Timing Optimization of Combinational Logic *

Kanwar Jit Singh Albert R. Wang

Robert I{. Brayton

Alberto Sangiovanui-Vincentelli

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720.

Abstract

We present an algorithm for speeding up combinational logic with
minimal area increase. A static timing analyzer is used to iden-
tify the critical paths. Then, a weighted min-cut algorithm is
used to determine the subset of nodes to be resynthesized. This
subset is selected so that the speed-up is achieved with minimal
area increase. Resynthesis is done by selectively collapsing the
logic along the critical paths, and then decomposing the collapsed
nodes to minimize the critical delay. This process is iterated un-
til either the timing requirements are satisfied or no further im-
provement can be made. The algorithm has been implemented
and tested on many design examples with promising results.

1 Introduction

We view timing optimization as a three-phase process. In the
first phase, the circuit is globally restructured to reduce the max-
imum level or the longest path in the circuit. This is usually
accomplished in a technology independent fashion. For example,
changing from a ripple-carry-adder to a carry-look-ahead adder
or something in between is accomplished in this phase. The sec-
ond plase is to speed up the circuit during the physical design
process. Trausistor sizing or timing driven placement of modules
are examples of such optimizations. In the last phase, when we
have an actual design, a more accurate timing analyzer is used to
fine tune the circuit parameters. This paper considers only the
first phase, viz. technology independent logic resynthesis.

In carlier works speed-up is achieved by making local changes
in" the topology. [5,3] reduce the delay by adding buffers and de-
composing an ezisting gate into gates containing carly and late
arriving signals, with the latter being placed closer to the output.
SOCRATES [1] uses a rule based system to improve the timing
by local transformations. These may not lead to the global re-
structuring that we are trying to achieve. However the strength
of this approach is that it fully exploits the features of the library
and technology being used. We feel that our approach followed
by a SOCRATES type local improvement step would yield good
results.

We approach the problem of restructuring the logic with a
global view. Our approach is similar to the “Circuit Re-synthesis”
step of the Yorktown Silicon Comipiler {6]. In both approaches,
a sub-network is defined and a critical section to be transformed
is identified. The significant contrasts are that our algorithin
focuses only on logic resynthesis and operates on a technology
independent representation of the circuit. The algorithms in [G]
combine device sizing with logic manipulation and are somewhat
specialized to domino CMOS designs. [6] uses transformations

*This vesearch was supported by DARPA, Micro, lutel, AMD, Phillips and
SGS

CH2657-5/88/0000/0282$01.00 © 1988 IEEE

282

only between neighboring gates whereas we provide a parameter
controlling the extent of the transformations.

Our algorithm uses a timing driven decomposition of the net-
work into 2-input gates. This is important since the manner in
which a complex gate is implemented changes its delay charac-
teristics. We can use various models for computing delays. One
of them is a fast technology mapping [4] of the two input gates
into a standard cell library. This provides more accuracy to our
timing estimates. We present a new algorithm, based on timing
constraiuts, for decomposing a complex function into two input
gates. This is done recursively from the bottom up, so that at
each stage the input arrival times are fairly accurate.

Uuntil now, the emphasis of MIS [2] has been on area optimiza-
tion. The algorithms presented here have been integrated in MIS.
The designer can now make an area/delay tradcoff.

2 The speed-up algorithm

The algorithm takes as input a network of 2-input NAND gates
and inverters. Timing constraints are specified as the arrival times
at the primary inputs and required times at the primary outputs.
The algorithm manipulates the network to achieve speed up until
the timing constraints are satisfied or no further decrease in the
delay is possible. The output of the algoritlun is also in terms of
2-input NAND gates and inverters.

Basic definitions are given in the next subsection and illustrated
in Figure 1. The main loop of the algorithm is shown in Figure 2
and is explained in sections 2.2 through 2.5.

2.1 Basic definitions

Starting with the primary input arrival times, the arrival times
for each of the signals is computed. Using the required times at
the outputs, we compute the required times for all signals. The
slacl at a node s, is defined to he Ry, — A, where A, is its arrival
time and Ry its required time.

An e-network is defined as a sub-network in which all the signals
lave a slack within € of the most negative slack.

For each node in the network we define a d_eritical_fanin_section
as the set of nodes that (1) are in the transitive fanin of the node,
(2) are at most distance d (d levels of logic) away from the node,
and (3) are patt of the e-network.

The operation partial-collapse on a node collapses all the nodes
in the d_eritical_fanin_section of the node. Internal nodes in this
section that fanout elsewhere will be duplicated in this process.

