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Abstract 

AND-INV graphs (AIGs) are Boolean networks composed 
of two-input AND-gates and inverters. They can be used to 
represent and manipulate large Boolean functions in 
several applications such as equivalence checking and 
technology mapping. For many practical circuits, AIGs are 
smaller and easier to construct than BDDs. However, the 
applicability of traditional AIGs is limited because they are 
not canonical. 

The paper presents a new way to compute functionally 
reduced AIGs (FRAIGs), a variation of AIGs, which are 
“semi-canonical” in the sense that each AIG node has 
unique functionality among the nodes of the AIG. Previous 
methods perform functional reduction of traditional AIGs 
as a post-processing step. The new method performs 
functional reduction on-the-fly, as part of the AIG 
construction. This leads to significant savings in runtime by 
avoiding potentially large intermediate results. Preliminary 
experiments indicate an order-of-magnitude speed-up for 
typical applications. 

1 Introduction 

AND-INV graphs (AIGs) are used to represent Boolean 
functions in combinational equivalence checking (CEC) 
[9][11], bounded model checking (BMC) [12][16], and 
technology mapping [13]. As a functional representation, 
AIGs enjoy several important properties: 
• The construction time and the number of AIG nodes 

are proportional to the size of the original circuit 
(unlike BDDs, whose size is exponential for some 
important practical circuits, such as multipliers.) 

• AIGs are composed of only two-input ANDs and 
inverters, represented as bubbled pointers (flipped 
bits) on the edges. This uniformity of representation 
gives some implementation advantages. 

• AIGs coupled with Boolean satisfiability provide a 
powerful reasoning engine. The uniform structure of 
AIGs can be exploited by a circuit-based SAT solver, 

or translated into a CNF representation to be 
processed by a SAT solver. 

However, AIGs [11] are not canonical; as a result, the 
same Boolean function can have many AIG 
representations. For example, function F = abc can be 
represented as follows: ((ab)c), (a(bc)), ((ac)(bc)), etc. 
Figure 1 shows two different AIGs of a four-variable 
function, which cannot be derived from each other by 
applying algebraic transformations. These AIGs are 
different Pareto points on the area/delay curve: one has 
fewer ANDs, while another has fewer levels of ANDs. 

Because AIGs are not canonical, graphs constructed 
using traditional methods may have internal nodes with the 
same functionality. This may increase the number of AIG 
nodes and make reasoning on the AIG structure time 
consuming. Indeed, merging two functionally-equivalent 
nodes removes one variable from the SAT problem.  

An AIG constructed by the traditional approach can be 
reduced using specialized algorithms [11][12]. However, 
proving functional equivalence of two AIG nodes may be a 
formidable task. Typically, it is solved with a SAT solver, 
which tries to prove that the outputs of the two AIGs never 
produce different values. In the published work, e.g. [15], 
detection of functional equivalence of AIG node-pairs 
(called functional reduction in this paper) is applied as a 
post-processing step. 

The contribution of this paper is in integrating functional 
reduction into the traditional AIG construction. This leads 
to a semi-canonical data structure to represent Boolean 
functions, called functionally reduced AIGs (FRAIGs). The 
new construction algorithm is more robust in overcoming 
drawbacks of the traditional AIGs: large intermediate 
results and runtime overhead for the post-processing.  

The algorithm proposed in this paper is similar to the 
efficient reduction-by-construction method [1] for Reduced 
Ordered Binary Decision Diagrams (ROBDDs), 
implemented in all the current ROBDD packages. 
Originally, the ROBDDs were introduced in [4] where the 
reduction process was applied as a post-processing step.  

Experimental results confirm that the proposed method 
for constructing FRAIGs allows practical applications to 
run faster and to be applied to larger problem instances. 



The paper is organized as follows. Section 2 surveys the 
traditional AIGs. Section 3 reviews previous work. Section 
4 discusses the new algorithm to construct FRAIGs. 
Section 5 discusses some implementation details. Section 6 
outlines some applications of FRAIGs. Section 7 reports 
experimental results. Section 8 concludes and outlines 
future work. 

