
3/1/2016

1

TCL and GNU Readline

Christos P. Sotiriou

1/3/2016CE439 - CAD Algorithms II1

Contents

 TCL Library and C API

 https://www.tcl.tk/

 https://www.tcl.tk/man/tcl8.5/TclLib/contents.htm

 GNU Readline API

 http://www.gnu.org/software/readline/

1/3/2016CE439 - CAD Algorithms II2

https://www.tcl.tk/


3/1/2016

2

About TCL/TK

 TCL (Toolkit Command Language)

 Web and desktop applications, network programming, 

embedded development, testing, general purpose programming, 

system administration, database work, and many, many more

 Dynamic, String-oriented Language

 Tk Graphical Toolkit

 GUIs that are incredibly simple yet remarkably powerful

 Tk canvas widget makes it easy to create displays with graphics, 

 Including powerful facilities such as bindings and tags

 text widget provides sophisticated hypertext capabilities and 

more. 

 Rapid Software Development

1/3/2016CE439 - CAD Algorithms II3

TCL Basics - 1

 Commands separated by semicolons or newlines

 expr 20 + 10

 tclsh is a basic TCL Shell

 Variables

 set x 32

 expr $x*3

 Command Substitution

 set cmd expr

 set x 11

 $cmd $x*$x

 set a 44

 set b [expr $a*4]

1/3/2016CE439 - CAD Algorithms II4



3/1/2016

3

TCL Basics - 2
 Quotes and Braces

 Double-quotes allow you to specify words that contain spaces

 set x 24

 set y 18

 set z "$x + $y is [expr $x + $y]“

 z will have the value 24 + 18 is 42

 Quotes and Braces
 (a) command and variable substitutions are performed on the text 

between the quotes

 (b) the quotes themselves are not passed to the command

 Curly Braces
 no substitutions are performed on the text between the curly braces

 set z {$x + $y is [expr $x + $y]}

 This command sets variable z to the value 
"$x + $y is [expr $x + $y]"

1/3/2016CE439 - CAD Algorithms II5

TCL Basics - 3

 Control Structures

 Tcl provides a complete set of control structures including 
commands for conditional execution, looping, and procedures

 Tcl control structures are just commands that take Tcl scripts as 
arguments

 The example below creates a Tcl procedure called power, which 
raises a base to an integer power: 

 proc power {base p} {
set result 1
while {$p > 0} {

set result [expr $result * $base]
set p [expr $p - 1]

}
return $result

}

1/3/2016CE439 - CAD Algorithms II6



3/1/2016

4

TCL Basics – 4
 Examples of using proc

 power 2 6

 power 1.15 5

 Tcl commands are created in three ways
 One group of commands is provided by the Tcl interpreter itself

 These commands are called builtin commands

 The builtin commands are present in all Tcl applications

 The second group of commands is created using the Tcl extension 
mechanism
 Tcl provides APIs that allow you to create a new command by writing a 

command procedure in C or C++ that implements the command

 You then register the command procedure with the Tcl interpreter by 
telling Tcl the name of the command that the procedure implements

 In the future, whenever that particular name is used for a Tcl command, 
Tcl will call your command procedure to execute the command

 The third group of commands are those defined in TCL
 By the proc command

1/3/2016CE439 - CAD Algorithms II7

TCL Basics – 5
 Other Features

 More control structures, such as if, for, foreach, and switch

 String manipulation, including a powerful regular expression matching facility.

 Arbitrary-length strings can be passed around and manipulated just as easily as 
numbers.

 I/O, including files on disk, network sockets, and devices such as serial ports

 Tcl provides particularly simple facilities for socket communication over the 
Internet

 File management: Tcl provides several commands for manipulating file names, 
reading and writing file attributes, copying files, deleting files, creating directories, 
and so on.

 Subprocess invocation: you can run other applications with the exec command 
and communicate with them while they run.

 Lists: Tcl makes it easy to create collections of values (lists) and manipulate them 
in a variety of ways.

 Arrays: you can create structured values consisting of name-value pairs with 
arbitrary string values for the names and values.

 Time and date manipulation.

 Events: Tcl allows scripts to wait for certain events to occur, such as an elapsed 
time or the availability of input data on a network socket. 

1/3/2016CE439 - CAD Algorithms II8



3/1/2016

5

TCL C API

 http://www.tcl.tk/man/tcl8.5/TclLib/contents.htm

 Tcl_FindExecutable()

 Tcl_CreateInterp()

 Tcl_CreateObjCommand()

 Tcl_Eval()

1/3/2016CE439 - CAD Algorithms II9

GNU Readline

 The GNU Readline Library

 Two Interfaces

 Standard Interface – Control passed to readline()

 char *line = readline ("Enter a line: ");

 Alternative Interface – Event-based

 The GNU History Library

 Command History Management

 add_history (line);

 The GNU Readline User Interface

1/3/2016CE439 - CAD Algorithms II10

http://www.tcl.tk/man/tcl8.5/TclLib/contents.htm
https://cnswww.cns.cwru.edu/php/chet/readline/readline.html
https://cnswww.cns.cwru.edu/php/chet/readline/history.html
https://cnswww.cns.cwru.edu/php/chet/readline/rluserman.html


3/1/2016

6

GNU Readline Standard Interface Example

1/3/2016CE439 - CAD Algorithms II11

GNU Readline Standard Interface Example – page 1

int main()

{

char *text = NULL; // readline result //

char *textexpansion; // readline result history expanded //    

int expansionresult;

HIST_ENTRY **the_history_list; // readline commands history list - NULL terminated //

char command[LINE_MAX]; // current command //

unsigned long i;

// Readline Initialisation //

rl_completion_entry_function = NULL; // use rl_filename_completion_function(), the default filename completer //

rl_attempted_completion_function = custom_completer; 

rl_completion_append_character = '\0';

using_history(); // initialise history functions //

while (1)

{      

text = readline("PR> ");

if (text != NULL)

{

expansionresult = history_expand(text, &textexpansion);

if ((expansionresult == 0) || // no expansion //

(expansionresult == 2)) // do not execute //

{

add_history(text);

strcpy(command, text); // store command //

}

else

{

add_history(textexpansion);

strcpy(command, textexpansion); // store command //

}

free(textexpansion);

free(text);

}

GNU Readline Standard Interface Example

1/3/2016CE439 - CAD Algorithms II12

GNU Readline Standard Interface Example – page 2

...

// handle two basic commands: history and quit //

if (strcmp(command, "quit") == 0)

{

return EXIT_SUCCESS;

}

else if (strcmp(command, "history") == 0)

{

the_history_list = history_list(); // get history list //

if (the_history_list != NULL)

{

i = 0;

while (*(the_history_list + i) != NULL) // history list - NULL terminated //

{

printf("%d: %s\n", (i + history_base), (*(the_history_list + i))->line);

i++;

}

}

}

}

}


