Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams

Randal E. Bryant

Carnegie Mellon University

http://www.cs.cmu.edu/~bryant

Example Analysis Task

Logic Circuit Comparison

- Do circuits compute identical function?
- Basic task of formal hardware verification
- Compare new design to "known good" design

Solution by Combinatorial Search

Satisfiability Formulation

- Search for input assignment giving different outputs

Branch \& Bound

- Assign input(s)
- Propagate forced values
- Backtrack when cannot succeed

Challenge

- Must prove all assignments fail
- Co-NP complete problem
- Typically explore significant fraction of inputs
- Exponential time complexity

Alternate Approach

Generate Complete Representation of Circuit Function

- Compact, canonical form

- Functions equal if and only if representations identical
- Never enumerate explicit function values
- Exploit structure \& regularity of circuit functions

Decision Structures

Truth Table

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Decision Tree

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value.

Variable Ordering

- Assign arbitrary total ordering to variables - e.g., $x_{1}<x_{2}<x_{3}$
- Variables must appear in ascending order along all paths

OK

Not OK

Properties

- No conflicting variable assignments along path
- Simplifies manipulation

Reduction Rule \#1

Merge equivalent leaves

Reduction Rule \#2

Merge isomorphic nodes

Reduction Rule \#3

Eliminate Redundant Tests

Example OBDD

Initial Graph

Reduced Graph

Canonical representation of Boolean function

- For given variable ordering
- Two functions equivalent if and only if graphs isomorphic - Can be tested in linear time
- Desirable property: simplest form is canonical.

Example Functions

Constants

o Unique unsatisfiable function
1 Unique tautology
Typical Function
$x_{1} \quad\left(x_{1} \vee x_{2}\right) \wedge x_{4}$

- No vertex labeled x_{3}
- independent of x_{3}

■ Many subgraphs shared

0
1

Variable

Odd Parity

Linear representation

Representing Circuit Functions

Functions

- All outputs of 4-bit adder
- Functions of data inputs

Shared Representation

- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder
-Linear growth

Effect of Variable Ordering

$$
\left.\left(a_{1} \wedge_{-1}\right)^{\vee}\left(a_{2} \wedge_{-2}\right)^{\vee}, a_{3} \wedge_{-3}\right)
$$

Good Ordering

Linear Growth

Bad Ordering

Exponential Growth

Bit Serial Computer Analogy

Operation

- Read inputs in sequence; produce 0 or 1 as function value.
- Store information about previous inputs to correctly deduce function value from remaining inputs.

Relation to OBDD Size

- Processor requires K bits of memory at step i.

■ OBDD has $\sim 2^{K}$ branches crossing level i.

Analysis of Ordering Examples

$$
\left(a_{1} \wedge_{-1}\right)^{\vee},\left(a_{2} \wedge_{-2}\right)^{\vee}\left(a_{3} \wedge_{-3}\right)
$$

Selecting Good Variable Ordering

Intractable Problem

- Even when problem represented as OBDD
- I.e., to find optimum improvement to current ordering

Application-Based Heuristics

- Exploit characteristics of application
- E.g., Ordering for functions of combinational circuit
- Traverse circuit graph depth-first from outputs to inputs
- Assign variables to primary inputs in order encountered

Dynamic Variable Reordering

- Richard Rudell, Synopsys

Periodically Attempt to Improve Ordering for All BDDs

- Part of garbage collection
- Move each variable through ordering to find its best location

Has Proved Very Successful

- Time consuming but effective
- Especially for sequential circuit analysis

Dynamic Reordering By Sifting

- Choose candidate variable
- Try all positions in variable ordering
- Repeatedly swap with adjacent variable
- Move to best position found

Best Choices

- 18 -

Swapping Adjacent Variables

Localized Effect

- Add / delete / alter only nodes labeled by swapping variables
- Do not change any incoming pointers

Sample Function Classes

Function Class	Best	Worst	Ordering Sensitivity
ALU (Add/Sub)	linear	exponential	High
Symmetric	linear	quadratic	None
Multiplication	exponential	exponential	Low

General Experience

- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to 100,000 node OBDDs
- Heuristic ordering methods generally satisfactory

