
Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

Symbolic Boolean ManipulationSymbolic Boolean Manipulation
withwith

OrderedOrdered
Binary Decision DiagramsBinary Decision Diagrams

Symbolic Boolean ManipulationSymbolic Boolean Manipulation
withwith

OrderedOrdered
Binary Decision DiagramsBinary Decision Diagrams

Carnegie Mellon University
http://www.cs.cmu.edu/~bryant

Randal E. Bryant

– 2 –

Example Analysis TaskExample Analysis Task

Logic Circuit ComparisonLogic Circuit Comparison

 Do circuits compute identical function?

 Basic task of formal hardware verification

 Compare new design to “known good” design

A

C

B

O 1

T 1

T 2

A

B

C

O 2

T 3

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 3 –

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff

cc0

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
0

0

0

0

0 00

c 1

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

1

1

1

1

1

1
0

a

c 1

1

Solution by Combinatorial SearchSolution by Combinatorial Search

Satisfiability FormulationSatisfiability Formulation

 Search for input assignment

giving different outputs

Branch & BoundBranch & Bound

 Assign input(s)

 Propagate forced values

 Backtrack when cannot

succeed

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

0

0 0

a

c
1

0
a

b

c
1

0

0

A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

0

0
0

0

0
0

0

0

0

0
A

C

B
O1

T1

T2

A

B
C

O2

T3

Diff
1

1

0

0
0

1

1
1

1

1

1

0

a

b

c
1

0

1

ChallengeChallenge

 Must prove all assignments

fail

 Co-NP complete problem

 Typically explore significant

fraction of inputs

 Exponential time complexity

– 4 –

Alternate ApproachAlternate Approach

Generate Complete Representation of Circuit FunctionGenerate Complete Representation of Circuit Function

 Compact, canonical form

 Functions equal if and only if representations identical

 Never enumerate explicit function values

 Exploit structure & regularity of circuit functions

A

C

B

O 1

T 1

T 2

A

B

C

O 2

T 3

b

0 1

c

a

b

0 1

c

a

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 5 –

Decision StructuresDecision Structures

Truth Table Decision Tree

 Vertex represents decision

 Follow green (dashed) line for value 0

 Follow red (solid) line for value 1

 Function value determined by leaf value.

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

x 1 x 2 x 3 f

– 6 –

Variable OrderingVariable Ordering

 Assign arbitrary total ordering to variables

 e.g., x1 < x2 < x3

 Variables must appear in ascending order along all

paths
OK Not OK

PropertiesProperties

 No conflicting variable assignments along path

 Simplifies manipulation

x 1

x 2

x 3

x 1

x 3

x 3

x 2

x 1

x 1

x 1

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 7 –

Reduction Rule #1Reduction Rule #1

Merge equivalent leaves

a a

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

a

– 8 –

Reduction Rule #2Reduction Rule #2

y

x

z

x

Merge isomorphic nodes

x3 x3

x2

x3

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x1

y

x

z

x

y

x

z

x

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 9 –

Reduction Rule #3Reduction Rule #3

x3

x2

0 1

x3

x2

x1

Eliminate Redundant Tests

y

x

y

x2

0 1

x3

x1

– 10 –

Example OBDDExample OBDD

Initial Graph Reduced Graph

Canonical representation of Boolean functionCanonical representation of Boolean function

 For given variable ordering

 Two functions equivalent if and only if graphs isomorphic

 Can be tested in linear time

 Desirable property: simplest form is canonical.

x2

0 1

x3

x1 (x
1

+ x
2

) · x
3

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 11 –

Example FunctionsExample Functions

Constants

Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

0 1

x

Odd Parity

Linear
representation

x2

x3

x4

10

x4

x3

x2

x1

Typical Function

x2

0 1

x4

x1  (x1 x2) x4

 No vertex labeled x3

 independent of x3

 Many subgraphs shared

– 12 –

Representing Circuit FunctionsRepresenting Circuit Functions

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

FunctionsFunctions

 All outputs of 4-bit adder

 Functions of data inputs

A

B

Cout

S

A

D

D

Shared RepresentationShared Representation

 Graph with multiple roots

 31 nodes for 4-bit adder

 571 nodes for 64-bit adder

Linear growth

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 13 –

Effect of Variable OrderingEffect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

)()()(332211 bababa

– 14 –

Bit Serial Computer AnalogyBit Serial Computer Analogy

OperationOperation

 Read inputs in sequence; produce 0 or 1 as function value.