2 Background  

This paper assumes familiarity with the basics of Boolean 
functions, Boolean networks, and Binary Decision 
Diagrams [2]. 

2.1 Definitions 
Definition. AND-INV graph (AIG) is a Boolean network 

composed of two types of nodes: two-input AND-gates and 
inverters. 

Definition. A representation of a Boolean function is 
canonical if, for any function, there exists only one 
representation of this type. 

AIGs are not canonical, that is, the same function can be 
represented by two functionally equivalent AIGs, which 
have different structure. An example of such function is 
shown in Figure 1. 
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Figure 1. Two different AIGs for the same function.  

 
Note that both graphs in Figure 1 are FRAIGs, since in 

each of them, no pair of nodes represent the same function. 
Definition. The size of an AIG is the number of AND 

nodes in it. The number of logic levels is the number of 
AND-gates on the longest path from a primary input to a 
primary output.  

The inverters are ignored when counting nodes and logic 
levels. In the software implementation, inverters are 
represented by flipping the least significant bit on the node 
pointers [11]. This implementation is similar to that of 
BDDs with complemented edges [1]. 

Definition. The function of an AIG node n, denoted fn(x), 
is a Boolean function of the logic cone rooted in node n and 
expressed in terms of the PI variables x assigned to the leaf 
nodes of the AIG. 

Definition. A functionally reduced AIG (FRAIG) is an 
AIG, in which, for any pair of nodes, n1 and n2, 

1 2
( ) ( )n nf x f x≠  and 

1 2
( ) ( )n nf x f x≠ .  

2.2 AIG construction 
AIGs for Boolean functions can be constructed starting 

from different functional descriptions: 
SOP: Given an SOP representation of a function, AIGs 

of the products are constructed using the AIGs for 
elementary variables and cascades of two-input AND-
gates. The AIG for the SOP output is constructed using the 
AIGs for the outputs of the product terms and a cascade of 
two-input OR-gates. Each two-input OR-gate is converted 
into a two-input AND-gate using the DeMorgan rule. 

BDD: Given a (multi-output) BDD representation of a 
Boolean function, the (multi-output) AIG is constructed by 
converting the BDD into a circuit composed of MUXes and 
applying the transformation from the circuit representation. 

Circuit: Given a circuit representation of a (multi-output) 
Boolean function, the (multi-output) AIG is constructed in 
a bottom-up fashion, by calling a recursive construction 
procedure for each PO of the circuit. The procedure checks 
if it is called for a PI node. If so, it returns the 
corresponding elementary AIG variable. Otherwise, it first 
calls itself for the fanins of a node and then builds the AIG 
for the node using the factored form or the BDD 
representation of the logic function of the node. In both 
cases, the elementary ANDs, ORs, and MUXes are 
converted into two-input ANDs and inverters. 

Boolean formulas: Given an arbitrary expression 
representing a Boolean function using Boolean operators, 
including quantification and co-factoring, the AIG of the 
output of the formula is constructed as follows: 

- Start with AIGs representing elementary variables. 
- Express Boolean operations using two-input ANDs 

and inverters over the elementary variables. 
- Perform co-factoring of a function by constructing 

the AIG of the function, followed by propagating 
corresponding constants through it. 

- Perform existential (universal) quantification of a 
function by iteratively ORing (ANDing) the 
cofactors of the function w. r. t. the variables to be 
quantified. 

When an AIG is constructed from a circuit, the number of 
AIG nodes does not exceed the number of literals in the 
factored forms of the nodes. When the AIG is constructed 
from a BDD, the number of AIG nodes does not exceed 
three times the number of nodes in the BDD. It follows that 
the size of the constructed AIG is proportional to the size of 



the circuit or BDD. Quantifications performed on AIGs 
have the complexity exponential in the number of variables 
quantified. This is because quantifying each variable can 
potentially duplicate the graph size.  

Boolean operations, except quantification, performed on 
AIGs lead to the resulting graphs, which, in the worst case, 
are not larger than the sum of the sizes of their arguments. 
Meanwhile, in the case of BDDs, the worst case complexity 
of the result is equal to the product of the sizes of the 
arguments. This difference explains why AIGs are more 
robust than BDDs for representing and manipulating 
complex circuitry, such as multipliers. 

