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Partitioning Levels

ﬁ// _7 System

System Level Partitioning @ s
PCBs
Board Level Partitioning @
Chips
Chip Level Partitioning
Subcircuits
/ Blocks
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Circuit Partitioning
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Importance of Circuit Partitioning

» Divide-and-conquer methodology

The most effective way to solve problems of high complexity

E.g.: min-cut based placement, partitioning-based test generation,...
» System-level partitioning for multi-chip designs

inter-chip interconnection delay dominates system performance.
» Circuit emulation/parallel simulation

partition large circuit into multiple FPGAs (e.g. Quickturn), or
multiple special-purpose processors (e.g. Zycad).

» Parallel CAD development
Task decomposition and load balancing

» In deep-submicron designs, partitioning defines local and global
interconnect, and has significant impact on circuit performance
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Terminology
» Partitioning: Dividing bigger circuits into a small number
of partitions (top down)

» Clustering: cluster small cells into bigger clusters
(bottom up).

» Covering / Technology Mapping: Clustering such that
each partitions (clusters) have some special structure
(e.g., can be implemented by a cell in a cell library).

» k-way Partitioning: Dividing into k partitions.

» Bipartitioning: 2-way partitioning.

» Bisectioning: Bipartitioning such that the two partitions
have the same size.
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Circuit Representation

» Netlist:
Gates:A,B,C,D
Nets: {A,B,C}, {B,D}, {C,D}

» Hypergraph:

Vertices:A,B,C,D
Hyperedges: {A,B,C}, {B,D}, {C,D} -
- ’//’ \\\ :\\\
”/'... \:\ \\
Vertex label: Gate size/area O T, R
~\\ ,—4‘&,7-\-_.\{
Hyperedge label: SO 28
Importance of net (weight) C "—,_ D
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Circuit Partitioning Formulation

» Bi-partitioning formulation:
Minimize interconnections between partitions

(X, X)

» Minimum cut:
min c(X, X')
» minimum bisection:
min c(x, X’) with |x|= |X’]|
» minimum ratio-cut:
min c(x, X’) / |x||X’]
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Bi-Partitioning Example

» Edge numbers reflect weight, i.e. number of connections

Q=
100 100

. 9
min-cut 4

O

mini-ratio-cut min-bisection

» Min-cut size=13
» Min-Bisection size = 300
» Min-ratio-cut size= |9

Ratio-cut helps to identify natural clusters
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Circuit Partitioning Formulation - 2

» General multi-way partitioning formulation:
Partitioning a network N into NI, N2, ..., Nk such that
» Each partition has an area constraint
Z a(n) < 4;
neN;

» Each partition has an I/O constraint
C(Ni,N - Nl) < Ii

» Minimize the total interconnection:
Z C(NL', N — NL)
N
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Types of Partitioning Algorithms

» Combinatorial (Iterative) partitioning algorithms
SA-based

Most Effective:
Kernighan-Lin (KL)
Fiduccia-Mattheyses (FM)

» Spectral based partitioning algorithms

» Net partitioning vs. module partitioning
» Multi-way partitioning

» Multi-level partitioning

» Further study in partitioning techniques
Timing-driven ...
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Restricted Partitioning Problem

» Restrictions:

For Bisectioning of circuit.

Assume all gates are of the same size.
» Works only for 2-terminal nets.

If all nets are 2-terminal,

the Hypergraph is a Graph

]
WoN
X ~o : \\I AN A
4 S NN
S VLY
Hypergraph “hoy Yol Graph > 5
Representation C D Representation
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Problem Formulation
» Input:A graph with
Set vertices V. (|V| = 2n)
Set of edges E. (|[E| = m)
Cost c,p for each edge {A, B} in E.

» Output: 2 partitions X &Y such that
Total cost of edges cut is minimized.

Each partition has n vertices.

» NP-Complete Problem
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Partitioning is NP

» Try all possible bisections. Find the best one.

Pl k)

» If there are 2n vertices, Ol ) = EL=H)
# of possibilities = (2n)! / n!2 = n©()
» For 4 vertices (A,B,C,D), 3 possibilities.
I. X={A,B} &Y={C,D}
2. X={A,C} & Y={B,D}
3. X={A,D} & Y={B,C}
» For 100 vertices, 5x 10?8 possibilities.
Need 1.59x10'3 years if one can try 100M
possibilities per second.
14 CE439 - CAD Algorithms I 8/3/2016

n!

