
Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

Symbolic Boolean ManipulationSymbolic Boolean Manipulation
withwith

OrderedOrdered
Binary Decision DiagramsBinary Decision Diagrams

Symbolic Boolean ManipulationSymbolic Boolean Manipulation
withwith

OrderedOrdered
Binary Decision DiagramsBinary Decision Diagrams

Carnegie Mellon University
http://www.cs.cmu.edu/~bryant

Randal E. Bryant

– 2 –

Example Analysis TaskExample Analysis Task

Logic Circuit ComparisonLogic Circuit Comparison

 Do circuits compute identical function?

 Basic task of formal hardware verification

 Compare new design to “known good” design

A

C

B

O 1

T 1

T 2

A

B

C

O 2

T 3



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 3 –

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff

cc0

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
0

0

0

0

0 00

c 1

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

1

1

1

1

1

1
0

a

c 1

1

Solution by Combinatorial SearchSolution by Combinatorial Search

Satisfiability FormulationSatisfiability Formulation

 Search for input assignment 

giving different outputs

Branch & BoundBranch & Bound

 Assign input(s)

 Propagate forced values

 Backtrack when cannot 

succeed

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

0

0 0

a

c
1

0
a

b

c
1

0

0

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

0

0
0

0

0
0

0

0

0

0
A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

0

0
0

1

1
1

1

1

1

0

a

b

c
1

0

1

ChallengeChallenge

 Must prove all assignments 

fail

 Co-NP complete problem

 Typically explore significant 

fraction of inputs

 Exponential time complexity

– 4 –

Alternate ApproachAlternate Approach

Generate Complete Representation of Circuit FunctionGenerate Complete Representation of Circuit Function

 Compact, canonical form

 Functions equal if and only if representations identical

 Never enumerate explicit function values

 Exploit structure & regularity of circuit functions

A

C

B

O 1

T 1

T 2

A

B

C

O 2

T 3

b

0 1

c

a

b

0 1

c

a



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 5 –

Decision StructuresDecision Structures

Truth Table Decision Tree

 Vertex represents decision

 Follow green (dashed) line for value 0

 Follow red (solid) line for value 1

 Function value determined by leaf value.

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

x 1 x 2 x 3 f

– 6 –

Variable OrderingVariable Ordering

 Assign arbitrary total ordering to variables

 e.g.,  x1 < x2 < x3

 Variables must appear in ascending order along all 

paths
OK Not OK

PropertiesProperties

 No conflicting variable assignments along path

 Simplifies manipulation 

x 1

x 2

x 3

x 1

x 3

x 3

x 2

x 1

x 1

x 1



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 7 –

Reduction Rule #1Reduction Rule #1

Merge equivalent leaves

a a

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

a

– 8 –

Reduction Rule #2Reduction Rule #2

y

x

z

x

Merge isomorphic nodes

x3 x3

x2

x3

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x1

y

x

z

x

y

x

z

x



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 9 –

Reduction Rule #3Reduction Rule #3

x3

x2

0 1

x3

x2

x1

Eliminate Redundant Tests

y

x

y

x2

0 1

x3

x1

– 10 –

Example OBDDExample OBDD

Initial Graph Reduced Graph

Canonical representation of Boolean functionCanonical representation of Boolean function

 For given variable ordering

 Two functions equivalent if and only if graphs isomorphic

 Can be tested in linear time

 Desirable property: simplest form is canonical.

x2

0 1

x3

x1 (x
1

+ x
2

) · x
3

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 11 –

Example FunctionsExample Functions

Constants

Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

0 1

x

Odd Parity

Linear
representation

x2

x3

x4

10

x4

x3

x2

x1

Typical Function

x2

0 1

x4

x1  (x1 x2 ) x4

 No vertex labeled x3

 independent of x3

 Many subgraphs shared 

– 12 –

Representing Circuit FunctionsRepresenting Circuit Functions

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

FunctionsFunctions

 All outputs of 4-bit adder

 Functions of data inputs

A

B

Cout

S

A

D

D

Shared RepresentationShared Representation

 Graph with multiple roots

 31 nodes for 4-bit adder

 571 nodes for 64-bit adder

Linear growth



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 13 –

Effect of Variable OrderingEffect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

)()()( 332211 bababa

– 14 –

Bit Serial Computer AnalogyBit Serial Computer Analogy

OperationOperation

 Read inputs in sequence; produce 0 or 1 as function value.

 Store information about previous inputs to correctly deduce 

function value from remaining inputs.