 Store information about previous inputs to correctly deduce

function value from remaining inputs.

Relation to OBDD SizeRelation to OBDD Size

 Processor requires K bits of memory at step i.

 OBDD has ~ 2K branches crossing level i.

K-Bit

Memory

Bit-Serial

Processor

0

or

1

00…0

x 1x 2…x n

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 15 –

Analysis of Ordering ExamplesAnalysis of Ordering Examples

K = 2 K = n

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

)()()(332211 bababa

– 16 –

Selecting Good Variable OrderingSelecting Good Variable Ordering

Intractable ProblemIntractable Problem

 Even when problem represented as OBDD

 I.e., to find optimum improvement to current ordering

ApplicationApplication--Based HeuristicsBased Heuristics

 Exploit characteristics of application

 E.g., Ordering for functions of combinational circuit

 Traverse circuit graph depth-first from outputs to inputs

 Assign variables to primary inputs in order encountered

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 17 –

Dynamic Variable ReorderingDynamic Variable Reordering

 Richard Rudell, Synopsys

Periodically Attempt to Improve Ordering for All BDDsPeriodically Attempt to Improve Ordering for All BDDs

 Part of garbage collection

 Move each variable through ordering to find its best location

Has Proved Very SuccessfulHas Proved Very Successful

 Time consuming but effective

 Especially for sequential circuit analysis

– 18 –

a 3

b 2 b 2

a 3

a 2

a 3

b 1

b 2

0

b 3

b 1

1

b 2

a 3

a 2

a 1

a 3

b 2

b 3

b 2

a 3

a 2

a 3

b 2

0

b 1

b 3

1

b 2

a 3

a 2

a 1

a 2

a 3

b 1

b 2

0

b 3

b 2

a 3

1

b 1

a 2

a 1

a 3

b 2

0

b 3

b 2

a 3

a 2

1

b 1

a 1

• • •
a 3

b 2

0

b 3

b 2

a 3

a 2

1

a 1

b 1

Best

Choices

Dynamic Reordering By SiftingDynamic Reordering By Sifting

 Choose candidate variable

 Try all positions in variable ordering

 Repeatedly swap with adjacent variable

 Move to best position found

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 19 –

b1 b1

b2b2 b2b2

e f g h

i j

b1 b1

b2

b1

b2

b1

e f

g h i j

Swapping Adjacent VariablesSwapping Adjacent Variables

Localized EffectLocalized Effect

 Add / delete / alter only nodes labeled by swapping variables

 Do not change any incoming pointers

– 20 –

Sample Function ClassesSample Function Classes

Function Class Best Worst Ordering Sensitivity

ALU (Add/Sub) linear exponential High

Symmetric linear quadratic None

Multiplication exponential exponential Low

General ExperienceGeneral Experience

 Many tasks have reasonable OBDD representations

 Algorithms remain practical for up to 100,000 node OBDDs

 Heuristic ordering methods generally satisfactory

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 21 –

•
•
•

•
•
•

Lower Bound for MultiplicationLower Bound for Multiplication

 Bryant, 1991

Integer Multiplier CircuitInteger Multiplier Circuit

 n-bit input words A and B

 2n-bit output word P

Boolean functionBoolean function

 Middle bit (n-1) of product

ComplexityComplexity

 Exponential OBDD for all

possible variable

orderings

Multn

•
•
•

•
•
•

a0

an-1

b0

bn-1

p0

pn-1

pn

p2n-1

Actual NumbersActual Numbers

 40,563,945 BDD nodes to

represent all outputs of

16-bit multiplier

 Grows 2.86x per bit of

word size

Intractable
Function

– 22 –

Symbolic Manipulation with OBDDsSymbolic Manipulation with OBDDs

StrategyStrategy

 Represent data as set of OBDDs

 Identical variable orderings

 Express solution method as sequence of symbolic

operations

 Implement each operation by OBDD manipulation

Algorithmic PropertiesAlgorithmic Properties

 Arguments are OBDDs with identical variable orderings.

 Result is OBDD with same ordering.

 “Closure Property”

Contrast to Traditional ApproachesContrast to Traditional Approaches

 Apply search algorithm directly to problem representation

 E.g., search for satisfying truth assignment to Boolean expression.

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 23 –

Arguments Arguments II, , TT, , EE

 Functions over variables X

 Represented as OBDDs

ResultResult

 OBDD representing

composite function

 (I T) (I E)ImplementationImplementation

 Combination of depth-first traversal and dynamic

programming.

