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Abstract 
Server virtualization and workload consolidation enable 

multiple workloads to share a single physical server, result-
ing in significant energy savings and utilization improve-
ments. The shift of physical server architectures to NUMA 
and the increasing popularity of scale-out cloud applica-
tions undermine workload consolidation efficiency and re-
sult in overall system degradation. In this work, we charac-
terize the consolidation of cloud workloads on NUMA virtu-
alized systems, estimate four different sources of architec-
ture overhead, and explore optimization opportunities be-
yond the default NUMA-aware hypervisor memory man-
agement. 

Motivated by the observed architectural impact on cloud 
workload consolidation performance, we propose three op-
timization techniques incorporating NUMA access overhead 
into the hypervisor’s virtual machine memory allocation 
and page fault handling routines. Among these, estimation 
of the memory zone access overhead serves as a foundation 
for the other two techniques: a NUMA overhead aware 
buddy allocator and a P2M swap FIFO. Cache hit rate, 
cycle loss due to cache miss, and IPC serve as indicators to 
estimate the access cost of each memory node. Our opti-
mized buddy allocator dynamically selects low-overhead 
memory zones and “proportionally” distributes memory 
pages across target nodes. The P2M swap FIFO records 
recently unused <PFN, MFN> lists for mapping exchanges 
to rebalance memory access pressure within one domain. 
Our real system based evaluations show a 41.1% perfor-
mance improvement when consolidating 16-VMs on a 4-
socket server (the proposed allocator contributes 22.8% of 
the performance gain and the P2M swap FIFO accounts for 
the rest). Furthermore, our techniques can cooperate well 
with other methods (i.e. vCPU migration) and scale well 
when varying VM memory size and the number of sockets in 
a physical host. 
1. Introduction 

Due to increasingly attractive benefits such as a 50% 
reduction in hardware and operating costs as well as an 80% 
reduction in energy consumption [1], server consolidation, 
enabled via virtualization technologies, has been widely 
adopted by large-scale cloud computing platforms, such as 
Amazon EC2 [2] and Windows Azure [3]. A recent survey 
[4] shows that as computing demand increases, rather than 
adding additional server resources to existing data center 
facilities, over 60% of data center operators will consolidate 
their workloads (encapsulated in virtual machines). Howev-
er, when scaling virtual platforms to handle the proliferation 

of cloud applications, challenges arise due to constraints on 
performance degradation (as a result of performance guaran-
tees in the customer service level agreement), especially in 
those environments where VM consolidation density con-
tinues to grow. Therefore, optimizing VM consolidation 
performance is increasingly becoming one of the key chal-
lenges faced by the cloud provider community. 

Meanwhile, server manufacturers like Dell and HP 
gradually replace traditional Uniform Memory Access 
(UMA) machines with Non-Uniform Memory Access (NU-
MA) ones due to their higher memory bandwidth and better 
system scalability. In a NUMA configuration, multiple 
sockets share memory and communicate with each other 
through a fast communication interconnect. With current 
QPI [5] and Hyper Transport [6] technologies, the differ-
ence between local and remote memory access latencies can 
be minimized within 30% [7]. Presently, consolidated work-
loads are shifting from conventional single-task computa-
tion-oriented applications [8] to large-scale cloud and big 
data workloads, such as NoSQL data storage [9], Hadoop 
cluster computing [10] and online transaction processing 
[11]. These cloud workloads generate many diverse interac-
tions and communication patterns (e.g. request partition and 
collaboration, massive data caching, data scanning, heart-
beat checking, etc.). Moreover, some of these applications 
have a large irregular memory footprint and high memory 
consumption, which presents a significant challenge to op-
timizing the efficiency of virtual machine consolidation. 