 

2.3 Structural hashing 
Structural hashing (strashing) of AIGs introduces partial 

canonicity into the AIG structure. When a new AND-gate 
is added to the graph, several logic levels of the fanin 
AND-gates are mapped into a canonical form. Although the 
resulting AIG is not canonical, it contains sub-graphs, 
which are canonical as long as they have less than the given 
number of logic levels. 

No strashing: When an AIG is constructed without 
strashing, AND-gates are added one at a time without 
checking whether an AND-gate with the same fanins 
already exists in the graph.  

One-level strashing: When a new AND-gate is added, 
this type of strashing checks for a node with the same 
fanins (up to permutation).  

Two-level strashing: This type has two phases. In the 
pre-computation phase, all two-level AND-INV 
combinations are enumerated and, for each Boolean 
function realizable by a two-level AIG, one representation 
is arbitrarily selected as the representative one. In the 
construction phase, when adding a new AND-gate, its two-
level AIG is checked. If its canonical representative does 
not exist, the AND-gate is added. Otherwise, the canonical 
representation is constructed, even if it requires building 
new AND-gates for some of the fanins. 

A detailed discussion of two-level structural hashing can 
be found in [8]. This reference uses an efficient 
implementation, which runs in time linear in the number of 
constructed AIG nodes. Its runtime is only marginally 
larger than that of one-level strashing, but the resulting 
graphs may have 5-20% fewer nodes.  

A drawback of two-level strashing is when multiple AIGs 
are constructed repeatedly, sometimes it leads to an 
increase in the number of unused nodes in the AIG 
manager. This may slow down some AIG-based 
applications, such as image computation. 

3 Previous work 

AIGs have been applied as a circuit representation in 
combinational equivalence checking (CEC) [11] and an 
object graph representation in technology mapping [13]. In 
both cases, AIGs are built initially using strashing, and later 
optionally post-processed to enforce functional reduction.  

In [15] AIGs are used for unbounded model checking in 
which both the circuits and interpolants computed from the 
unsatisfiability proofs are represented by AIGs. This work 
recognizes the need for functional reduction ([15], Section 
3.2, paragraph 1) noting that AIGs tend to have many 
redundancies not captured by strashing.  

Two procedures have been proposed to perform 
functional reduction. One, bdd_sweep [11], constructs 
BDDs of the AIG nodes in terms of the PI variables and 
intermediate “cut-point” variables. BDD construction is 
controlled by resource limits, such as a restriction on the 
BDD size. Any pair of AIG nodes with the same BDD is 
merged, and the fanout cones are rehashed to propagate the 
change. As long as all BDDs can be built within the 
resource limits, the result is a FRAIG. 

A second procedure, sat_sweep [14][12], is more efficient 
and achieves the same merging and propagation by solving 
a sequence of incremental topologically-ordered SAT 
problems designed to prove or disprove the equivalence of 
cut-point pairs. Candidate pairs are detected by random 
simulation. Experimentally we will show that our on-the-
fly FRAIGing method is an order of magnitude faster than 
this. 

In both approaches, the initial graph is constructed in a 
redundant form, followed by functional reduction applied 
as a post-processing step.  

Another approach to CEC was developed using NAND 
graphs [6] but the authors do not mention what methods are 
used to perform functional reduction or to prove the 
equivalence of the output functions. 

4 Algorithm 

This section presents the main contribution of the paper, a 
new and efficient algorithm to build AIGs on-the-fly while 
ensuring that they are functionally reduced by construction. 

Figure 2 shows the pseudo-code of the traditional AIG 
construction with one-level strashing. The first part checks 
various trivial cases, such as when the nodes are equal up 
to complementation, or when one node is a constant. Next, 
the arguments are ordered to ensure that swapping of fanins 
does not create a new node.  

One-level strashing is performed by looking up in a hash 
table, which maps the pair of fanins into the AND gate with 
these fanins. If a node with this pair of fanins exists, it is 
returned. If such node does not exist, a new node is created, 
added to the hash table, and returned. 