(n— Rkl

3/8/2016



KL/FM Ideas - 1

» Define D, = Decrease in cut value (cost),
if moving node A to the alternative partition
Divide into
External cost (connection) E, — Internal cost |,

Moving node A from partition X to partitionY would increase
the value of the cutsize (or cutset) by E, and decrease it by |,
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KL/FM Ideas - 2

» Specifically, in KL we want to balance two partitions
Perform node swaps instead of moves

» If nodes A and B are swapped
gain(AB) =D, + Dg—2 x cpp
where c,g.edge cost for AB

X ¢ X Bi Y
< A =
o D :
A i A D
gain(AB) = [+0-2 = -|
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Kernighan-Lin Algorithm - 1

» Gain-based cell swap
Gain represents cutline change for a candidate swap
At every swap, algorithms select maximum gain swap
» Pass Concept
A set of complete swaps, i.e. all cells swapped once
Swapped cells are locked; may not be swapped again
» At the end of a Pass, the best cost through the
movements log is selected
Limited negative swaps are accepted until the end of the pass

Least negative when no positive moves are possible

Hill-climbing part of the algorithm
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Kernighan-Lin Algorithm - 2

» Start with any initial legal partitions X and Y.
» A pass (exchanging each vertex exactly once) is described
below:

l.Fori:=1tondo

From the unlocked (unexchanged) vertices,
choose a pair (A,B) s.t. Gain(A,B) is largest.
Exchange A and B. Lock A and B.

Let gi = gain(A,B).

2. Find the k s.t. Gain = gl + ... + gk is maximum.
3. Switch the first k pairs up to the maximum Gain

» Repeat the pass until there is no improvement (G=0).
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Kernighan-Lin Algorithm - 3

(1) Pair : array (L :n/2] of pair of [1:n);
@ Cost : array [0:n/2] of integer;
(3) Locked : array [1: n] of Boolean;
(4) D : array [1:n] of integer;

(5) ¢:array (1:n,1:n) of integer;
(6) BestChange - 1 : n/2);

) BestCost - integer;

(8) imin, jmin : [1:n);

) compute the ¢ and D values;

(10) for i from 1 to n do

(11) Locked[i] := false od;

(12)  BestCost := Cost[0] := cutsize(A, B);
(13)  BestChange := 0;

(14) for s from 1 to n/2 do
(15) Cost[s] := oo;
(16) for i, j from 1 to n such that v; € A and Locked[i] = false
and v; € B and Locked[j] = false do
(17) if 2¢[i, j] — D[i] - D[j] < Cost[s then
(18) Pairfs] = (i, j);
(19) Costs] := 2¢li, j] - Dli] - D[j] i od;
(20) (imin, jmin) := Pair[s];
(21) Locked[imin] := Locked[jmin] := true;
(22) for i from 1 to n such that Locked[i]= false do
(23) if v € A then
(24) DIi) := DIi] - cli, jmin] + c[i, imin]
(25) else
(26) D) := D[i] = cli, imin] + [, jmin] fi od;
(27 Cost[s] := Cost[s — 1] + Cost[s];
(28) if Cosi[s] < BestCosl then
(29) BestChange = s;
(30) BestCost := Cost[s] fi od;
(31) for s from 1 to BesiChange do
(32) exchange Pair(s] od;
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KL Example
|
1 2 | 7
Step No. | Vertex Pair | Change | Cutsize
l 8 0 — 0 10
| > . 1 {4,10} 2 12
3 2 2 {2,12} 2 12
| 3 {1,13} -2 8
_ = = S 4 {3,11} -8 2
opt 5 {7,18} —4 6
16 ' 10 11 6 {8,17} 0 10
14 7 {5,15} 2 12
” ' 8 {9,16) 2 12
' 9 {6,14) 0 10
15
18 I 2 13
|
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KL and Hypergraph Representation

» For a hypergraph representation
the k-clique model may be used
» A net containing k connections

Single gate output fans out to (k — I) gate inputs forms
a k-clique

Each edge in the clique gets a weight of |/(k — )

If an edge already exists, the weight is added, instead of adding
a new parallel edge

» Edges may also possess individual weights

Integer or floating-point numbers
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Complexity of KL Algorithm

» For each pass,
O(n?) time to find the best pair to exchange.
n pairs exchanged.
Total time is O(n3) per pass.

» Better implementation can get O(n?log n) time per pass.
» Number of passes is usually small.

» Useful Survey Paper

Charles Alpert and Andrew Kahng, “Recent Directions in
Netlist Partitioning: A Survey”, Integration: the VLSI Journal,
19(1-2), 1995, pp. I-81.
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Kernighan-Lin Algorithm Example

» Perform single KL pass on the following circuit:
KL needs undirected graph (clique-based weighting)
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Kernighan-Lin Algorithm Example