To adapt these two trends, we characterize and optimize 
cloud workload consolidation in NUMA-based virtualized 
environments. Note that both CPU scheduling and memory 
management techniques can be applied to NUMA system 
optimization. Prior work in this context falls into following 
categories: (1) NUMA-aware scheduling [12], which pins 
virtual CPU (vCPU) to the nearest physical cores or those 
with the lowest access penalty; and (2) NUMA-aware VM 
placement [13] and dynamic load balancing [14]. Such hy-
pervisors (e.g. VMware ESX [15] or Citrix XenServer [16]), 
initialize VM memory by minimizing the overhead due to 
remote memory access, and rebalance VMs deployment by 
moving VMs to lightly loaded nodes via page migration. 
Our work also aims at enhancing the efficiency of hypervi-
sor memory management. Unlike existing strategies, which 
only consider remote memory access penalty, our optimiza-
tions incorporate other sources of architectural overhead that 
are equally important. 

Toward this goal, we analyze four NUMA memory ac-
cess overheads, namely, 1) last level cache contention, 2) 
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memory controller congestion, 3) interconnection conges-
tion, and 4) remote memory access latency. To estimate 
each overhead, we also explore three architectural metrics: 
last level cache hit rate, cycle loss due to last level cache 
miss, and IPC. We propose three optimizations: namely, 
memory zone access overhead analysis, NUMA overhead-
aware buddy memory allocator, and P2M swap FIFO. The 
first technique collects virtual machine architectural metrics 
and estimates each memory zone’s overhead in the hypervi-
sor. The L3 cache hit rate, cycle loss due to L3 misses (local 
and remote), and the IPC ratio between local and remote 
nodes are used to estimate the impact on performance due to 
these overheads. The other two proposed techniques depend 
on the above overhead analysis; instead of reserving 
memory directly on the target node, the optimized buddy 
allocator examines memory node access overhead, selects a 
small list of memory zones, and distributes memory page 
allocation. To guarantee fast address translation, a binary 
tree organization is maintained. The P2M swap FIFO stores 
a list of recently unused <PFN, MFN> (<physical frame 
number, machine frame number>) mappings for each allo-
cated memory node within each virtual machine. This ena-
bles rebalancing of node access latencies via mapping ex-
changes, which further improves performance. 

We prototype these techniques on Xen 4.1.2 hypervisor 
and evaluate their efficiency on an IBM x3850 server. Our 
empirical results show that the proposed schemes improve 
both performance and architectural metrics. For example, on 
a 4-socket system with 16 consolidated VMs, our NUMA 
overhead-aware buddy allocator and P2M swap FIFO 
schemes improve performance by 22.8% and 18.3% respec-
tively. Moreover, our optimizations cooperate well with 
dynamic vCPU scheduling and we verify their scalability to 
various VM memory sizes and different numbers of sockets 
in the physical host. Our current implementation incurs a 
0.46s latency to create a 4GB VM and adds less than 
7.46KB of memory usage in the hypervisor, which can be 
ignored. 

The rest of this paper is organized as follows: Section 2 
provides an overview of NUMA architectural overhead and 
hypervisor memory management. Section 3 characterizes 
cloud workload consolidation in NUMA virtualized sys-
tems. Sections 4 and 5 present our design and implementa-
tion. Section 6 evaluates our prototype and compares with 
existing methods. Section 7 discusses related work and Sec-
tion 8 concludes this paper. 
2. Background 

In this section, we provide the background (i.e. memory 
access overhead in NUMA system, and domain guest 
memory management in hypervisor) relevant to our study. 

2.1. Memory access overhead in NUMA architecture 
Non-Uniform Memory Access (NUMA), a technology 

widely adopted in multiprocessor design, outperforms UMA 
in terms of scalability and memory bandwidth. In today’s 
market, most server systems, such as Dell’s PowerEdge [17] 

and HP’s ProLiant [18], are equipped with at least two chip-
multiprocessors communicating via an on-chip interconnect. 
Figure 1 illustrates a dual socket NUMA system. In this 
example, each multi-core chip consists of four cores that 
share the last level cache, memory controller, and physical 
memory DIMMs. Sockets communicate with each other via 
point-to-point interconnects (e.g. Intel QPI [5]). In a NUMA 
system, memory accesses can be classified as: either (a) 
local (requests to chip’s own memory), or (b) remote (re-
quests to memory of other sockets). Due to off-socket com-
munication overhead, local is faster than remote access. 

