists, the weight is added, instead of adding

a new parallel edge

 Edges may also possess individual weights

 Integer or floating-point numbers

Complexity of KL Algorithm

8/3/2016CE439 - CAD Algorithms II22

 For each pass,

 O(n2) time to find the best pair to exchange.

 n pairs exchanged.

 Total time is O(n3) per pass.

 Better implementation can get O(n2log n) time per pass.

 Number of passes is usually small.

 Useful Survey Paper

 Charles Alpert and Andrew Kahng, “Recent Directions in
Netlist Partitioning: A Survey”, Integration: the VLSI Journal,
19(1-2), 1995, pp. 1-81.

3/8/2016

12

Kernighan-Lin Algorithm Example

 Perform single KL pass on the following circuit:

 KL needs undirected graph (clique-based weighting)

8/3/2016CE439 - CAD Algorithms II23

Kernighan-Lin Algorithm Example

8/3/2016CE439 - CAD Algorithms II24

 First Swap

3/8/2016

13

Kernighan-Lin Algorithm Example

8/3/2016CE439 - CAD Algorithms II25

 Second Swap

Kernighan-Lin Algorithm Example

8/3/2016CE439 - CAD Algorithms II26

 Third Swap

3/8/2016

14

Kernighan-Lin Algorithm Example

8/3/2016CE439 - CAD Algorithms II27

 Fourth Swap

 Last swap does not require gain computation

Kernighan-Lin Algorithm Example

8/3/2016CE439 - CAD Algorithms II28

 Cutsize reduced from 5 to 3

 Two best solutions found (solutions are always area-balanced)

3/8/2016

15

Fiduccia-Mattheyses Algorithm

8/3/2016CE439 - CAD Algorithms II29

 Modification of KL Algorithm:
 Can handle non-uniform vertex weights (areas)

 Allow unbalanced partitions

 Extended to handle hypergraphs

 Clever way to select vertices to move, run much faster.

 Input: A hypergraph with
 Set vertices V (|V| = m)

 Set of hyperedges E. (total # nets in netlist = n)

 Area au for each vertex u in V.

 Cost ce for each hyperedge in e.

 An area ratio r.

 Output: 2 partitions X & Y such that
 Total cost of hyperedges cut is minimized.

 area(X) / (area(X) + area(Y)) is about r.

Fiduccia-Mattheyses Algorithm

8/3/2016CE439 - CAD Algorithms II30

 Similar to KL:

 Work in passes.

 Lock vertices after moved.

 Actually, only move those vertices up to the maximum partial

sum of gain.

 Difference from KL:

 Not exchanging pairs of vertices.

Move only one vertex at each time.

 The use of gain bucket data structure.

3/8/2016

16

Gain Bucket Data Structure

8/3/2016CE439 - CAD Algorithms II31

Cell
#

Cell
#

Max

Gain

+pmax

-pmax

1 2 n

FM External and Internal Vertex Cost

8/3/2016CE439 - CAD Algorithms II32

 For cell i in Partition P1

 E(i) = FS(i) =

 number of nets that have i as the only cell in Partition P1

 I(i) = TE(i) =

 number of nets containing cell i and are entirely located in P1

3/8/2016

17

FM Algorithm in Detail

8/3/2016CE439 - CAD Algorithms II33

 Perform the following three steps before the first pass begins:
 (i) unlock all cells,

 (ii) compute the gain of all cells based on the initial partitioning,

 (iii) add the cells to the bucket structure.

 Once the pass begins, Repeat the following four steps at every move until
all cells are locked:
 (i) we choose the “legal” cell with maximum gain (A cell move is legal if

moving it to the other partition does not violate the area constraint),

 (ii) move the chosen cell and lock it in the destination partition,

 (iii) update the gain values of the neighbors of the moved cell and update their
positions in the bucket, and

 (iv) record the gain and the current cutsize.

 At the end of the pass, identify and accept the first K moves that lead to
minimum cutsize discovered during the entire pass.

 If the initial cutsize has reduced during the current pass
 attempt another pass using the best solution discovered from the current pass as

initial solution; otherwise terminate.