2.2 Weight of the critical nodes

The function chosen to assign weights to the nodes in the
e-network is crucial since it determines the aqdes that will be
sclected for speed-up. Associated with a node we define two com-
ponents for its weight — an area penalty (W,) and a potential

d_critical _fanin_section
- of node
Collapsed node

Duplicated logic

Critical path
,,,,, Non critical fanin to the critical transitive fanin

Figure 1: Definition of the terms

d = Distance up to which the critical fanins are collapsed.
speed_up(network, dist, €)
do {
delay_trace();
generate(e-network);
nodedist = node_cutset(e-network);
foreach node € node_list
partial_collapse(node, d);
foreach node € nodelist
speedup_node(node);
} while (delay decreases &&
timing constraints not satisfied)

Figure 2: Outline of the resynthesis algorithm

for speed-up (W;). The area penalty is due to the duplication of
some logic during the partial-collapse of a node. The potential
for speed-up (W;) is determined by a heuristic that tries to iden-
tify the possibility of reducing the arrival time of the node after
partial collapse and resynthesis. These components are weighed
depending on the area/delay tradeoff desired.

« = Coefficient controlling the area-delay tradeoff.

W=W, +aXx Wa
W, = Number of literals in the duplicated logic,
W, = DPotential for speedup.

where

In order to define the “potential” for speed-up we look at the rela-
tion between the delays and arrival times in the existing network.
Consider a node 7, in the e-network. For each node, ¢, that fans
into the d_critical_fanin_section of n, we know its arrival time, 4;,
and the delay, D;, from it to the node n. Consider the following
situations :

o The standard deviation (o) of the vectors (4;, D;) is small.
This implies a near balanced decomposition already exists in
the transitive fanin of the node when the inputs arrive at
similar timmes. Hence there is not much scope for improving
the existing decomposition.

o Let D = 3 x A+ 6 be the least square error straight line fit-
ting the data points (4;, D;). A negative value of the slope 3
indicates that early arriving signals (small 4;) pass through
a larger delay. This too suggests that the current decomposi-
tion is skewed in the right direction, reducing the “potential”
for speedup.

Critical signals
Non critical signals.

Critical signals

Figure 3: Basic idea of the timing decomposition

speedup_node(f)
; = CHOOSE_BEST _TIMING_DIVISOR(f);
if (k!= NULL) {
substitute (f, k);
speedup_node(k);
/* Update the arrival time at inputs of f */
delay_trace();
speedup_node(f);
} else AND_OR._decomp(f);

Figure 4: Rontine to speed-up a node

We define Wi so that the selection of nodes with a large ¢ and a
A close to +1 are favored. Thus

arctan(i3) — x/4
W x LJ—}——-LJ”

2.3 Minimum weighted cutset

After assigning the node weights, the maxflow-mincut algorithm is
applied to generate a node cutset (separator set) of the e-network.
Speeding up all the nodes on the node cutset of the e-network by
a given amount v (v < €), would, in most cases, reduce the delay
through the e-network by at least 4. However, resynthesis may
increase the delay through other parts of the circuit resulting in
a speedup less than 5. The minimum weighted cutset provides us
with a minimal arca increase when the nodes are resynthesized.

234" Partial collapse

283

The network used for the cutset analysis is in the form of
2-input NAND gates. We collapse all the nodes in the
d_critical_fanin_section of the node to generate a large node to
decompose later. The choice of the distance d for the partial-
collapse influences the algorithm and is explained in Section 3.
Decomposition of the collapsed node is explained in the next sec-
tion.

2.5 Timing decomposition

The general idea of timing-decomposition of a node is to place
late arriving siguals closer to the output. This is illustrated in
Figure 3. Figure 4 describes the speedup_node algorithm for
the decomposition of a node taking into account the arrival times
at the inputs. It consists of two phases — (1) extracting divisors
that reduce delay and (2) decomposing a node into a NAND-
NAND tree.

Notice that the decomposition of any node is based on the cor-
rect updated arrival times of its input. This is.a result of the

K ={level .0 kernels} U {level 0 kernel intersections}
CHOOSE_BEST_TIMING_DIVISOR(f)
D=NKj; /* D is the set of divisors */
p=0.1; /* Determined experimentally */
for (n€K)
f=qntn
for (n € D)
F;,, = Signals that fan into n;
Cr= o 2 At 1= 2R A
C, = Literals saved if n is extracted.
C(n)=Ci—axCq
return j s.t. C(j) is minimum;

D=quUD;

Figure 5: Selection of divisors for timing resynthesis

bottom-up approach we adopt for the decomposition. Note that
in Figure 4, we call speedup_node for node k before calling it
for the new f resulting from substituting k& into f. Thus during
the-decomposition of a node, we decompose first the parts that
will eventually be closer to the inputs (e.g. the divisors which
are extracted) and update their arrival times. This allows the
decomposition to adjust dynamically to the updated delay of the
extracted divisor which is now an input to the new node, f.