There are four sources of overhead [19] when consider-
ing memory access in NUMA systems. These are labeled in 
Figure 1: 
• Last level cache contention (A): cores within the same 

chip-multiprocessors contend for the shared last level 
cache. Frequent cache evictions result in significant 
performance degradation. 

• Memory controller congestion (B): memory requests 
issued to the same memory module share the same 
memory controller, leading to access congestion. Note 
that the controller also includes a memory queue unit. 

• Interconnection congestion (C): Since NUMA systems 
allow memory access from other sockets; excessive 
cross-socket traffic can result in interconnection con-
gestion. 

• Remote memory access latency (D): This is the result 
of off-socket communication overhead. Actual latency 
depends on the distance between source and destina-
tion sockets. 

In the past, various performance counters have been 
used to measure the above mentioned memory access over-
head for non-virtualized NUMA systems [19, 7]. However, 
this becomes more challenging to do in a virtualized envi-
ronment since only limited architectural performance count-
ing metrics are supported [20]. In this study, we explore the 
use of IPC, L3 cache miss rate, and cycle loss due to the L3 
cache to quantify the above four overheads. Details are ex-
plained in Section 4. 

 
Figure 1: Schematic view of a dual-socket NUMA system  
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2.2. Hypervisor memory management for domain guests 
Memory allocation and page table management are two 

mechanisms used by the hypervisor to manage the physical 
memory of virtual machines. In this work, we leverage these 
two knobs to improve performance of virtual machine con-
solidation for NUMA architectures. We use Xen hypervisor 
as an example. 

During the initialization phase, Xen applies several 
memory allocation strategies: e820 memory allocator, boot 
allocator and heap allocator. E820 runs first after the system 
boots up. It records initial system memory information in 
the e820_raw array and reserves a range of page frames. 
Next, the boot allocator runs to establish the page frame 
bitmap and to register memory from the e820 array with a 
one-to-one mapping between physical addresses and linear 
addresses. The heap allocator (also known as the buddy al-
locator), which also supplies memory for domain guests, is 
the primary allocator during Xen execution. It performs 
nearly the same as the Linux memory allocator by associat-
ing memory space with <Node, Zone, Order> triples. Node 
refers to the memory location and Zone indicates the range 
of memory space. For instance, Zone n comprises all page 
frames between [2n, 2n+1-1]. Order indicates the number of 
pages to be allocated upon a request. To simplify address 
computation, the heap allocator sets the basic memory block 
size to be power-of-twos. To minimize fragmentation, each 
memory request is assigned the smallest possible block. The 
entire memory space is organized as a binary tree and a 
larger memory block can be split into two similar but small-
er blocks if needed. Two contiguous free blocks (children) 
can be merged to form a parent block. Via the al-
loc_heap_pages function call, both Xen heap and Dom heap 
invoke the buddy allocator for page allocation. Note that the 
current buddy allocator within the Xen hypervisor already 
supports NUMA awareness, allocating local memory blocks 
to physical cores. 

Since virtualization provides an isolated execution envi-
ronment for the guest, the virtual address requires two layers 
of translation. The first layer translates the virtual address to 
a guest physical address via a process page table (main-
tained by the guest OS). The second translation further con-
verts the guest physical address to a machine address using 
a shadow page table or nested page table (maintained by the 
hypervisor). Shadow paging follows a traditional page walk 
without any architectural support. It directly maps the guest 
virtual address to a system physical address upon a TLB 
miss through a per-process based shadow page table, which 
duplicates the guest OS’s process page table in the hypervi-
sor. On a page table update, the request is intercepted to 
maintain consistency of the corresponding shadow table. 

Unlike software-based approaches, hardware assisted 
paging (HAP) leverages a two-dimensional page walker and 
establishes both the guest page table (VAàPA) and a nest-
ed page table (PAàMA) separately. There are two CR3 
registers (X86) for each CPU core: one for the guest page 
table and the other for the nested page table. The guest OS 

maintains its page table without any hypervisor intervention. 
A TLB miss causes the walker to traverse these two tables 
to obtain the final mapping. When a nested page fault oc-
curs, it first traps into the hypervisor to check for a violation 
of an associated nested page table entry and then performs 
an update. If the entry doesn’t exist, the hypervisor will 
populate a new page frame and create an entry with the 
physical frame number (PFN), machine frame number 
(MFN), and access rights. The nested page table can be 
viewed as a special organization of PFN-to-MFN mappings 
in the hypervisor. 