 
AAiigg__NNooddee  **  OOppeerraattiioonnAAnndd((  AAiigg__MMaann  **  pp,,  AAiigg__NNooddee  **  nn11,,  AAiigg__NNooddeeee  **  nn22  ))  
{{  
          AAiigg__NNooddee  **  rreess,,  **  ccaanndd,,  **  tteemmpp;;      AAiigg__NNooddeeAArrrraayy  **  ccllaassss;;  
  
          //******  ttrriivviiaall  ccaasseess  ******//  
          iiff  ((  nn11  ====  nn22  ))                                                                                                                                rreettuurrnn  nn11;;  
          iiff  ((  nn11  ====  NNOOTT((nn22))  ))                                                                                                            rreettuurrnn  00;;  
          iiff  ((  nn11  ====  ccoonnsstt  ))                                                                                                                        rreettuurrnn  00    oorr    nn22;;  
          iiff  ((  nn22  ====  ccoonnsstt  ))                                                                                                                        rreettuurrnn  00    oorr    nn11;;  
          iiff  ((  nn11  <<  nn22  ))    {{  //******  sswwaapp  tthhee  aarrgguummeennttss  ******//  
                        tteemmpp  ==  nn11;;  nn11  ==  nn22;;  nn22  ==  tteemmpp;;  
          }}  
          //******  oonnee  lleevveell  ssttrruuccttuurraall  hhaasshhiinngg  ******//  
          rreess  ==  HHaasshhTTaabblleeLLooookkuupp((  pp-->>ppTTaabblleeSSttrruuccttuurree,,  nn11,,  nn22  ));;  
          iiff  ((  rreess  ))                                                                                                                                                    rreettuurrnn  rreess;;  
          rreess  ==  CCrreeaatteeNNooddee((  pp,,  nn11,,  nn22  ));;        
          HHaasshhTTaabblleeAAdddd((  pp-->>ppTTaabblleeSSttrruuccttuurree,,  rreess  ));;                                    rreettuurrnn  rreess;;  
}}       

Figure 2. Algorithm for constructing AIGs with one-level 
strashing. 

 
Figure 3 contains the pseudo-code of the FRAIG 

construction algorithm. Both one-level strashing and 
functional reduction are performed by the same procedure. 
An additional hash table is used, which maps each 
simulation vector into a set of functionally different AIG 
nodes that have this simulation vector (its simulation class). 

 
AAiigg__NNooddee  **  OOppeerraattiioonnAAnndd((  AAiigg__MMaann  **  pp,,  AAiigg__NNooddee  **  nn11,,  AAiigg__NNooddeeee  **  nn22  ))  
{{  
          AAiigg__NNooddee  **  rreess,,  **  ccaanndd,,  **  tteemmpp;;      AAiigg__NNooddeeAArrrraayy  **  ccllaassss;;  
          //******  ttrriivviiaall  ccaasseess  ******//  
          iiff  ((  nn11  ====  nn22  ))                                                                                                                                rreettuurrnn  nn11;;  
          iiff  ((  nn11  ====  NNOOTT((nn22))  ))                                                                                                            rreettuurrnn  00;;  
          iiff  ((  nn11  ====  ccoonnsstt  ))                                                                                                                        rreettuurrnn  00    oorr    nn22;;  
          iiff  ((  nn22  ====  ccoonnsstt  ))                                                                                                                        rreettuurrnn  00    oorr    nn11;;  
          iiff  ((  nn11  <<  nn22  ))    {{  //******  sswwaapp  tthhee  aarrgguummeennttss  ******//  
                        tteemmpp  ==  nn11;;  nn11  ==  nn22;;  nn22  ==  tteemmpp;;  
          }}  
          //******  oonnee  lleevveell  ssttrruuccttuurraall  hhaasshhiinngg  ******//  
          rreess  ==  HHaasshhTTaabblleeLLooookkuupp((  pp-->>ppTTaabblleeSSttrruuccttuurree,,  nn11,,  nn22  ));;  
          iiff  ((  rreess  ))                                                                                                                                                    rreettuurrnn  rreess;;  
          rreess  ==  CCrreeaatteeNNooddee((  pp,,  nn11,,  nn22  ));;        
          HHaasshhTTaabblleeAAdddd((  pp-->>ppTTaabblleeSSttrruuccttuurree,,  rreess  ));;  
          iiff  ((  pp-->>FFllaaggUUsseeOOnneeLLeevveellHHaasshhiinngg  ))                                                            rreettuurrnn  rreess;;  
  
