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Example Analysis TaskExample Analysis Task

Logic Circuit ComparisonLogic Circuit Comparison

 Do circuits compute identical function?

 Basic task of formal hardware verification

 Compare new design to “known good” design
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Solution by Combinatorial SearchSolution by Combinatorial Search

Satisfiability FormulationSatisfiability Formulation

 Search for input assignment 

giving different outputs

Branch & BoundBranch & Bound

 Assign input(s)

 Propagate forced values

 Backtrack when cannot 

succeed
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ChallengeChallenge

 Must prove all assignments 

fail

 Co-NP complete problem

 Typically explore significant 

fraction of inputs

 Exponential time complexity
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Alternate ApproachAlternate Approach

Generate Complete Representation of Circuit FunctionGenerate Complete Representation of Circuit Function

 Compact, canonical form

 Functions equal if and only if representations identical

 Never enumerate explicit function values

 Exploit structure & regularity of circuit functions
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Decision StructuresDecision Structures

Truth Table Decision Tree

 Vertex represents decision

 Follow green (dashed) line for value 0

 Follow red (solid) line for value 1

 Function value determined by leaf value.
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Variable OrderingVariable Ordering

 Assign arbitrary total ordering to variables

 e.g.,  x1 < x2 < x3

 Variables must appear in ascending order along all 

paths
OK Not OK

PropertiesProperties

 No conflicting variable assignments along path

 Simplifies manipulation 
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Reduction Rule #1Reduction Rule #1

Merge equivalent leaves
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Reduction Rule #2Reduction Rule #2
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Reduction Rule #3Reduction Rule #3
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Example OBDDExample OBDD

Initial Graph Reduced Graph

Canonical representation of Boolean functionCanonical representation of Boolean function

 For given variable ordering

 Two functions equivalent if and only if graphs isomorphic

 Can be tested in linear time

 Desirable property: simplest form is canonical.
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Example FunctionsExample Functions

Constants

Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

0 1

x

Odd Parity

Linear
representation

x2

x3

x4

10

x4

x3

x2

x1

Typical Function

x2

0 1

x4

x1  (x1 x2 ) x4

 No vertex labeled x3

 independent of x3

 Many subgraphs shared 
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Representing Circuit FunctionsRepresenting Circuit Functions
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FunctionsFunctions

 All outputs of 4-bit adder

 Functions of data inputs
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S
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D

D

Shared RepresentationShared Representation

 Graph with multiple roots

 31 nodes for 4-bit adder

 571 nodes for 64-bit adder

Linear growth
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Effect of Variable OrderingEffect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth
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Bit Serial Computer AnalogyBit Serial Computer Analogy

OperationOperation

 Read inputs in sequence; produce 0 or 1 as function value.

 Store information about previous inputs to correctly deduce 

function value from remaining inputs.

Relation to OBDD SizeRelation to OBDD Size

 Processor requires K bits of memory at step i.

 OBDD has ~ 2K branches crossing level i.

K-Bit
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Bit-Serial

Processor

0

or

1

00…0

x 1x 2…x n
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Analysis of Ordering ExamplesAnalysis of Ordering Examples

K = 2 K = n
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Selecting Good Variable OrderingSelecting Good Variable Ordering

Intractable ProblemIntractable Problem

 Even when problem represented as OBDD

 I.e., to find optimum improvement to current ordering

ApplicationApplication--Based HeuristicsBased Heuristics

 Exploit characteristics of application

 E.g., Ordering for functions of combinational circuit

 Traverse circuit graph depth-first from outputs to inputs

 Assign variables to primary inputs in order encountered
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Dynamic Variable ReorderingDynamic Variable Reordering

 Richard Rudell, Synopsys

Periodically Attempt to Improve Ordering for All BDDsPeriodically Attempt to Improve Ordering for All BDDs

 Part of garbage collection

 Move each variable through ordering to find its best location

Has Proved Very SuccessfulHas Proved Very Successful

 Time consuming but effective

 Especially for sequential circuit analysis
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Choices

Dynamic Reordering By SiftingDynamic Reordering By Sifting

 Choose candidate variable

 Try all positions in variable ordering

 Repeatedly swap with adjacent variable

 Move to best position found
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Swapping Adjacent VariablesSwapping Adjacent Variables

