

1

Static Probabilities

[0 The static probabilities provide a general insight into the circuit's state, indicating the probability of a gate pin being at a specific logic state, i.e. logic-1 or logic-0
@ $S P_{1}\left(G_{i}\right)$ indicates the probability of a gate pin G_{i} being at logic1
[3 $S P_{1}\left(G_{i}\right)=1 \rightarrow$ gatepin G_{i} is always at logic-1 state
\square Accordingly, for $S P_{1}\left(G_{i}\right)=0$
[7 Static probabilities are used in several steps of design
[such as power and heat estimation

Static Probabilities Annotation (0-Algorithm)

The most common algorithm used by industrial tools is the one called 0-Algorithm by Parker and McCluskey [1]
@ The following table presents the equations for the static probabilities for the most common logic gates

Logic Gate	Probability Equation
AND2	$P_{1}($ out $)=P_{1}(a) \times P_{1}(b)$
OR2	$P_{1}($ out $)=P_{1}(a)+P_{0}(a) \times P_{1}(b)$
NAND2	$P_{1}($ out $)=P_{0}(a)+P_{1}(a) \times P_{0}(b)$
NOR2	$P_{1}($ out $)=P_{0}(a) \times P_{0}(b)$
XOR2	$P_{1}($ out $)=\left(P_{0}(a) \times P_{1}(b)\right)+\left(P_{1}(a) \times P_{0}(b)\right)$
XNOR2	$P_{1}(o u t)=\left(P_{0}(a) \times P_{0}(b)\right)+\left(P_{1}(a) \times P_{1}(b)\right)$
INV	$P_{1}(o u t)=P_{0}(a)$
BUF	$P_{1}(o u t)=P_{1}(a)$

Static Probabilities Annotation (0-Algorithm)

How these equations are extracted?
OR

a	b	F
0	0	0
0	1	1

1 \& 0

1 \& 0\end{array} $$
\begin{array}{l}1 \\
1\end{array}
$$ \right\rvert\, $$
\begin{array}{ll}1 & 1\end{array}
$$\right]=\left[$$
\begin{array}{ll}1 & - \\
0 & 1\end{array}
$$\right]\)

$$
\Rightarrow P_{1}(F)=P_{1}(a)+P_{0}(a) \times P_{1}(b)
$$

> 4

Example

Let static probabilities for starting points

- $P_{1}(x 1)=0.2$
(1) $P_{1}(x 2)=0.4$
(1) $P_{1}(x 3)=0.25$
- $P_{1}(x 4)=0.6$
(⿴囗 $P_{1}(x 5)=0.7$

Example

[The circuit graph must be levelised before the static probabilities annotation
[0 the input pins of a gate must be already annotated before the annotation of the gate output pin
[3 annotated with purple in the schematic

> 6

Example

Level 1：

＠$P_{1}(G 1 \mid A)=P_{1}(x 1)=0.2 \quad P_{1}(G 1 \mid B)=P_{1}(x 3)=0.25$
＠$P_{1}(G 2 \mid A)=P_{1}(x 3)=0.25 \quad P_{1}(G 2 \mid B)=P_{1}(x 4)=0.6$
（1）$P_{1}(G 3 \mid A)=P_{1}(x 2)=0.4$
（1）$P_{1}(G 4 \mid B)=P_{1}(x 5)=0.7$

7
7

Example

［ Level 2：
－G1 \rightarrow NAND2：$P_{1}(G 1 \mid Q)=P_{0}(G 1 \mid A)+P_{1}(G 1 \mid A) \times P_{0}(G 1 \mid B)=0.95$
（3）G2 \rightarrow NAND2：$P_{1}(G 2 \mid Q)=P_{0}(G 2 \mid A)+P_{1}(G 2 \mid A) \times P_{0}(G 2 \mid B)=0.85$
（1）Level 3：
（⿴囗 $P_{1}(G 5 \mid A)=P_{1}(G 1 \mid Q)=0.95$
（⿴囗 $P_{1}(G 3 \mid B)=P_{1}(G 2 \mid Q)=0.85$
（1）$P_{1}(G 4 \mid A)=P_{1}(G 2 \mid Q)=0.85$