        //******  ffuunnccttiioonnaall  rreedduuccttiioonn  ******//  
          ccllaassss  ==  HHaasshhTTaabblleeLLooookkuupp((  pp-->>ppTTaabblleeSSiimmuullaattiioonn,,  nn11,,  nn22  ));;  
          iiff  ((  ccllaassss  ====  NNUULLLL  ))  {{  
                    ccllaassss  ==  CCrreeaatteeNNeewwSSiimmuullaattiioonnCCllaassss((  rreess  ));;      
                    HHaasshhTTaabblleeAAdddd((  pp-->>  ppTTaabblleeSSiimmuullaattiioonn,,  ccllaassss  ));;            rreettuurrnn  rreess;;  
          }}            
          ffoorr  eeaacchh  nnooddee  ccaanndd  iinn  ccllaassss  
                    iiff  ((  FFuunnccttiioonnaallllyyEEqquuiivvaalleenntt((  ccaanndd,,  rreess  ))  ))  {{  
                                AAddddNNooddeeTTooEEqquuiivvaalleenncceeCCllaassss((  ccllaassss,,  rreess  ));;          rreettuurrnn  ccaanndd;;  
                    }}  
          AAddddNNooddeeTTooSSiimmuullaattiioonnCCllaassss((  ccllaassss,,  rreess  ));;                                      rreettuurrnn  rreess;;  
}}        

Figure 3. Algorithm for constructing FRAIGs. 
 
The simulation vector is derived using bit-parallel 

simulation of the AIG starting from the PIs up to the node 
under construction. The simulation is performed 

incrementally whenever a new AND-gate is added. The 
simulation vector is derived by the bit-wise AND applied to 
(possibly complemented) simulation vectors of the fanins. 

If the simulation class is empty, a new class is created and 
initialized with the given node. In this case, there is no need 
for the equivalence check because the new node is proved 
to be functionally unique by random simulation only. 

If the simulation class is not empty, then for each 
representative, cand, of this class a SAT-based functional 
equivalence test is performed. Depending on the result of 
the test, two outcomes are possible. If the new node (res) is 
equivalent to the representative node (cand), then the 
representative node is returned to ensure functional 
reduction. The new node can be dropped. However, in the 
current implementation of FRAIGs, the new node is left in 
the graph as a node without fanouts. It is added to the 
equivalence class of the representative node as an 
alternative AIG structure. Finally, if the new node is not 
equivalent to any node in its simulation class, it is added to 
the simulation class and returned. 

5 Implementation Details 

5.1 Random Simulation 
The performance of the proposed algorithm critically 

depends on the efficiency of random simulation. If the 
simulation vectors are larger, their distinguishing power is 
better, and fewer SAT-based functional equivalence tests 
are needed. In the current implementation, the default of 
127 machine words is used to store bit-patterns at each 
node.  Thus, roughly four thousand (127 * 32 = 4064) 
random bit-patterns are propagated through the circuit. The 
runtime of random simulation constitutes less than 5% of 
the total runtime, which is dominated by the SAT solver. 

The default memory requirements for storing simulation 
information for one AIG node is 508 bytes (127 * 4 = 508), 
or approximately 5Mb per 10K of nodes. The memory used 
to store the simulation information is allocated 
independently from the memory used for the AIG nodes. 
Once the FRAIG construction is finished, the simulation 
memory can be de-allocated and re-used by the application. 

5.2 SAT Solving 
For efficiency, the algorithm requires tight integration of 

the circuit-based AIG data structure and a SAT solver. The 
solver used in the project is a state-of-the-art CNF-based 
solver MiniSat [7], with some minor modifications to 
restrict incremental SAT solving to a subset of variables 
and clauses. 