Localized EffectLocalized Effect

 Add / delete / alter only nodes labeled by swapping variables

 Do not change any incoming pointers
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Sample Function ClassesSample Function Classes

Function Class Best Worst Ordering Sensitivity

ALU (Add/Sub) linear exponential High

Symmetric linear quadratic None

Multiplication exponential exponential Low

General ExperienceGeneral Experience

 Many tasks have reasonable OBDD representations

 Algorithms remain practical for up to 100,000 node OBDDs

 Heuristic ordering methods generally satisfactory
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•
•
•

•
•
•

Lower Bound for MultiplicationLower Bound for Multiplication

 Bryant, 1991

Integer Multiplier CircuitInteger Multiplier Circuit

 n-bit input words A and B

 2n-bit output word P

Boolean functionBoolean function

 Middle bit (n-1) of product

ComplexityComplexity

 Exponential OBDD for all 

possible variable 

orderings

Multn

•
•
•

•
•
•

a0

an-1

b0

bn-1

p0

pn-1

pn

p2n-1

Actual NumbersActual Numbers

 40,563,945 BDD nodes to 

represent all outputs of 

16-bit multiplier

 Grows 2.86x per bit of 

word size

Intractable
Function
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Symbolic Manipulation with OBDDsSymbolic Manipulation with OBDDs

StrategyStrategy

 Represent data as set of OBDDs

 Identical variable orderings

 Express solution method as sequence of symbolic 

operations

 Implement each operation by OBDD manipulation

Algorithmic PropertiesAlgorithmic Properties

 Arguments are OBDDs with identical variable orderings.

 Result is OBDD with same ordering.

 “Closure Property”

Contrast to Traditional ApproachesContrast to Traditional Approaches

 Apply search algorithm directly to problem representation

 E.g., search for satisfying truth assignment to Boolean expression.
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Arguments Arguments II, , TT, , EE

 Functions over variables X

 Represented as OBDDs

ResultResult

 OBDD representing 

composite function

 (I T) ( I E)ImplementationImplementation

 Combination of depth-first traversal and dynamic 

programming.

 Worst case complexity product of argument graph sizes.

MUX

1

0

I   T, E 

X

I  

T 

E 

If-Then-Else OperationIf-Then-Else Operation

ConceptConcept

 Basic technique for building OBDD from logic network or 

formula.
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Recursive Calls
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If-Then-Else Execution ExampleIf-Then-Else Execution Example

OptimizationsOptimizations

 Dynamic programming

 Early termination rules
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Recursive Calls Without Reduction With Reduction
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d

c
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If-Then-Else Result GenerationIf-Then-Else Result Generation

 Recursive calling structure implicitly defines unreduced BDD

 Apply reduction rules bottom-up as return from recursive calls

 Generates reduced graph
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Restriction OperationRestriction Operation

ImplementationImplementation

 Depth-first traversal.

 Complexity near-linear in argument graph size

ConceptConcept

 Effect of setting function argument xi to constant k (0 or 1).

 Also called Cofactor operation (UCB)

k F 

x i  –1

x i  +1

x n 

x 1

F  [x i  = k ]

F x equivalent to F  [ x  = 1]

F x equivalent to F  [ x  = 0]
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Derived OperationsDerived Operations

 Express as combination of If-Then-Else and Restrict

 Preserve closure property

 Result is an OBDD with the right variable ordering

 Polynomial complexity

 Although can sometimes improve with special implementations
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And(F, G)

X
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G MUX
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F   G, 0 

X
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G MUX
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F   1 , G 

X

F 

G

1

Or(F, G)

If-Then-Else(F, G, 0)

If-Then-Else(F, 1, G)

Derived Algebraic OperationsDerived Algebraic Operations

 Other operations can be expressed in terms of If-Then-Else
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G  F 
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x i  +1

x n 

x 1
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MUX

1

0

G 

Functional CompositionFunctional Composition

 Create new function by composing functions F and G.