Lower Bound for Multiplication

- Bryant, 1991

Integer Multiplier Circuit

- n-bit input words A and B
- $2 n$-bit output word P

Boolean function

- Middle bit ($n-1$) of product

Complexity

- Exponential OBDD for all possible variable orderings

Actual Numbers

- 40,563,945 BDD nodes to represent all outputs of 16-bit multiplier
- Grows 2.86x per bit of word size

Symbolic Manipulation with OBDDs

Strategy

- Represent data as set of OBDDs
- Identical variable orderings
- Express solution method as sequence of symbolic operations
- Implement each operation by OBDD manipulation

Algorithmic Properties

- Arguments are OBDDs with identical variable orderings.

■ Result is OBDD with same ordering.

- "Closure Property"

Contrast to Traditional Approaches

- Apply search algorithm directly to problem representation
- E.g., search for satisfying truth assignment to Boolean expression.

If-Then-Else Operation

Concept

- Basic technique for building OBDD from logic network or formula.

Arguments I, T, E

- Functions over variables X
- Represented as OBDDs

Result

- OBDD representing composite function

Implementation

- ($/ \wedge T) \vee(\neg / \wedge E)$
- Combination of depth-first traversal and dynamic programming.
- Worst case complexity product of argument graph sizes.

If-Then-Else Execution Example

Optimizations

- Dynamic programming
- Early termination rules

If-Then-Else Result Generation

- Recursive calling structure implicitly defines unreduced BDD
- Apply reduction rules bottom-up as return from recursive calls
- Generates reduced graph

Restriction Operation

Concept

- Effect of setting function argument x_{i} to constant k (0 or 1).
- Also called Cofactor operation (UCB)
F_{X} equivalent to $\quad F[x=1]$
$F_{\bar{x}}$ equivalent to $\quad F[x=0]$

Implementation

- Depth-first traversal.
- Complexity near-linear in argument graph size

Derived Operations

- Express as combination of If-Then-Else and Restrict
- Preserve closure property
- Result is an OBDD with the right variable ordering
- Polynomial complexity
- Although can sometimes improve with special implementations

Derived Algebraic Operations

- Other operations can be expressed in terms of If-Then-Else
$\operatorname{And}(F, G)$

If-Then-Else(F, 1, G)

Functional Composition

- Create new function by composing functions F and G.

■ Useful for composing hierarchical modules.

Variable Quantification

- Eliminate dependency on some argument through quantification
- Combine with AND for universal quantification.

Digital Applications of BDDs

Verification

■ Combinational equivalence (UCB, Fujitsu, Synopsys, ...)
■ FSM equivalence (Bull, UCB, MCC, Siemens, Colorado, Torino, ...)

- Symbolic Simulation (CMU, Utah)
- Symbolic Model Checking (CMU, Bull, Motorola, ...)

Synthesis

- Don't care set representation (UCB, Fujitsu, ...)
- State minimization (UCB)

■ Sum-of-Products minimization (UCB, Synopsys, NTT)
Test

- False path identification (TI)

Generating OBDD from Network

Task: Represent output functions of gate network as OBDDs.

Resulting Graphs

Checking Network Equivalence

Task: Do two networks compute same Boolean function?
Method: Compute OBDDs for both networks and compare

Alternate Network

Evaluation

T1 $\quad \operatorname{Dr}(\mathrm{A}, \mathrm{C}) ;$
 O2 nd (T1, B); if ($\mathrm{O} 2==$ Out)
 then Equivalent else Different

Resulting Graphs

-33 -

Finite State System Analysis

Systems Represented as Finite State Machines

- Sequential circuits
- Communication protocols
- Synchronization programs

Analysis Tasks

- State reachability
- State machine comparison
- Temporal logic model checking

Traditional Methods Impractical for Large Machines

- Polynomial in number of states
- Number of states exponential in number of state variables.

■ Example: single 32-bit register has 4,294,967,296 states!