Relation to OBDD SizeRelation to OBDD Size

 Processor requires K bits of memory at step i.

 OBDD has ~ 2K branches crossing level i.

K-Bit

Memory

Bit-Serial

Processor

0

or

1

00…0

x 1x 2…x n



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 15 –

Analysis of Ordering ExamplesAnalysis of Ordering Examples

K = 2 K = n

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

)()()( 332211 bababa

– 16 –

Selecting Good Variable OrderingSelecting Good Variable Ordering

Intractable ProblemIntractable Problem

 Even when problem represented as OBDD

 I.e., to find optimum improvement to current ordering

ApplicationApplication--Based HeuristicsBased Heuristics

 Exploit characteristics of application

 E.g., Ordering for functions of combinational circuit

 Traverse circuit graph depth-first from outputs to inputs

 Assign variables to primary inputs in order encountered



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 17 –

Dynamic Variable ReorderingDynamic Variable Reordering

 Richard Rudell, Synopsys

Periodically Attempt to Improve Ordering for All BDDsPeriodically Attempt to Improve Ordering for All BDDs

 Part of garbage collection

 Move each variable through ordering to find its best location

Has Proved Very SuccessfulHas Proved Very Successful

 Time consuming but effective

 Especially for sequential circuit analysis

– 18 –

a 3

b 2 b 2

a 3

a 2

a 3

b 1

b 2

0

b 3

b 1

1

b 2

a 3

a 2

a 1

a 3

b 2

b 3

b 2

a 3

a 2

a 3

b 2

0

b 1

b 3

1

b 2

a 3

a 2

a 1

a 2

a 3

b 1

b 2

0

b 3

b 2

a 3

1

b 1

a 2

a 1

a 3

b 2

0

b 3

b 2

a 3

a 2

1

b 1

a 1

• • •
a 3

b 2

0

b 3

b 2

a 3

a 2

1

a 1

b 1

Best

Choices

Dynamic Reordering By SiftingDynamic Reordering By Sifting

 Choose candidate variable

 Try all positions in variable ordering

 Repeatedly swap with adjacent variable

 Move to best position found



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 19 –

b1 b1

b2b2 b2b2

e f g h

i j

b1 b1

b2

b1

b2

b1

e f

g h i j

Swapping Adjacent VariablesSwapping Adjacent Variables

Localized EffectLocalized Effect

 Add / delete / alter only nodes labeled by swapping variables

 Do not change any incoming pointers

– 20 –

Sample Function ClassesSample Function Classes

Function Class Best Worst Ordering Sensitivity

ALU (Add/Sub) linear exponential High

Symmetric linear quadratic None

Multiplication exponential exponential Low

General ExperienceGeneral Experience

 Many tasks have reasonable OBDD representations

 Algorithms remain practical for up to 100,000 node OBDDs

 Heuristic ordering methods generally satisfactory



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 21 –

•
•
•

•
•
•

Lower Bound for MultiplicationLower Bound for Multiplication

 Bryant, 1991

Integer Multiplier CircuitInteger Multiplier Circuit

 n-bit input words A and B

 2n-bit output word P

Boolean functionBoolean function

 Middle bit (n-1) of product

ComplexityComplexity

 Exponential OBDD for all 

possible variable 

orderings

Multn

•
•
•

•
•
•

a0

an-1

b0

bn-1

p0

pn-1

pn

p2n-1

Actual NumbersActual Numbers

 40,563,945 BDD nodes to 

represent all outputs of 

16-bit multiplier

 Grows 2.86x per bit of 

word size

Intractable
Function

– 22 –

Symbolic Manipulation with OBDDsSymbolic Manipulation with OBDDs

StrategyStrategy

 Represent data as set of OBDDs

 Identical variable orderings

 Express solution method as sequence of symbolic 

operations

 Implement each operation by OBDD manipulation

Algorithmic PropertiesAlgorithmic Properties

 Arguments are OBDDs with identical variable orderings.

 Result is OBDD with same ordering.

 “Closure Property”

Contrast to Traditional ApproachesContrast to Traditional Approaches

 Apply search algorithm directly to problem representation

 E.g., search for satisfying truth assignment to Boolean expression.



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 23 –

Arguments Arguments II, , TT, , EE

 Functions over variables X

 Represented as OBDDs

ResultResult

 OBDD representing 

composite function

 (I T) ( I E)ImplementationImplementation

 Combination of depth-first traversal and dynamic 

programming.

 Worst case complexity product of argument graph sizes.