 Useful for composing hierarchical modules.
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x 1
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Variable QuantificationVariable Quantification

 Eliminate dependency on some argument through 

quantification

 Combine with AND for universal quantification.
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Digital Applications of BDDsDigital Applications of BDDs

VerificationVerification

 Combinational equivalence  (UCB, Fujitsu, Synopsys, …)

 FSM equivalence  (Bull, UCB, MCC, Siemens, Colorado, 

Torino, …)

 Symbolic Simulation (CMU, Utah)

 Symbolic Model Checking (CMU, Bull, Motorola, …)

SynthesisSynthesis

 Don’t care set representation  (UCB, Fujitsu, …)

 State minimization  (UCB)

 Sum-of-Products minimization (UCB, Synopsys, NTT)

TestTest

 False path identification  (TI)
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Generating OBDD from NetworkGenerating OBDD from Network

Network Evaluation

Task: Represent output functions of gate network as OBDDs.

A

B

C

T1

T2

Out

Resulting Graphs

A B C

T1 T2

Out

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a

A A new_var ("a");new_var ("a");

BB new_var ("b");new_var ("b");

C C new_var ("c");new_var ("c");

T1 T1 And (A, 0, B);And (A, 0, B);

T2  T2  And (B, C);And (B, C);

OutOut Or (T1, T2);Or (T1, T2);
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0 1

a

T1 Or (A, C);
O2  And (T1, B);
if (O2 == Out)

then Equivalent
else Different

Alternate Network Evaluation

Resulting Graphs
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T1

O2

A B C
T1

O2

c

b

0 1

b

a

c

0 10 1

b

0 1

a

c

Checking Network EquivalenceChecking Network Equivalence

Task: Do two networks compute same Boolean function?

Method: Compute OBDDs for both networks and compare
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Finite State System AnalysisFinite State System Analysis

Systems Represented as Finite State MachinesSystems Represented as Finite State Machines

 Sequential circuits

 Communication protocols

 Synchronization programs

Analysis TasksAnalysis Tasks

 State reachability

 State machine comparison

 Temporal logic model checking

Traditional Methods Impractical for Large MachinesTraditional Methods Impractical for Large Machines

 Polynomial in number of states

 Number of states exponential in number of state variables.

 Example: single 32-bit register has 4,294,967,296 states!
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A
0 / 1

Set Operations

A

B

Union

A

B

Intersection

Characteristic FunctionsCharacteristic Functions

ConceptConcept

 A {0,1}n

 Set of bit vectors of length n

 Represent set A as Boolean 

function A of n variables

 X A if and only if A(X )  =  1

– 36 –

Nondeterministic FSM Symbolic Representation

o1,o2 encoded
old state

n1, n2 encoded
new state

00

10

01

11 o2

o1

1

n2

0

n1

o2

Symbolic FSM RepresentationSymbolic FSM Representation

 Represent set of transitions as function (Old, New)

 Yields 1 if can have transition from state Old to state New

 Represent as Boolean function

 Over variables encoding states
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Reachability AnalysisReachability Analysis

Rstate 0/1
old state

new state
0/1

TaskTask

 Compute set of states reachable from initial state Q0

 Represent as Boolean function R(S)

 Never enumerate states explicitly

Given Compute

Initial

R
0

=

Q 0
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R0

00

Breadth-First Reachability AnalysisBreadth-First Reachability Analysis

 Ri – set of states that can be reached in i transitions

 Reach fixed point when Rn = Rn+1

 Guaranteed since finite state

00

10

01

11

R1R0

00 01

R2R1R0

00 01 10

R3R2R1R0

00 01 10
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Iterative ComputationIterative Computation

 Ri +1 – set of states that can be reached i +1 transitions

 Either in Ri

 or single transition away from some element of Ri

Ri

Ri
Ri +1

old

new
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Example: Computing R1 from R0Example: Computing R1 from R0

o2

o1

1

n2

0

n1

o2

R0

00

R1

00 01

Old [R0(Old) (Old, New)]

1

n2

0

n1

0

1

n2

0

n1

0

1 0

n1
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Symbolic FSM Analysis ExampleSymbolic FSM Analysis Example

 K. McMillan, E. Clarke (CMU)   J. Schwalbe (Encore Computer)

Encore Gigamax Cache SystemEncore Gigamax Cache System

 Distributed memory multiprocessor

 Cache system to improve access time

 Complex hardware and synchronization protocol.

VerificationVerification

 Create “simplified” finite state model of system (109 states!)

 Verify properties about set of reachable states

Bug DetectedBug Detected

 Sequence of 13 bus events leading to deadlock

 With random simulations, would require 2 years to generate 

failing case.