In this work, we target the heap allocator and nested 
page table management optimizations by taking NUMA 
memory access overhead into consideration. Sections 4 and 
5 describe our prototype design and implementation. 
3. Characterizing cloud workloads in NUMA 

virtualized systems 
In this section, we setup experiments on real systems to 

study: 1) how NUMA architecture features affect the per-
formance of virtualized cloud workloads, especially with 
high VM consolidation densities; and 2) how to estimate the 
four above mentioned NUMA architectural overheads with 
appropriate hardware performance counters. 

Benchmark Description 
YCSB with 
MySQL 

Benchmarking data read/write/update using 
MySQL database via YCSB interface 

Memcached Simulating the behavior of a Twitter caching 
server using Twitter dataset 

NPB/IS 
NPB/UA 

HPC benchmarks from NAS Parallel Benchmark 
Suite 

TPC-C Benchmarking the OLTP with a warehouse-
centric order processing application 

TunkRank  Analyzing influence of a Twitter user based on 
the number of that user’s followers  

Table 1: Cloud workload description 

3.1. Experimental environment 
All experiments are performed on an IBM x3850 sys-

tem equipped with 8-socket based computing nodes. Each 
socket contains one Intel Xeon X7550 (Nehalem architec-
ture [21]) processor and 64GB of DDR3 physical memory. 
Each processor further consists of 8 physical cores running 
at 2.0 GHz (2.4 GHz when the turbo boost feature is ena-
bled). Each physical core has a 32KB L1 instruction cache, 
a 32KB L1 data cache, and a unified 256KB L2 cache. The 
processor is also equipped with an 18MB last level cache 
(L3). Socket communication is conducted via the Intel 
QuickPath Interconnect (QPI) [5] with a throughput of 6.4 
GT/s. In our experiments, we use the performance governor, 
which sets each physical core to the highest frequency, as 
the power management policy. Additionally, we enable the 
turbo boost and hyper threading (16 logical cores) features 
of the processor. Therefore, there are a total 128 cores and 
512GB of memory in each computing node. We configure 
the storage system with a 146GB RAID 1 system disk and a 
536GB RAID 0 data disk. The system uses a Broadcom 
NetXtreme II 5709c 1 Gigabit Ethernet NIC for networking.  
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Figure 2: The four scenarios that we use to characterize NUMA architecture overheads. All VMs are  
created with NUMA-aware memory allocation mechanism and pinned to the specified physical cores. 

  
(a). Last level cache contention (b). Memory controller congestion 

  
(c). Remote memory access latency (d). Interconnection congestion 

Figure 3: The normalized performance along with corresponding architectural metrics to capture 
performance overhead. The values on X-axis are number of consolidated VM in system. 

Note that for our characterization experiments, we opt to 
configure the IBM x3850 system with 4 sockets, which rep-
resents the current mainstream of NUMA system. 

We use the Xen 4.1.2 [22] hypervisor with Intel VT ena-
bled and Linux 2.6.32.40 as the Domain 0’ kernel for eval-
uation. Each HVM VM guest runs Debian Squeeze config-
ured with 2 vCPUs and 4GB memory. We select a set of 
high memory consumption and large irregular memory foot-
print benchmark [23, 24], as listed in Table 1. Among those, 
YCSB [25], developed by Yahoo! Research, aims to compare 
emerging cloud data serving systems (such as MySQL and 
Cassandra [26]). Memcached [27] is widely used as the dis-
tributed in-memory key-value store to improve the perfor-
mance of web applications. NPB/IS stands for integer sort 
with random data read while NPB/UA represents unstruc-
tured adaptive mesh, dynamic and irregular memory access 
[28]. TPC-C is from OLTP-Bench [11], tailored for evaluat-
ing on-line transaction processing (OLTP) and web-oriented 
workloads. TunkRank, a package in GraphLab [29] targeting 
machine learning and data mining analysis for graphics, 
serves as an extension workload to CloudSuite [30]. Among 

these workloads, NPB/IS, NPB/UA, and TunkRank are eval-
uated using execution time while others are measured via 
throughput. All experiments are performed three times to 
obtain the average statistics. 