The CNF for the AIG is loaded in the SAT solver 
incrementally, by adding three CNF clauses each time a 
new AIG node is created.  



Checking functional equivalence for AIG nodes n1 and n2 
is performed as follows: (1) collect the AIG nodes in the 
union of the transitive fanin cones of n1 and n2; (2) set the 
“branchable” variables to be those corresponding to the 
above AIG nodes; (3) run the solver to prove or disprove 
equivalence.  

Incremental runs of the SAT solver create learned 
clauses, which are stored in the global clause database. 
Because the logic cones of different equivalence checking 
problems often overlap, the learned clauses are shared and 
reused, which improves the performance of the SAT solver. 

6 Applications of FRAIGs 

6.1 Formal Verification 
In formal verification, FRAIGs can be used instead of the 

traditional AIGs as a data structure for CEC and BMC 
[9][11][12][16].  

A straight-forward use of FRAIGs in CEC is similar to 
that of BDDs. FRAIGs are constructed for the circuit 
outputs. The circuits are equivalent if and only if the 
corresponding pairs of outputs are represented by the same 
FRAIG nodes.  

A more sophisticated use of FRAIGs is to represent both 
circuits and interpolants in a uniform way, similar to [15]. 
This may extend the applicability of the previously reported 
model checking methods and lead to the development of 
new methods for sequential equivalence checking.  

6.2 Logic Synthesis 
A straight-forward use of FRAIGs in logic synthesis is to 

compact circuits by detecting and merging functionally 
equivalent nodes. Global FRAIGs for all the network nodes 
are constructed. Next, the network nodes are grouped into 
the same class if they are represented by the same FRAIG 
node. One representative of each class is selected and 
substituted for other nodes of the same class.  

Other potential applications of FRAIGs in synthesis 
include: (a) a uniform representation of algebraic factored 
forms and DAGs resulting from Boolean decomposition, 
(b) a robust representation of node functions, manipulated 
by a logic synthesis system when it performs operations, 
such as elimination, collapsing, and node immunization, 
(c) an alternative computation engine to solve Boolean 
problems, such as don’t-care computation. 

6.3 Technology Mapping 
A known approach to technology mapping [13] uses 

AIGs to represent the “object” graph. Of particular 
importance in this approach is implicit enumeration of 
mapping choices, achieved by collecting and storing 
multiple AIGs structures for the logic functions found in 

the original network to be mapped. If there are more 
mapping choices in the graph, the quality of mapping is 
better. In [13], mapping choices are derived by considering 
various algebraic decompositions of the SOPs at the nodes. 

FRAIG construction can be seen as a natural way to 
prepare circuits for technology mapping. Each FRAIG 
node is associated with its equivalence class, that is, a set of 
functionally equivalent nodes with different AIG structures 
(structurally identical nodes are collapsed by one-level 
strashing performed as part of the FRAIG construction). 
These functionally equivalent nodes constitute a set of 
choices, which can be used for technology mapping.  

An additional advantage is that FRAIGs can be 
constructed for multiple versions of the same network, 
derived by different optimizations. For example, a 
sequence of networks derived by applying an optimization 
script, one command at a time, can be “fraiged” into one 
object graph. Technology mapping applied to this 
cumulative graph selects the best mapping over all 
available choices, which may originate from different 
versions of the same network.  

7 Experimental results  

The proposed algorithm for constructing FRAIGs is 
implemented in C as a stand-alone AIG package “FRAIG” 
[17]. The package was tested in the MVSIS environment 
[18] and used in several applications dealing with logic 
synthesis and verification. Runtimes are reported on a 
1.6GHz computer under Windows XP. 

Several experiments were performed:  
Experiment 1: Runtime comparison of synthesis 
operations in MVSIS using: 
o FRAIGs 
o Two-level strashing (MVSIS command strash).  
o Strashing followed by incremental simulation-

guided functional reduction applied to the AIG 
nodes in the topological order (MVSIS command 
sat_sweep). 

Experiment 2: Runtime comparison during CEC in 
MVSIS using: 
o FRAIGs 
o BDD-based CEC (MVSIS command verify).  
o Strashing-based CEC with monolithic SAT. 
o Strashing-based CEC with incremental simulation-

guided SAT (MVSIS command sat_verify). 