MUX

1

0

I   T, E 

X

I  

T 

E 

If-Then-Else OperationIf-Then-Else Operation

ConceptConcept

 Basic technique for building OBDD from logic network or 

formula.

– 24 –

0 1

d

c

a

B 3 B 4

B 2

B 5

B 1

Argument I

1

Argument T Argument E

A 4 ,B 3 A 5 ,B 4

A 3 ,B 2

A 6 ,B 2

A 2 ,B 2

A 3 ,B 4A 5 ,B 2

A 6 ,B 5

A 1 ,B 1

Recursive Calls

b

0

d

1

c

a

A 4 A 5

A 3

A 2

A 6

A 1

If-Then-Else Execution ExampleIf-Then-Else Execution Example

OptimizationsOptimizations

 Dynamic programming

 Early termination rules



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 25 –

0 1

d

c

b

11

c

a

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls Without Reduction With Reduction

C 2

C 4

C 5

C 3

C 6

C 1 0

d

c

b

1

a

If-Then-Else Result GenerationIf-Then-Else Result Generation

 Recursive calling structure implicitly defines unreduced BDD

 Apply reduction rules bottom-up as return from recursive calls

 Generates reduced graph

– 26 –

Restriction OperationRestriction Operation

ImplementationImplementation

 Depth-first traversal.

 Complexity near-linear in argument graph size

ConceptConcept

 Effect of setting function argument xi to constant k (0 or 1).

 Also called Cofactor operation (UCB)

k F 

x i  –1

x i  +1

x n 

x 1

F  [x i  = k ]

F x equivalent to F  [ x  = 1]

F x equivalent to F  [ x  = 0]



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 27 –

Derived OperationsDerived Operations

 Express as combination of If-Then-Else and Restrict

 Preserve closure property

 Result is an OBDD with the right variable ordering

 Polynomial complexity

 Although can sometimes improve with special implementations

– 28 –

And(F, G)

X

F 

G MUX

1

0

F   G, 0 

X

F 

 

G

0

X

F 

G MUX

1

0

F   1 , G 

X

F 

G

1

Or(F, G)

If-Then-Else(F, G, 0)

If-Then-Else(F, 1, G)

Derived Algebraic OperationsDerived Algebraic Operations

 Other operations can be expressed in terms of If-Then-Else



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 29 –

G  F 

x i  –1

x i  +1

x n 

x 1

x 1

x n 

F  [x i  = G ]

x 1

x n 

x i  –1

x i  +1

x n 

x 1

x i  –1

x i  +1

x n 

x 1

1 F 

0 F 

MUX

1

0

G 

Functional CompositionFunctional Composition

 Create new function by composing functions F and G.

 Useful for composing hierarchical modules.

– 30 –

x i  –1

x i  +1

x n 

x 1

F  x
i
 F 

1 F 

0 F 

x i  –1

x i  +1

x n 

x 1

x i  –1

x i  +1

x n 

x 1

Variable QuantificationVariable Quantification

 Eliminate dependency on some argument through 

quantification

 Combine with AND for universal quantification.



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 31 –

Digital Applications of BDDsDigital Applications of BDDs

VerificationVerification

 Combinational equivalence  (UCB, Fujitsu, Synopsys, …)

 FSM equivalence  (Bull, UCB, MCC, Siemens, Colorado, 

Torino, …)

 Symbolic Simulation (CMU, Utah)

 Symbolic Model Checking (CMU, Bull, Motorola, …)

SynthesisSynthesis

 Don’t care set representation  (UCB, Fujitsu, …)

 State minimization  (UCB)

 Sum-of-Products minimization (UCB, Synopsys, NTT)

TestTest

 False path identification  (TI)

– 32 –

Generating OBDD from NetworkGenerating OBDD from Network

Network Evaluation

Task: Represent output functions of gate network as OBDDs.

A

B

C

T1

T2

Out

Resulting Graphs

A B C

T1 T2

Out

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a

A A new_var ("a");new_var ("a");

BB new_var ("b");new_var ("b");

C C new_var ("c");new_var ("c");

T1 T1 And (A, 0, B);And (A, 0, B);

T2  T2  And (B, C);And (B, C);

OutOut Or (T1, T2);Or (T1, T2);



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 33 –

0 1

a

T1 Or (A, C);
O2  And (T1, B);
if (O2 == Out)

then Equivalent
else Different

Alternate Network Evaluation

Resulting Graphs

A

B

C

T1

O2

A B C
T1

O2

c

b

0 1

b

a

c

0 10 1

b

0 1

a

c

Checking Network EquivalenceChecking Network Equivalence

Task: Do two networks compute same Boolean function?