2.5.1 Kernel based decomposition

After a partialcollapse of the node, the notion of a critical path no
longer exists since the critical path depends on the decomposition
of the node. With this in mind, the objective is, given the arrival
times at the inputs of a node, to decompose it in a manner to
reduce the arrival time at its output. In decomposing a node
to reduce its delay, we want to preserve the area savings that
results from extracting good divisors. The search for divisors
is restricted to a set of kernels X, which for efficiency reasons
consists of level_0 kernels and level 0 kernel intersections.
In addition to the nodes in K we also consider their co-divisors
while choosing the best divisor to extract.

The weight of a divisor is a linear sum of an area-compouent and
a timing component. The area component, Cq, reflects the literals
saved if the divisor were extracted. The timing component, Cy, is
designed to prefer the divisor with the smallest arrival time for
its latest arriving input. In the case of a tie the divisor with the
largest spread of input arrival times is preferred. The weighting
procedure for divisors is given in Figure 5.

2.5.2 AND-OR decomposition

After all divisors containing early arriving signals are exhausted,
a timing-driven NAND-NAND decomposition is carried out. The
routine AND_OR_decomp (Figure 6) decomposes a function F,
given as a sum-of-products, into a NAND-NAND tree. Each cube
of F is decomposed into a tree of 2-input AND gates. A delay
trace updates the arrival times at the output, z;, of the AND-
trees representing the cubes ¢; € F. The cube [] 77 represents the
function F and can be decomposed by the routine AND _decomp
since the arrival times at its inputs are now known.

The AND_decomp routine (Figure 7) decomposes a cube into
a 2-input AND tree so as to reduce the arrival time at the cube
output. Since the decomposition creates a tree this procedure
guarantees that the resulting 2-input AND decomposition has a
minimum arrival time. An example of the decomposition of a 4

F is a multi-cube function.
AND_OR_decomp(F)
foreach cube ¢; € F
AND _decomp(¢;);
delay_trace();
F = L7 /* i rﬁpresents the cube ¢; ¥/
AND _decomp(F);

Figure 6: The AND_OR decomposition routine

F is a cube.
AND _decomp(F)
(1 F|>2)

i = Earliest arriving input of F;
I, = Next earliest arriving input ;
e =11y
substitute(F, ¢);
delay _trace();
AND _decomp(F);

}

Figure 7: The AND_decomp routine to decompose a cube

f
AND_DECOMP 15
—
0 0 10 20
Arrival times
e=a.b
f=a.b.c.d fz=e.c.d

The delay through the 2 input and gate = 1.5

Figure 8: Example of a cube decomposed by AND_decomp

input cube is illustrated in Figure 8.

3 Controlling the algorithm

Several parameters govern the run time and the quality of the
results. We discuss the influence of cach of these in this section.

€ specifies the size of the e-network. Using a large € might result
in selecting nodes for speed-up from a region where speeding
up does not reduce the critical delay. Thus, area is wasted.
Selecting an € too small results in a slow algorithm.

d is the depth of the d_critical_fanin_section. A large d is useful in
making relatively large changes in the delay since the larger
nodes provide greater flexibility in restructuring the logic.
However, due to the time spent in collapsing and the large
number of divisors available for large nodes, the run time
increases rapidly as d is increased.

o controls the tradeoff between area and speed. The larger is
a (the coefficient multiplying the area component of the
weight), the more we want to avoid the duplication of logic