>8

Example

［1 Level 4：

（1）G3 \rightarrow NAND2：$P_{1}(G 3 \mid Q)=P_{0}(G 3 \mid A)+P_{1}(G 3 \mid A) \times P_{0}(G 3 \mid B)=0.66$
Q G4 \rightarrow NAND2：$P_{1}(G 4 \mid Q)=P_{0}(G 4 \mid A)+P_{1}(G 4 \mid A) \times P_{0}(G 4 \mid B)=0.405$
（1）Level 5：
（1）$P_{1}(G 5 \mid B)=P_{1}(G 3 \mid Q)=0.66$
（⿴囗 $P_{1}(G 6 \mid A)=P_{1}(G 3 \mid Q)=0.66$
（1）$P_{1}(G 6 \mid B)=P_{1}(G 4 \mid Q)=0.405$

>9

9

Example

［1］Level 6：
［ G5 \rightarrow NAND2：$P_{1}(G 5 \mid Q)=P_{0}(G 5 \mid A)+P_{1}(G 5 \mid A) \times P_{0}(G 5 \mid B)=0.374$
（⿴囗 G6 \rightarrow NAND2：$P_{1}(G 6 \mid Q)=P_{0}(G 6 \mid A)+P_{1}(G 6 \mid A) \times P_{0}(G 6 \mid B)=0.733$
（⿴囗 Level 7：
（⿴囗 $P_{1}($ out 1$)=P_{1}(G 5 \mid Q)=0.374$
（⿴囗 $P_{1}($ out 2$)=P_{1}(G 6 \mid Q)=0.733$

10

Reconvergence

[1] (+) Fast probabilities annotation
Q (-) Not so accurate
[0-Algorithm totally IGNORES signal correlations
[0 exist in circuit due to reconvergent paths

Reconvergence

[1 (+) Fast probabilities annotation
(-) Not so accurate
(0) 0-Algorithm totally IGNORES signal corre
[] exist in circuit due to reconvergent paths

Reconvergence

[1 In the circuit of the figure:
(3) Reconvergence \#1: Gate G5 is a reconvergent node
(1) There is a signal correlation with the primary input $x 3$ among its inputs

- Reconvergence \#2: Gate $G 6$ is a reconvergent node
(3) There is a signal correlation with the output gate pin of $G 2$ among its inputs

13

Reconvergence

15

Handling of Reconvergence Binary Decision Diagrams

[0 Each edge of the BDD is assigned a static probability
@ The static probability of the parent node
(1) '1' edge $\rightarrow P_{1}(G i)$
(1) '0' edge $\rightarrow P_{0}$ (Gi)

- Static Probability Computation for a gate
(⿴囗 Traverse all the paths to the ' 1 ' sink
@ Compute the product of the static probabilities of the edges across a path
@ Sum the computed products for all paths to ' 1 '

Handling of Reconvergence

Example

［8］Paths to＇ 1 ＇：
（1）$x 4^{\prime} \rightarrow x 3 \rightarrow x 2$
（1）$P_{a}=P_{0}(x 4) \times P_{1}(x 3) \times P_{1}(x 2)=0.04$
（1）$x 4^{\prime} \rightarrow x 3 \rightarrow x 2^{\prime} \rightarrow x 1$
（1）$P_{b}=P_{0}(x 4) \times P_{1}(x 3) \times P_{0}(x 2) \times P_{1}(x 1)=$ 0.012
（⿴囗 $x 4^{\prime} \rightarrow x 3^{\prime} \rightarrow x 2$ （1）$P_{c}=P_{0}(x 4) \times P_{0}(x 3) \times P_{1}(x 2)=0.12$
（1）$x 4 \rightarrow x 3^{\prime} \rightarrow x 2$ （1）$P_{d}=P_{1}(x 4) \times P_{0}(x 3) \times P_{1}(x 2)=0.18$
（⿴囗 $x 4 \rightarrow x 3 \rightarrow x 1$ （⿴囗十一 $P_{e}=P_{1}(x 4) \times P_{1}(x 3) \times P_{1}(x 1)=0.03$
［1］Total：
（1）$P_{1}(G 5 \mid$ out $)=P_{a}+P_{h}+P_{c}+P_{d}+P_{e}=0.382$

Not optimal way to compute it！！！