7.1 Experiment 1 
As a result of the first experiment it was found that, for 

the majority of MCNC [20] and ITC ‘99 [10] benchmarks, 
the runtime of FRAIG construction is only 2-3 times slower 
than that of two-level strashing. For larger benchmarks 
containing up to 20K gates, the runtime may be 10 times 



slower. This difference is due to strashing complexity being 
linear in the size of the graph while FRAIG construction 
requires a linear number of SAT-based functional 
equivalence checks, each of which has a worst-case 
exponential complexity in the size of the graph. For larger 
benchmarks, the exponential behavior slows down the 
FRAIG construction. 

The second part of this experiment compared the runtime 
of FRAIG construction with that of strashing followed by a 
post-processing step to enforce functional equivalence. For 
all the benchmarks tried, FRAIG construction was up to 10 
times faster, because it avoids large redundant graphs 
appearing at the intermediate steps of construction. 

A large combinational circuit pj1.blif extracted from the 
PicoJava benchmark [19] was selected for a case study. 
This circuit contains 17K gates and 35K literals after 
sweeping in MVSIS. It takes 0.3 sec to run strash, 31.0 sec 
to run sat_sweep and 2.7 sec to construct FRAIGs. The 
FRAIG runtime is divided as follows: 0.14 sec is spent on 
simulation, 0.24 sec for AIG traversal to detect the unions 
of TFI logic cones, and 1.86 sec for SAT solving. 

7.2 Experiment 2 
This experiment compares the performance of several 

CEC commands in MVSIS. CEC was used to prove 
functional equivalence of the original circuits against 
circuits derived using optimization scripts in MVSIS. 

The original circuits are taken from the following 
sources: 
• MCNC benchmarks [20] (the first four circuits) 
• ISCAS benchmarks [3] (s15850.blif)  
• PicoJava benchmarks [19] (pj1.blif) 
• ITC'99 benchmarks [10] (b14.blif, b17.blif) 
Most of these benchmarks were included in the tests 

because of their large sizes. Several smaller MCNC 
benchmarks were added to have circuits, for which BDDs 
could be constructed. The above selection of benchmarks 
used in the experiment is available on the web [17].  

 
Table 1. Runtime comparison for CEC algorithms. 

 
Name Ins Outs Lits BDD SAT SWEEP FRAIG

des.blif 256 245 6084 0.3 1.0 2.8 0.5
c1355.blif 41 32 992 10.0 0.2 0.1 0.1
c6288.blif 32 32 4675 - - 1.0 0.5
i10.blif 257 224 4355 57.2 2.4 1.5 0.3
s15850.blif 611 684 7303 6.3 1.5 3.3 0.5
pj1.blif 1769 1063 34533 - - 31.9 10.5
b14.blif 32 54 17388 - - 15.3 2.0
b17.blif 37 97 57311 - - 385.6 13.2
 
The results are reported in Table 1. Column “Name” lists 

the benchmark name. Columns “Ins” (“Outs”) show the 
number of PIs (POs). Column “Lits” is the number of 

literals in the factored forms after sweeping (removing 
single-input nodes and nodes without fanouts). The 
following four columns contain the runtimes in seconds, of 
the four algorithms. Memory needed to represent the 
circuits and solve the equivalence checking problem for the 
largest benchmark of the set, b17.blif, was 75Mb. The dash 
in Table 1 means that an algorithm could not complete after 
a timeout set to 600 seconds. 

The CEC algorithms include verification by global BDD 
constriction (column “BDD”), verification by strashing 
followed by solving the resulting monolithic SAT problem 
(column “SAT”), verification by strashing followed by 
solving a sequence of incremental simulation-guided SAT 
problems (column “SWEEP”), and finally, verification 
through FRAIG construction (column “FRAIG”) as 
described in Section 6.1.  