» First Swap pair By — 1 By —1, cla,y) gain

(a,c) 0.5 —-0.5 25—-0.5 0.5 1

(a.f) 05-05 15-15 0 0

(a,g) 0.5-—05 -1 0 0

(a,h) 0.5—0.5 0—1 0 -1

(b,c) 05—-05 25-05 05 1

(b,f) 05-05 15-15 0 0

(b.g) 0.5—0.5 I —1 0 0

(b,h) 05-05 0-1 0 -1

(d,e) 1.5—-05 25-05 05 2

(d.f) 15-05 15-15 1 -1

i (d,g) 1.5-05 -1 0 1

initial partitioning (d.h) 1.5—-05 0—-1 0 0

(e,c) 2.5 —-0.5 25-0.5 1 2

(e.f) 25-05 15—-15 05 1

(e.g) 2.5—0.5 1-1 1 0

(e,h)  25-05 0—1 0 1
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Kernighan-Lin Algorithm Example

» Second Swap

pair E, -1, E,—1, c(x,y) gain
(@ f) 01 2 0 2
(a,g) 0-1 1 -1 0 -1
(a,h) 0—1 0—1 0 )
(b, f) 05-05 1-2 0 N
(b,g) 05—05 1—1 0 0
(b,h) 05-05 0—1 0 -1
(e.f) 15-15 1-2 05 =2
(e,g) 15-1.5 I —1 1 -2
(e, h) 1.5 — 1.5 0—1 0 -1
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Kernighan-Lin Algorithm Example
» Third Swap
pair By — 1, E,—1, e(x,y) gain
(a,f) 0—1 15—-15 0 -1
(a, i) 0—1 0.5 -0.5 0 |
(e,f) 05-25 15-15 05 -3
(e,h) 05—-25 05-05 0 2
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Kernighan-Lin Algorithm Example

» Fourth Swap

Last swap does not require gain computation

27
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Kernighan-Lin Algorithm Example

» Cutsize reduced from 5 to 3

Two best solutions found (solutions are always area-balanced)

pair  gain(i) Y. gain(i) cutsize

i
0
1
2
3
4

(d,c)
(b, g)
(a, f)
(e, h)

2
0
1
1

5

(= I
h = W

28
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Fiduccia-Mattheyses Algorithm
» Modification of KL Algorithm:

Can handle non-uniform vertex weights (areas)

Allow unbalanced partitions

Extended to handle hypergraphs

Clever way to select vertices to move, run much faster.

» Input:A hypergraph with
Set verticesV (|[V| = m)
Set of hyperedges E. (total # nets in netlist = n)
Area a, for each vertex u in'V.
Cost ¢, for each hyperedge in e.
An area ratio r.

» Output: 2 partitions X &Y such that
Total cost of hyperedges cut is minimized.
area(X) / (area(X) + area(Y)) is about r.
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Fiduccia-Mattheyses Algorithm

» Similar to KL:
Work in passes.
Lock vertices after moved.

Actually, only move those vertices up to the maximum partial
sum of gain.

» Difference from KL:
Not exchanging pairs of vertices.
Move only one vertex at each time.
The use of gain bucket data structure.
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Gain Bucket Data Structure

+pmax

Max 71 N [Cel [/
—> )

f\, Cell | A
Gain 1 # N1 #

()

-pmax
I 2 eoe e e n
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FM External and Internal Vertex Cost

v; € A. Definition 6.3 (External and Internal Hyperedge Cost) The external
hyperedge cost of verter v; is defined as

E(i) := Z c(e)

€€ Eexy,i
where
Eexti ={e € E|{n} =en A}
Analogously, the internal hyperedge cost of verler v; is defined as
I(i) := Z c(e)
€€ Eint,:

where

Eini={e€ E|vi€eand en B =p}
Definition 6.2 (Gain) The gain of v; is defined as

D(i) = E(i) — I(i)

» For cell i in Partition PI

» E(i) = FS(i) =
number of nets that have i as the only cell in Partition P1
» (i) =TE() =

number of nets containing cell i and are entirely located in P
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FM Algorithm in Detail

» Perform the following three steps before the first pass begins:
(i) unlock all cells,
(i) compute the gain of all cells based on the initial partitioning,
(iii) add the cells to the bucket structure.
» Once the pass begins, Repeat the following four steps at every move until
all cells are locked:

(i) we choose the “legal’’ cell with maximum gain (A cell move is legal if
moving it to the other partition does not violate the area constraint),

(i) move the chosen cell and lock it in the destination partition,

(iii) update the gain values of the neighbors of the moved cell and update their
positions in the bucket, and

(iv) record the gain and the current cutsize.

» At the end of the pass, identify and accept the first K moves that lead to
minimum cutsize discovered during the entire pass.

» If the initial cutsize has reduced during the current pass

attempt another pass using the best solution discovered from the current pass as
initial solution; otherwise terminate.