Method: Compute OBDDs for both networks and compare

– 34 –

Finite State System AnalysisFinite State System Analysis

Systems Represented as Finite State MachinesSystems Represented as Finite State Machines

 Sequential circuits

 Communication protocols

 Synchronization programs

Analysis TasksAnalysis Tasks

 State reachability

 State machine comparison

 Temporal logic model checking

Traditional Methods Impractical for Large MachinesTraditional Methods Impractical for Large Machines

 Polynomial in number of states

 Number of states exponential in number of state variables.

 Example: single 32-bit register has 4,294,967,296 states!



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 35 –

A
0 / 1

Set Operations

A

B

Union

A

B

Intersection

Characteristic FunctionsCharacteristic Functions

ConceptConcept

 A {0,1}n

 Set of bit vectors of length n

 Represent set A as Boolean 

function A of n variables

 X A if and only if A(X )  =  1

– 36 –

Nondeterministic FSM Symbolic Representation

o1,o2 encoded
old state

n1, n2 encoded
new state

00

10

01

11 o2

o1

1

n2

0

n1

o2

Symbolic FSM RepresentationSymbolic FSM Representation

 Represent set of transitions as function (Old, New)

 Yields 1 if can have transition from state Old to state New

 Represent as Boolean function

 Over variables encoding states



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 37 –

Reachability AnalysisReachability Analysis

Rstate 0/1
old state

new state
0/1

TaskTask

 Compute set of states reachable from initial state Q0

 Represent as Boolean function R(S)

 Never enumerate states explicitly

Given Compute

Initial

R
0

=

Q 0

– 38 –

R0

00

Breadth-First Reachability AnalysisBreadth-First Reachability Analysis

 Ri – set of states that can be reached in i transitions

 Reach fixed point when Rn = Rn+1

 Guaranteed since finite state

00

10

01

11

R1R0

00 01

R2R1R0

00 01 10

R3R2R1R0

00 01 10



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 39 –

Iterative ComputationIterative Computation

 Ri +1 – set of states that can be reached i +1 transitions

 Either in Ri

 or single transition away from some element of Ri

Ri

Ri
Ri +1

old

new

– 40 –

Example: Computing R1 from R0Example: Computing R1 from R0

o2

o1

1

n2

0

n1

o2

R0

00

R1

00 01

Old [R0(Old) (Old, New)]

1

n2

0

n1

0

1

n2

0

n1

0

1 0

n1



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 41 –

Symbolic FSM Analysis ExampleSymbolic FSM Analysis Example

 K. McMillan, E. Clarke (CMU)   J. Schwalbe (Encore Computer)

Encore Gigamax Cache SystemEncore Gigamax Cache System

 Distributed memory multiprocessor

 Cache system to improve access time

 Complex hardware and synchronization protocol.

VerificationVerification

 Create “simplified” finite state model of system (109 states!)

 Verify properties about set of reachable states

Bug DetectedBug Detected

 Sequence of 13 bus events leading to deadlock

 With random simulations, would require 2 years to generate 

failing case.

 In real system, would yield MTBF < 1 day.