FM Partitioning Example - 1

8/3/2016CE439 - CAD Algorithms II34

 Moves are based on object gain

 The amount of change in cut
crossings that will occur if an
object is moved from its
current partition into the other
partition

 each object is assigned a gain

 objects are put into a sorted
gain list

 the object with the highest gain
from the larger of the two
sides is selected and moved.

 the moved object is "locked"

 gains of "touched" objects are
recomputed

 gain lists are resorted

-1

-2

-1

1

0

0

0

2

0

0

1

-1

-1

-2

3/8/2016

18

FM Partitioning Example - 2

8/3/2016CE439 - CAD Algorithms II35

-1

-2

-1

1

0

0

0

2

0

0

1

-1

-1

-2

FM Partitioning Example - 3

8/3/2016CE439 - CAD Algorithms II36

-1

-2

-1

1

0

-2

-2
0

0

1
-1

-2

-2

3/8/2016

19

FM Partitioning Example - 4

8/3/2016CE439 - CAD Algorithms II37

-1

-2

-1

1

0

-2

-2
0

0

1

-1

-1

-2

-2

FM Partitioning Example - 5

8/3/2016CE439 - CAD Algorithms II38

-1

-2

-1
1

0

-2

-2
0

0

1

-1

-1

-2

-2

3/8/2016

20

FM Partitioning Example - 6

8/3/2016CE439 - CAD Algorithms II39

-1

-2

1 -1

0

-2

-2
0

-2

-1

-1

-1

-2

-2

FM Partitioning Example - 7

8/3/2016CE439 - CAD Algorithms II40

-1

-2

1 -1

0

-2

-2 0

-2

-1

-1

-1

-2

-2

3/8/2016

21

FM Partitioning Example - 8

8/3/2016CE439 - CAD Algorithms II41

-1

-2

1 -1

0

-2

-2

0

-2

-1

-1

-1

-2

-2

FM Partitioning Example - 9

8/3/2016CE439 - CAD Algorithms II42

-1

-2

1 -1

-2

-2

-2

0

-2

-1

1

-1

-2

-2

3/8/2016

22

FM Partitioning Example - 10

8/3/2016CE439 - CAD Algorithms II43

-1

-2

1

-1

-2

-2

-2

0

-2

-1

1

-1

-2

-2

FM Partitioning Example - 11

8/3/2016CE439 - CAD Algorithms II44

-1

-2

1

-1

-2

-2

-2

0

-2

-1

1

-1

-2

-2

3/8/2016

23

FM Partitioning Example - 12

8/3/2016CE439 - CAD Algorithms II45

-1

-2

-1

-3

-2

-2

-2

0

-2

-1

1

-1

-2

-2

FM Partitioning Example - 13

8/3/2016CE439 - CAD Algorithms II46

-1

-2

-

1

-3

-2

-2

-2

0

-2

-1

1

-1

-2

-2

3/8/2016

24

FM Partitioning Example - 14

8/3/2016CE439 - CAD Algorithms II47

-1

-2

-

1

-3

-2

-2

-2

0

-2

-1

1

-1

-2

-2

FM Partitioning Example - 15

8/3/2016CE439 - CAD Algorithms II48

-1

-2

-

1

-3

-2

-2

-2

-2

-2

-1

-1

-1

-2

-2

3/8/2016

25

Complexity of FM

8/3/2016CE439 - CAD Algorithms II49

 For each pass,

 Constant time to find the best vertex to move.

 After each move, time to update gain buckets is proportional

to degree of vertex moved.

 Total time is O(n), where n is total number of nets

 Number of passes is usually small.

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II50

 Perform FM algorithm on the following circuit:

 Area constraint = [3,5]

 Break ties in alphabetical order.

3/8/2016

26

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II51

 Initial Partitioning

 Random initial partitioning is given.

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II52

 Gain Computation and Bucket Set Up

3/8/2016

27

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II53

 First Move

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II54

 Second Move

3/8/2016

28

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II55

 Third Move

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II56

 Fourth Move

3/8/2016

29

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II57

 Fifth Move

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II58

 Sixth Move

3/8/2016

30

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II59

 Seventh Move

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II60

 Last Move

3/8/2016

31

Fiduccia-Mattheyses Algorithm Example

8/3/2016CE439 - CAD Algorithms II61

 Summary

 Found three best solutions.

 Cutsize reduced from 6 to 3.

 Solutions after move 2 and 4 are better balanced.