33 CE439 - CAD Algorithms Il 8/3/2016

FM Partitioning Example - 1

» Moves are based on object gain

The amount of change in cut
crossings that will occur if an

object is moved from its
current partition into the other

partition n

» each object is assigned a gain

objects are put into a sorted
gain list E E

» the object with the highest gain
from the larger of the two

sides is selected and moved.
the moved object is "locked"

gains of "touched" objects are
recomputed

gain lists are resorted
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FM Partitioning Example - 2
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FM Partitioning Example - 4
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FM Partitioning Example - 6
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FM Partitioning Example - 8
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FM Partitioning Example - 10
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FM Partitioning Example - 12
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FM Partitioning Example - 14
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Complexity of FM

» For each pass,
Constant time to find the best vertex to move.

After each move, time to update gain buckets is proportional
to degree of vertex moved.

Total time is O(n), where n is total number of nets

» Number of passes is usually small.
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Fiduccia-Mattheyses Algorithm Example

» Perform FM algorithm on the following circuit:
Area constraint = [3,5]
Break ties in alphabetical order.
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Fiduccia-Mattheyses Algorithm Example

» Initial Partitioning
Random initial partitioning is given.
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Fiduccia-Mattheyses Algorithm Example

» Gain Computation and Bucket Set Up
cell ¢: ¢ is contained in net ny = {a,c,e}, no = {b,c,d}, and ng =
{c. f.e}. ng contains ¢ as its only cell located in the left partition, so
FS(c) = 1. In addition, none of these three nets are located entirely in
the left partition. So, T/ (c) = 0. Thus, gain(c) = 1.

Pmax z E
2@ 2[®
1 HO-@ -0
0@ 0®
O, El E
-2 -2
S 1< <]
Oz -Pmax |-3| | EFT 1-3] RIGHT
52 CE439 - CAD Algorithms Il 8/3/2016

3/8/2016

26



Fiduccia-Mattheyses Algorithm Example

»

First Move

move 1: From the initial bucket we see that both cell g and e have the
maximum gain and can be moved without violating the area constraint.
We move e based on alphabetical order. We update the gain of the
unlocked neighbors of ¢, N(¢) = {a,c, g, [}, as follows: gain(a) =
FS(a) = TE(a)=0—1=—1,gain(c) =0~ 1= —1, gain(g) =
1—-1=0,gain(f)=2—-0=2.

?@é
©
06

[e]6]s[o][m]w]

[ ]s o]~ ]rm]e]
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Fiduccia-Mattheyses Algorithm Example

»

Second Move

move 2: f has the maximum gain, but moving f will violate the area
constraint. So we move d. We update the gain of the unlocked neigh-
bors of d, N(d) = {b.c, f}, as follows: gain(b) = 0 —0 = 0,
gain(c) =1—-1=0,gain(f)=1-1=0.

3] 3]
2 2
1] K
@O [0 E-O®
1@ i
-2 -2
K 3]
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Fiduccia-Mattheyses Algorithm Example
» Third Move

move 3: Among the maximum gain cells {g,c, h, f,b}. we choose b
based on alphabetical order. We update the gain of the unlocked neigh-
bors of b, N(b) = {c} as follows: gain(c) =0—1= —1.

3] 3]
B H
Kl K
0 ®  [o-®-0
OO [
-2 -2
3] 3]
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Fiduccia-Mattheyses Algorithm Example

» Fourth Move
move 4: Among the maximum gain cells {g. h, f}, we choose g based
on the area constraint. We update the gain of the unlocked neighbors
of g, N(g) = {f,h}, as follows: gain(f) =1—2 = —1, gain(h) =
0—1=-1.

3] 3]
2] 2]
1] 1]
o] o
e [1O®
-2 -2
E El
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Fiduccia-Mattheyses Algorithm Example
» Fifth Move

move 5: We choose a based on alphabetical order. We update the gain
of the unlocked neighbors of a, N(a) = {c}, as follows: gain(c) =
0—-0=0.

[e[[s]o]~[]w]
[o[]s]o]~[]e]
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Fiduccia-Mattheyses Algorithm Example

» Sixth Move
move 6: We choose f based on the area constraint and alphabetical
order. We update the gain of the unlocked neighbors of f, N(f) =
{h.c}, as follows: gain(h) =0 —0 =0, gain(c) =0—-1= —1.

(c) 2 2
iy o
SOV W e
Eh-@R EIzolE]
..,.u..,"‘“.' 5 / i i
©) 3| B
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Fiduccia-Mattheyses Algorithm Example

» Seventh Move

move 7: We move h. h has no unlocked neighbor.

¥
I
¥’
L
4

s
@- -

"‘l:

"'h

|

—@®

T

&
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Fiduccia-Mattheyses Algorithm Example

» Last Move

move 8: We move c.

60
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Fiduccia-Mattheyses Algorithm Example

» Summary

Found three best solutions.
Cutsize reduced from 6 to 3.

Solutions after move 2 and 4 are better balanced.

) > g(¢) cutsize

cell

o))

g(i
2
1

0
0
-1
-1

SRR Tan

0
-1

NN R W — O]
S = = DWW W
(o) NG IRV, I S P R S R P S

o
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