 Worst case complexity product of argument graph sizes.

MUX

1

0

I T, E

X

I

T

E

If-Then-Else OperationIf-Then-Else Operation

ConceptConcept

 Basic technique for building OBDD from logic network or

formula.

– 24 –

0 1

d

c

a

B 3 B 4

B 2

B 5

B 1

Argument I

1

Argument T Argument E

A 4 ,B 3 A 5 ,B 4

A 3 ,B 2

A 6 ,B 2

A 2 ,B 2

A 3 ,B 4A 5 ,B 2

A 6 ,B 5

A 1 ,B 1

Recursive Calls

b

0

d

1

c

a

A 4 A 5

A 3

A 2

A 6

A 1

If-Then-Else Execution ExampleIf-Then-Else Execution Example

OptimizationsOptimizations

 Dynamic programming

 Early termination rules

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 25 –

0 1

d

c

b

11

c

a

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls Without Reduction With Reduction

C 2

C 4

C 5

C 3

C 6

C 1 0

d

c

b

1

a

If-Then-Else Result GenerationIf-Then-Else Result Generation

 Recursive calling structure implicitly defines unreduced BDD

 Apply reduction rules bottom-up as return from recursive calls

 Generates reduced graph

– 26 –

Restriction OperationRestriction Operation

ImplementationImplementation

 Depth-first traversal.

 Complexity near-linear in argument graph size

ConceptConcept

 Effect of setting function argument xi to constant k (0 or 1).

 Also called Cofactor operation (UCB)

k F

x i –1

x i +1

x n

x 1

F [x i = k]

F x equivalent to F [x = 1]

F x equivalent to F [x = 0]

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 27 –

Derived OperationsDerived Operations

 Express as combination of If-Then-Else and Restrict

 Preserve closure property

 Result is an OBDD with the right variable ordering

 Polynomial complexity

 Although can sometimes improve with special implementations

– 28 –

And(F, G)

X

F

G MUX

1

0

F G, 0

X

F

G

0

X

F

G MUX

1

0

F 1 , G

X

F

G

1

Or(F, G)

If-Then-Else(F, G, 0)

If-Then-Else(F, 1, G)

Derived Algebraic OperationsDerived Algebraic Operations

 Other operations can be expressed in terms of If-Then-Else

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 29 –

G F

x i –1

x i +1

x n

x 1

x 1

x n

F [x i = G]

x 1

x n

x i –1

x i +1

x n

x 1

x i –1

x i +1

x n

x 1

1 F

0 F

MUX

1

0

G

Functional CompositionFunctional Composition

 Create new function by composing functions F and G.

 Useful for composing hierarchical modules.

– 30 –

x i –1

x i +1

x n

x 1

F x
i
 F

1 F

0 F

x i –1

x i +1

x n

x 1

x i –1

x i +1

x n

x 1

Variable QuantificationVariable Quantification

 Eliminate dependency on some argument through

quantification

 Combine with AND for universal quantification.

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 31 –

Digital Applications of BDDsDigital Applications of BDDs

VerificationVerification

 Combinational equivalence (UCB, Fujitsu, Synopsys, …)

 FSM equivalence (Bull, UCB, MCC, Siemens, Colorado,

Torino, …)

 Symbolic Simulation (CMU, Utah)

 Symbolic Model Checking (CMU, Bull, Motorola, …)

SynthesisSynthesis

 Don’t care set representation (UCB, Fujitsu, …)

 State minimization (UCB)

 Sum-of-Products minimization (UCB, Synopsys, NTT)

TestTest

 False path identification (TI)

– 32 –

Generating OBDD from NetworkGenerating OBDD from Network

Network Evaluation

Task: Represent output functions of gate network as OBDDs.

A

B

C

T1

T2

Out

Resulting Graphs

A B C

T1 T2

Out

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a

A A new_var ("a");new_var ("a");

BB new_var ("b");new_var ("b");

C C new_var ("c");new_var ("c");

T1 T1 And (A, 0, B);And (A, 0, B);

T2 T2 And (B, C);And (B, C);

OutOut Or (T1, T2);Or (T1, T2);

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 33 –

0 1

a

T1 Or (A, C);
O2 And (T1, B);
if (O2 == Out)

then Equivalent
else Different

Alternate Network Evaluation

Resulting Graphs

A

B

C

T1

O2

A B C
T1

O2

c

b

0 1

b

a

c

0 10 1

b

0 1

a

c

Checking Network EquivalenceChecking Network Equivalence

Task: Do two networks compute same Boolean function?