– 42 –

What’s Good about OBDDsWhat’s Good about OBDDs

Powerful OperationsPowerful Operations

 Creating, manipulating, testing

 Each step polynomial complexity

 Graceful degradation

 Maintain “closure” property

 Each operation produces form suitable for further operations

Generally Stay Small EnoughGenerally Stay Small Enough

 Especially  for digital circuit applications

 Given good choice of variable ordering

Weak CompetitionWeak Competition

 No other method comes close in overall strength

 Especially with quantification operations



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 43 –

What’s Not Good about OBDDsWhat’s Not Good about OBDDs

Doesn’t Solve All ProblemsDoesn’t Solve All Problems

 Can’t do much with multipliers

 Some problems just too big

 Weak for search problems

Must be CarefulMust be Careful

 Choose good variable ordering

 Critical effect on efficiency

 Must have insights into problem characteristics

 Dynamic reordering most promising workaround

 Some operations too hard

 Must work around limitations

– 44 –

Relaxing Ordering RequirementRelaxing Ordering Requirement

ChallengeChallenge

 Ordering is key to important properties of OBDDs

 Canonical form

 Efficient algorithms for operating on functions

 Some classes of functions have no good BDD orderings

 Graphs grow exponentially in all cases

 Would like to relax requirement

 but still preserve (most of) the algorithmic properties

Free OrderingFree Ordering

 Gergov & Meinel, Sieling & Wegener

 Slight relaxation of ordering requirement



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 45 –

Data

Control

Rotate

Difficult FunctionDifficult Function

 Rotate & compare

C

A

B

Rotate

=

Rotations0 1

32

Intractable OBDD Function ExampleIntractable OBDD Function Example

RotatorRotator

 Circular shift of data

 Shift amount set by 

control

– 46 –
 Can choose good ordering for any fixed rotation

a 0

a 1

a 2

01

a 3

b 3

a 2

b 2

a 1

b 1

a 0

b 0

R 0

a 1

a 2

a 3

01

a 0

b 3

a 3

b 2

a 2

b 1

a 1

b 0

R 1

a 2

a 3

a 0

01

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

R 2

a 3

a 0

a 1

01

a 2

b 3

a 1

b 2

a 0

b 1

a 3

b 0

R 3

OBDDs for Specific RotationsOBDDs for Specific Rotations



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 47 –

b 2 b 2

a 3

b 2 b 2

a 3

b 1

a 0

b 2

a 0

b 2

a 3

a 0

b 2

a 0

b 2

a 3

b 1

a 2

b 2 b 2

a 3

b 2 b 2

a 3

b 1

b 3

a 0

b 2

b 3

a 0

b 2

a 3

b 3

a 0

b 2

01

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

R 0

a 2

a 3

a 0

01

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

R 2

Forcing Single OrderingForcing Single Ordering

 Good ordering for one rotation terrible for another

 For any ordering, some rotation will have exponential OBDD

– 48 –

OK Not OK

Extraneous
path

x 1

x 1

x 2

x 1

x 1

x 1

x 3

x 2

x 1

x 3

x 3

x 2

x 1

Free BDDsFree BDDs

RulesRules

 Variables may appear in any order

 Only allowed to test variable once along any path



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 49 –

a 0

a 1

a 2

a 3

b 3

a 2

b 2

a 1

b 1

a 0

b 0

a 1

a 2

a 3

a 0

b 3

a 3

b 2

a 2

b 1

a 1

b 0

c 0

a 2

a 3

a 0

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

a 3

a 0

a 1

0 1

a 2

b 3

b 2

a 0

b 1

a 3

b 0

c 0

c 1

a 1

Rotation Function ExampleRotation Function Example

AdvantageAdvantage

 Can select separate ordering for 

each rotation

 Good when different settings of 

control call for different orderings of 

data variables

Still Has LimitationsStill Has Limitations

 Representing output functions of 

multiplier

 Exponential for all possible Free BDDs

 Ponzio, „95

– 50 –

Making Free BDDs CanonicalMaking Free BDDs Canonical

Modified Ordering RequirementModified Ordering Requirement

 For any given variable assignment, variables must occur in 

fixed order

 But can vary from one assignment to another

Algorithmic Properties Similar to OBDDsAlgorithmic Properties Similar to OBDDs

 Reduce to canonical form

 Apply Boolean operation to functions

 Test for equivalence, satisfiability, etc.

Some Operations HarderSome Operations Harder

 Variable quantification and composition

 But can restrict relevant variables  to be totally ordered



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 51 –

a 3

b 3

a 2

b 2

a 1

b 1

a 0

b 0

a 0

b 3

a 3

b 2

a 2

b 1

a 1

b 0

c 0

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

*

a 2

b 3

a 1

b 2

a 0

b 1

a 3

b 0

c 0

c 1

Representing Free OrderingRepresenting Free Ordering

Ordering GraphOrdering Graph

 Encodes assignment-dependent 

variable ordering

Similar to BDDSimilar to BDD

 Follow path according to assignment

OBDD is Special CaseOBDD is Special Case

 Linear chain

Ordering RequirementOrdering Requirement

 All functions must be compatible with 

single ordering graph

– 52 –

Practical Aspects of Free BDDsPractical Aspects of Free BDDs

Make Sense in Some Application DomainMake Sense in Some Application Domain

 Usage of bits varies with context

 E.g., instruction set encodings

Must Determine Good Ordering GraphMust Determine Good Ordering Graph

 Some success with heuristic methods

 Ideally should be done dynamically

 Overwhelming degrees of freedom

Need to Demonstrate Utility on RealNeed to Demonstrate Utility on Real--Life ExamplesLife Examples