 In real system, would yield MTBF < 1 day.
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What’s Good about OBDDsWhat’s Good about OBDDs

Powerful OperationsPowerful Operations

 Creating, manipulating, testing

 Each step polynomial complexity

 Graceful degradation

 Maintain “closure” property

 Each operation produces form suitable for further operations

Generally Stay Small EnoughGenerally Stay Small Enough

 Especially  for digital circuit applications

 Given good choice of variable ordering

Weak CompetitionWeak Competition

 No other method comes close in overall strength

 Especially with quantification operations
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What’s Not Good about OBDDsWhat’s Not Good about OBDDs

Doesn’t Solve All ProblemsDoesn’t Solve All Problems

 Can’t do much with multipliers

 Some problems just too big

 Weak for search problems

Must be CarefulMust be Careful

 Choose good variable ordering

 Critical effect on efficiency

 Must have insights into problem characteristics

 Dynamic reordering most promising workaround

 Some operations too hard

 Must work around limitations
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Relaxing Ordering RequirementRelaxing Ordering Requirement

ChallengeChallenge

 Ordering is key to important properties of OBDDs

 Canonical form

 Efficient algorithms for operating on functions

 Some classes of functions have no good BDD orderings

 Graphs grow exponentially in all cases

 Would like to relax requirement

 but still preserve (most of) the algorithmic properties

Free OrderingFree Ordering

 Gergov & Meinel, Sieling & Wegener

 Slight relaxation of ordering requirement
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Data

Control

Rotate

Difficult FunctionDifficult Function

 Rotate & compare

C

A

B

Rotate

=

Rotations0 1

32

Intractable OBDD Function ExampleIntractable OBDD Function Example

RotatorRotator

 Circular shift of data

 Shift amount set by 

control

– 46 –
 Can choose good ordering for any fixed rotation
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R 1
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R 2

a 3

a 0
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a 2

b 3
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a 0
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a 3

b 0

R 3

OBDDs for Specific RotationsOBDDs for Specific Rotations



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 47 –
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a 3
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a 3
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a 0
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R 0

a 2

a 3

a 0

01

a 1

b 3

a 0

b 2

a 3

b 1

a 2

b 0

R 2

Forcing Single OrderingForcing Single Ordering

 Good ordering for one rotation terrible for another

 For any ordering, some rotation will have exponential OBDD
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OK Not OK

Extraneous
path
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Free BDDsFree BDDs

RulesRules

 Variables may appear in any order

 Only allowed to test variable once along any path
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Rotation Function ExampleRotation Function Example

AdvantageAdvantage

 Can select separate ordering for 

each rotation

 Good when different settings of 

control call for different orderings of 

data variables

Still Has LimitationsStill Has Limitations

 Representing output functions of 

multiplier

 Exponential for all possible Free BDDs

 Ponzio, „95
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Making Free BDDs CanonicalMaking Free BDDs Canonical

Modified Ordering RequirementModified Ordering Requirement

 For any given variable assignment, variables must occur in 

fixed order

 But can vary from one assignment to another

Algorithmic Properties Similar to OBDDsAlgorithmic Properties Similar to OBDDs

 Reduce to canonical form

 Apply Boolean operation to functions

 Test for equivalence, satisfiability, etc.

Some Operations HarderSome Operations Harder

 Variable quantification and composition

 But can restrict relevant variables  to be totally ordered
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Representing Free OrderingRepresenting Free Ordering

Ordering GraphOrdering Graph

 Encodes assignment-dependent 

variable ordering

Similar to BDDSimilar to BDD

 Follow path according to assignment

OBDD is Special CaseOBDD is Special Case

 Linear chain

Ordering RequirementOrdering Requirement

 All functions must be compatible with 

single ordering graph
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Practical Aspects of Free BDDsPractical Aspects of Free BDDs

Make Sense in Some Application DomainMake Sense in Some Application Domain

 Usage of bits varies with context

 E.g., instruction set encodings

Must Determine Good Ordering GraphMust Determine Good Ordering Graph

 Some success with heuristic methods

 Ideally should be done dynamically

 Overwhelming degrees of freedom

Need to Demonstrate Utility on RealNeed to Demonstrate Utility on Real--Life ExamplesLife Examples