Method: Compute OBDDs for both networks and compare

– 34 –

Finite State System AnalysisFinite State System Analysis

Systems Represented as Finite State MachinesSystems Represented as Finite State Machines

 Sequential circuits

 Communication protocols

 Synchronization programs

Analysis TasksAnalysis Tasks

 State reachability

 State machine comparison

 Temporal logic model checking

Traditional Methods Impractical for Large MachinesTraditional Methods Impractical for Large Machines

 Polynomial in number of states

 Number of states exponential in number of state variables.

 Example: single 32-bit register has 4,294,967,296 states!

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 35 –

A
0 / 1

Set Operations

A

B

Union

A

B

Intersection

Characteristic FunctionsCharacteristic Functions

ConceptConcept

 A {0,1}n

 Set of bit vectors of length n

 Represent set A as Boolean

function A of n variables

 X A if and only if A(X) = 1

– 36 –

Nondeterministic FSM Symbolic Representation

o1,o2 encoded
old state

n1, n2 encoded
new state

00

10

01

11 o2

o1

1

n2

0

n1

o2

Symbolic FSM RepresentationSymbolic FSM Representation

 Represent set of transitions as function (Old, New)

 Yields 1 if can have transition from state Old to state New

 Represent as Boolean function

 Over variables encoding states

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 37 –

Reachability AnalysisReachability Analysis

Rstate 0/1
old state

new state
0/1

TaskTask

 Compute set of states reachable from initial state Q0

 Represent as Boolean function R(S)

 Never enumerate states explicitly

Given Compute

Initial

R
0

=

Q 0

– 38 –

R0

00

Breadth-First Reachability AnalysisBreadth-First Reachability Analysis

 Ri – set of states that can be reached in i transitions

 Reach fixed point when Rn = Rn+1

 Guaranteed since finite state

00

10

01

11

R1R0

00 01

R2R1R0

00 01 10

R3R2R1R0

00 01 10

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 39 –

Iterative ComputationIterative Computation

 Ri +1 – set of states that can be reached i +1 transitions

 Either in Ri

 or single transition away from some element of Ri

Ri

Ri
Ri +1

old

new

– 40 –

Example: Computing R1 from R0Example: Computing R1 from R0

o2

o1

1

n2

0

n1

o2

R0

00

R1

00 01

Old [R0(Old) (Old, New)]

1

n2

0

n1

0

1

n2

0

n1

0

1 0

n1

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 41 –

Symbolic FSM Analysis ExampleSymbolic FSM Analysis Example

 K. McMillan, E. Clarke (CMU) J. Schwalbe (Encore Computer)

Encore Gigamax Cache SystemEncore Gigamax Cache System

 Distributed memory multiprocessor

 Cache system to improve access time

 Complex hardware and synchronization protocol.

VerificationVerification

 Create “simplified” finite state model of system (109 states!)

 Verify properties about set of reachable states

Bug DetectedBug Detected

 Sequence of 13 bus events leading to deadlock

 With random simulations, would require 2 years to generate

failing case.

 In real system, would yield MTBF < 1 day.