Characteristic Functions

Concept

- $A \subseteq\{0,1\}^{n}$
- Set of bit vectors of length n
- Represent set A as Boolean function A of \boldsymbol{n} variables

- $X \in A$ if and only if $A(X)=1$

Set Operations

Symbolic FSM Representation

Nondeterministic FSM

Symbolic Representation

- Represent set of transitions as function δ (Old, New)
- Yields 1 if can have transition from state Old to state New
- Represent as Boolean function
- Over variables encoding states

Reachability Analysis

Task

- Compute set of states reachable from initial state Q_{0}
- Represent as Boolean function $R(S)$
- Never enumerate states explicitly

Given Compute

Initial

Breadth-First Reachability Analysis

- R_{i} - set of states that can be reached in i transitions
- Reach fixed point when $R_{n}=R_{n+1}$
- Guaranteed since finite state

Iterative Computation

- R_{i+1} - set of states that can be reached $i+1$ transitions
- Either in R_{i}
- or single transition away from some element of R_{i}

Example: Computing R_{1} from R_{0}

Symbolic FSM Analysis Example

■ K. McMillan, E. Clarke (CMU) J. Schwalbe (Encore Computer)

Encore Gigamax Cache System

- Distributed memory multiprocessor
- Cache system to improve access time
- Complex hardware and synchronization protocol.

Verification

- Create "simplified" finite state model of system (10^{9} states!)
- Verify properties about set of reachable states

Bug Detected

- Sequence of 13 bus events leading to deadlock
- With random simulations, would require ≈ 2 years to generate failing case.
-41- ■ In real system, would yield MTBF < 1 day.

What's Good about OBDDs

Powerful Operations

- Creating, manipulating, testing
- Each step polynomial complexity
- Graceful degradation
- Maintain "closure" property
- Each operation produces form suitable for further operations

Generally Stay Small Enough

- Especially for digital circuit applications
- Given good choice of variable ordering

Weak Competition

- No other method comes close in overall strength
- Especially with quantification operations

What's Not Good about OBDDs

Doesn't Solve All Problems

- Can't do much with multipliers
- Some problems just too big
- Weak for search problems

Must be Careful

- Choose good variable ordering
- Critical effect on efficiency
- Must have insights into problem characteristics
- Dynamic reordering most promising workaround
- Some operations too hard
- Must work around limitations

Relaxing Ordering Requirement

Challenge

- Ordering is key to important properties of OBDDs
- Canonical form
- Efficient algorithms for operating on functions
- Some classes of functions have no good BDD orderings
- Graphs grow exponentially in all cases
- Would like to relax requirement
- but still preserve (most of) the algorithmic properties

Free Ordering

- Gergov \& Meinel, Sieling \& Wegener
- Slight relaxation of ordering requirement

Intractable OBDD Function Example

Rotator

- Circular shift of data
- Shift amount set by control

Difficult Function

- Rotate \& compare

- 45 -

OBDDs for Specific Rotations

Forcing Single Ordering

- Good ordering for one rotation terrible for another
- For any ordering, some rotation will have exponential OBDD
- 47 -

Free BDDs

Rules

- Variables may appear in any order
- Only allowed to test variable once along any path

Rotation Function Example

Advantage

- Can select separate ordering for each rotation
- Good when different settings of control call for different orderings of data variables

Still Has Limitations

- Representing output functions of multiplier
- Exponential for all possible Free BDDs
- Ponzio, ‘95

Making Free BDDs Canonical

Modified Ordering Requirement

- For any given variable assignment, variables must occur in fixed order
- But can vary from one assignment to another

Algorithmic Properties Similar to OBDDs

- Reduce to canonical form
- Apply Boolean operation to functions
- Test for equivalence, satisfiability, etc.

Some Operations Harder

- Variable quantification and composition
- But can restrict relevant variables to be totally ordered

Representing Free Ordering

Ordering Graph

- Encodes assignment-dependent variable ordering

Similar to BDD

- Follow path according to assignment

OBDD is Special Case

- Linear chain

Ordering Requirement

- All functions must be compatible with single ordering graph

Practical Aspects of Free BDDs

Make Sense in Some Application Domain

- Usage of bits varies with context
- E.g., instruction set encodings

Must Determine Good Ordering Graph

- Some success with heuristic methods
- Ideally should be done dynamically
- Overwhelming degrees of freedom

Need to Demonstrate Utility on Real-Life Examples