8 Conclusions  

Traditional AND-INV graphs (AIGs) [11] constructed 
with structural hashing [8] are not canonical because the 
construction algorithm does not guarantee that each node 
has a unique functionality. Practical applications rely on 
specialized procedures, such as bdd_sweep [11] or 
sat_sweep [14][12], to detect and eliminate functionally 
equivalent AIG nodes, which is important to control the 
AIG size and speed-up reasoning procedures. 

This paper proposes an algorithm to build functionally 
reduced AIGs (FRAIGs), in which each node has a unique 
functionality by construction. The algorithm uses 
traditional structural hashing [8] as a quick pre-processing 
step, followed by random simulation [14][12] to detect a 
significant number of functionally unique nodes. Finally, 
when both methods fail, a local incremental SAT problem 
is solved to prove or disprove functional equivalence of the 
new node with the existing nodes.  

Preliminary experiments include construction of FRAIGs 
for large benchmarks, and FRAIG-based CEC. The 
experiments confirm the usefulness of the proposed 
algorithm, which leads to an order-of-magnitude speed-up 
compared with known methods. 

Future work will explore other potential applications of 
FRAIGs in logic synthesis, technology mapping, and 
equivalence checking, as outlined in Section 6. 

References 

[1] K. S. Brace, R. L. Rudell, R. E. Bryant, “Efficient implementation of 
a BDD package”, Proc. DAC ‘90, pp. 40-45. 

[2] R. K. Brayton and C. McMullen, “The decomposition and 
factorization of Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54. 

[3] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of 
sequential benchmark circuits,” Proc. IEEE Int’l Symp. on Circuits 
and Systems, 1989 



[4] R. E. Bryant, "Graph-based algorithms for Boolean function 
manipulation," IEEE Trans. Comp., Vol. C-35, No. 8 (August, 1986), 
pp. 677-691.  

[5] J. Cortadella, “Bi-decomposition and tree-height reduction for timing 
optimization”. Proc. IWLS ’02, pp. 233-238. 

[6] R. Drechsler, M. Thornton, “Fast and efficient equivalence checking 
based on NAND-BDDs”, Proc. VLSI ’01. 

[7] N. Eén, N. Sörensson, “An extensible SAT-solver”, Proc. SAT ‘03. 
http://www.cs.chalmers.se/~een/Satzoo/  

[8] M. K. Ganai, A. Kuehlmann, “On-the-fly compression of logical 
circuits”. Proc. IWLS ‘00. 

[9] E. Goldberg, M.Prasad, R.K.Brayton. “Using SAT for combinational 
equivalence checking”. Proc. DATE ‘01, pp. 114 -121.  

[10] ITC ’99 Benchmarks http://www.cad.polito.it/tools/itc99.html 
[11] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust 

boolean reasoning for equivalence checking and functional property 
verification”, IEEE Trans. CAD, Vol. 21(12), Dec 2002, pp. 1377-
1394. 

[12] A. Kuehlmann, “Dynamic Transition Relation Simplification for 
Bounded Property Checking”. Proc. IWLS 2004. 

[13] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic 
decomposition during technology mapping,” IEEE Trans. CAD, 
16(8), 1997, pp. 813-833. 

[14] F. Lu, L. Wang, K. Cheng, R. Huang. “A circuit SAT solver with 
signal correlation guided learning”. Proc. DATE ‘03, pp. 892-897. 

[15] K.L. McMillan, “Interpolation and SAT-based model checking”. 
Proc. CAV ‘03, pp. 1-13, LNCS 2725, Springer, 2003.  

[16] K.L. McMillan, “Methods for exploiting SAT solvers in unbounded 
model checking”, Proc. CAV 03.  

[17] A. Mishchenko. FRAIG source code and benchmarks. 
http://www.ee.pdx.edu/~alanmi/fraig 

[18] MVSIS Group. MVSIS: Multi-Valued Logic Synthesis System. UC 
Berkeley. http://www-cad.eecs.berkeley.edu/mvsis/ 

[19] SUN Microelectronics. PicoJava Microprocessor Cores. 
http://www.sun.com/microelectronics/picoJava/ 

[20] S. Yang. Logic synthesis and optimization benchmarks. Version 3.0. 
Tech. Report. Microelectronics Center of North Carolina, 1991. 