– 42 –

What’s Good about OBDDsWhat’s Good about OBDDs

Powerful OperationsPowerful Operations

 Creating, manipulating, testing

 Each step polynomial complexity

 Graceful degradation

 Maintain “closure” property

 Each operation produces form suitable for further operations

Generally Stay Small EnoughGenerally Stay Small Enough

 Especially for digital circuit applications

 Given good choice of variable ordering

Weak CompetitionWeak Competition

 No other method comes close in overall strength

 Especially with quantification operations

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 43 –

What’s Not Good about OBDDsWhat’s Not Good about OBDDs

Doesn’t Solve All ProblemsDoesn’t Solve All Problems

 Can’t do much with multipliers

 Some problems just too big

 Weak for search problems

Must be CarefulMust be Careful

 Choose good variable ordering

 Critical effect on efficiency

 Must have insights into problem characteristics

 Dynamic reordering most promising workaround

 Some operations too hard

 Must work around limitations

– 44 –

Relaxing Ordering RequirementRelaxing Ordering Requirement

ChallengeChallenge

 Ordering is key to important properties of OBDDs

 Canonical form

 Efficient algorithms for operating on functions

 Some classes of functions have no good BDD orderings

 Graphs grow exponentially in all cases

 Would like to relax requirement

 but still preserve (most of) the algorithmic properties

Free OrderingFree Ordering

 Gergov & Meinel, Sieling & Wegener

 Slight relaxation of ordering requirement

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 45 –

Data

Control

Rotate

Difficult FunctionDifficult Function

 Rotate & compare

C

A

B

Rotate

=

Rotations0 1

32

Intractable OBDD Function ExampleIntractable OBDD Function Example

RotatorRotator

 Circular shift of data

 Shift amount set by

control

– 46 –
 Can choose good ordering for any fixed rotation

a 0

a 1

a 2

01

a 3

b 3

a 2

b 2

a 1

b 1

a 0

b 0

R 0

a 1

a 2

a 3

01

a 0

b 3

a 3

b 2

a 2

b 1

a 1

b 0

R 1

a 2

a 3

a 0

01

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

R 2

a 3

a 0

a 1

01

a 2

b 3

a 1

b 2

a 0

b 1

a 3

b 0

R 3

OBDDs for Specific RotationsOBDDs for Specific Rotations

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 47 –

b 2 b 2

a 3

b 2 b 2

a 3

b 1

a 0

b 2

a 0

b 2

a 3

a 0

b 2

a 0

b 2

a 3

b 1

a 2

b 2 b 2

a 3

b 2 b 2

a 3

b 1

b 3

a 0

b 2

b 3

a 0

b 2

a 3

b 3

a 0

b 2

01

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

R 0

a 2

a 3

a 0

01

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

R 2

Forcing Single OrderingForcing Single Ordering

 Good ordering for one rotation terrible for another

 For any ordering, some rotation will have exponential OBDD

– 48 –

OK Not OK

Extraneous
path

x 1

x 1

x 2

x 1

x 1

x 1

x 3

x 2

x 1

x 3

x 3

x 2

x 1

Free BDDsFree BDDs

RulesRules

 Variables may appear in any order

 Only allowed to test variable once along any path

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 49 –

a 0

a 1

a 2

a 3

b 3

a 2

b 2

a 1

b 1

a 0

b 0

a 1

a 2

a 3

a 0

b 3

a 3

b 2

a 2

b 1

a 1

b 0

c 0

a 2

a 3

a 0

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

a 3

a 0

a 1

0 1

a 2

b 3

b 2

a 0

b 1

a 3

b 0

c 0

c 1

a 1

Rotation Function ExampleRotation Function Example

AdvantageAdvantage

 Can select separate ordering for

each rotation

 Good when different settings of

control call for different orderings of

data variables

Still Has LimitationsStill Has Limitations

 Representing output functions of

multiplier

 Exponential for all possible Free BDDs

 Ponzio, „95

– 50 –

Making Free BDDs CanonicalMaking Free BDDs Canonical

Modified Ordering RequirementModified Ordering Requirement

 For any given variable assignment, variables must occur in

fixed order

 But can vary from one assignment to another

Algorithmic Properties Similar to OBDDsAlgorithmic Properties Similar to OBDDs

 Reduce to canonical form

 Apply Boolean operation to functions

 Test for equivalence, satisfiability, etc.

Some Operations HarderSome Operations Harder

 Variable quantification and composition

 But can restrict relevant variables to be totally ordered

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 51 –

a 3

b 3

a 2

b 2

a 1

b 1

a 0

b 0

a 0

b 3

a 3

b 2

a 2

b 1

a 1

b 0

c 0

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

*

a 2

b 3

a 1

b 2

a 0

b 1

a 3

b 0

c 0

c 1

Representing Free OrderingRepresenting Free Ordering

Ordering GraphOrdering Graph

 Encodes assignment-dependent

variable ordering

Similar to BDDSimilar to BDD

 Follow path according to assignment

OBDD is Special CaseOBDD is Special Case

 Linear chain

Ordering RequirementOrdering Requirement

 All functions must be compatible with

single ordering graph

– 52 –

Practical Aspects of Free BDDsPractical Aspects of Free BDDs

Make Sense in Some Application DomainMake Sense in Some Application Domain

 Usage of bits varies with context

 E.g., instruction set encodings

Must Determine Good Ordering GraphMust Determine Good Ordering Graph

 Some success with heuristic methods

 Ideally should be done dynamically

 Overwhelming degrees of freedom

Need to Demonstrate Utility on RealNeed to Demonstrate Utility on Real--Life ExamplesLife Examples