284

Example Area Delay

Belore | Alter | %luc | Before | Alter | %Dec
5xpl-hdl 121 278 | 129.75 22.01 | 17.21 | 21.81
5xpl 237 252 6.33 13.20 | 11.76 | 10.91
9sym-hdl 186 188 1.08 | 3250 | 26.30 | 19.08
9sym 403 405 0.50 18.47 | 16.93 8.34
9symml 343 354 3.21 2245 | 21.89 2.49
alupla. 286 346 | 20.98 23.80 | 19.31 | 18.87
bw 339 339 0.00 15.20 | 14.10 724
conl 36 36 0.00 5.80 5.80 0.00
duke2 706 720 1.98 23.83] 19.76 | 17.08
2 44 44 0.00 5.29 5.29 0.00
51m-hdl 118 176 49.15 24.01 | 19.81 17.49
51m 245 255 4.08 13.86 | 12.32] 1L.11
misex L 17 117 0.00 9.85 9.85 0.00
misex2 210 210 0.00 10.90 | 10.90 0.00
misex3 806 307 0.12 | 29.43 | 23.48 | 20.22
misex3c 970 | 1001 3.20 19.90 | 18.30 8.04
rd53-hd) 59 64 8.47 | 13.70 | 12.30 | 10.22
rd53 112 114 1.79 10.55 9.65 8.53
rd73-hel 111 162 45.95 21.00 | 19.10 9.05
rd73 231 233 0.87 14.31 | 13.28 7.20
rd84-hdl 137 145 5.84 22.60 | 21.40 5.31
rd84 410 416 1.46 22.10 | 20.57 6.92
sao2-hdl 280 461 64.64 41.53 | 36.41 [12.33
sao? 312 334 7.05 15.90 | 14.70 7.55
vgl 169 203 20.12 13.20 | 10.80 | 18.18
z4ml-hdl 94 135 43.62 17.00 | 12.24 | 31.62
z4ml 63 129 1 104.76 15.90 | 10.90 | 31.15

Table 1: Results of timing optimization

during partial_collapse. In cases when we want a speed-up
irrespective of the increase in area, we set a = 0.

model The delay trace performed on tle circuit can use
The most primitive is the
unit_delay_model which assigns a delay of 1 unit to a gate.
The unit_fanout_delay_model incorporates an additional de-
lay of 0.2 units for each fanout. The library_delay_model
uses the delay data in the library cells to provide more ac-
curate delay values. By using a crude delay model (e.g.

a variety of delay models.

unit_fanout_delay_model) initially and a more refined delay
model later one can significantly reduce the run time.

4 Results

The above algorithm has been implemented and integrated with
MIS [2] . Table 1 shows the results obtained on examples from
the MCNC logic synthesis benchmark set. Eacl was run through
MIS using an algebraic script to get a multi-level description.
Then this was resynthesized for timing using our algorithm. The
unit_fanout_delay_model was used during the resynthesis. All de-
lays were measured after mapping the circuit into the MCNC
standard cell library. The increase in speed is entirely due to
changing the structure of the circuits. The average delay reduced
by 13 % while the area increase was 10.9 %.

A typical curve showing the area vs. delay as the algorithm
progresses is plotted in Figure 9. This demonstrates the ability
of the algorithm to tradeoff area for speed.

285

Delay

80.00

70.00

60.00

50.00

40.00

30.00 =

20.00

Area x 103

1.00 2.00

Figure 9: Typical Arca-Delay tradeoff curve

5 Conclusions and future work

Algorithuus for the speed up of combinational logic have been pro-
posed. These algorithms have heen implemented and integrated
with the logic synthesis system MIS. Results obtained by ranuing
the algorithm on a number of design examples are encouraging
since they demonstrate the potential for speed-up by simply re-
structuring the logic.

There is still room for improving the algorithms described
above. Choosing a schedule for varying the parameters of the
algorithm to obtain good quality results in a reasonable amount
of time needs to be investigated further. In addition, we need to
look at ways of combining transistor sizing and logic resynthesis.

References

(1] K. Bartlett, W. Cohen, A. de Geus, and G. Hachtel. Syn-
thesis and optimization of multilevel logic under timing
constraints. IEEE Transactions on Computer-aided design,
CAD-5(4):582-595, October 1986.

[2] R. K. Brayton, Richard Rudell, Alberto Sangiovanni-
Vincentelli, and Albert R. Wang. MIS: A multiple-level logic
optimization system. IEEE Transactions on Computer-aided

design. (6):1062-1081, Novemher 1987.

13

3. Darringer, D. Brand, J. Gerhi, W. Joyner, and L.Trevillyan.
LSS: A system for production logic synthesis. IBM Journal of
Research and Development, 28(5):326-328, September 1984.

Ewald Detjens, Gary Gannot, Richard Rudell, Alberto
Sangiovanni-Vincentelli, and Albert Wang. Techuology map-

ping in MIS. ICCAD-87 Digest, :116-119, 1987.

Mark Hoffinan and Jac. K. Lim. Delay optimization of com-
binational static CMOS logic. In Proceedings of the Destfn
Automation Conference, 1937,

Giovanni De Micheli. Performance-oriented synthesis of
large-scale domino CMOS circnits. IEEE Transactions on
Computer-aided design, CAD-6(5):751-765, September 1987.