3.2. Evaluation of NUMA architecture overheads 
To identify and estimate NUMA architecture overheads, 

we carefully design four different scenarios by varying 
vCPUs and memory mappings among the multiple sockets, 
as shown in Figure 2. 

 In the last level cache contention case (Figure 2(A)), we 
deploy all VMs on socket 0 and spread them across four
memory controllers. This is similar to the memory controller 
congestion case (Figure 2(B)), except that in Figure 2(B)
VMs 1-4 are mapped to controller 0 and VMs 5-8 occupy
controller 3. Note that in Figure 2(B), we did not consolidate 
all 8 of the VMs on one controller since the maximum 
memory capacity governed by a single controller is 16GB, 
and thus can only accommodate four 4GB VMs. To stress
remote memory access, in Figure 2(C), all VMs are evenly 
distributed to four sockets and VMs 2-8 remotely read/write
data from neighboring sockets. Figure 2(D) shows VM 
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placement in the interconnection congestion scenario. Simi-
lar to Figure 2(C), it also includes remote memory access. 
The difference is that we allocate the memory of these four 
VMs (i.e. VMs 2, 4, 6, 8) on socket 1 while pin their vCPUs 
to the physical CPUs (i.e. cores 17, 19, 21, 23) on socket 2 
and this placement is mirrored for the other 4 VMs, resulting 
in traffic congestion. To avoid vCPU scheduling effects, we 
statically pin these vCPUs to different physical cores. Figure 
3 shows the normalized performance along with the corre-
sponding performance counter value on the experimental 
NUMA system as VM consolidation density increases. To 
estimate various NUMA architectural overheads, we use 
IPC, last level cache miss rate (miss rate) and the ratio of 
cycle loss due to last level cache misses (cycle loss), which 
are collected via the open source Intel Performance Counter 
Monitor tools [31]. Our characterization study shows that 
above mentioned performance counters are well-correlated 
with the workloads’ performance under different NUMA 
architecture overheads. This motivates us to use these indi-
rect indicators to recognize the NUMA overheads that cause 
applications’ performance degradation. The following sub-
sections discuss various NUMA overheads and most related 
indicators in detail. 
3.2.1 Last level cache contention 

Figure 3(a) shows that, on average, last level cache con-
tention degrades NUMA system performance by 53.4% 
when 8 VMs are consolidated together. The L3 cache hit rate 
drops from 0.48 to 0.10 as VM density increases. The corre-
lation coefficient between the L3 cache hit rate and normal-
ized performance is 0.90, indicating that the last level cache 
contention overhead in NUMA machines can be accurately 
captured using the proposed architectural metric. Since the 8 
VMs are spread across 4 sockets in this case, memory con-
troller congestion has little impact on performance. 
3.2.2 Memory controller congestion 

As shown in Figure 3(b), memory controller congestion 
decreases performance by 22.1% on average when two VMs 
run together, similar to the last level cache contention exper-
iment. However with 8 VMs consolidated, more perfor-
mance degradation (i.e. 18.4%) is observed under the 
memory controller congestion scenario when compared to 
the last level cache contention case. With four VMs sharing 
the same memory node, access congestion extends the 
memory request processing latency, especially on read in-
tensive applications, such as YCSB and TPC-C. Note that 
although both last level cache contention and memory con-
troller congestion overheads co-exist in this case, we find 
that cycle loss has a higher correlation coefficient than the 
L3 cache hit rate (0.91 vs. 0.79). 
3.2.3 Remote memory access latency 

In NUMA architectures, the remote (i.e. off-socket) 
memory access latency has been a well-known target for 
optimizations (e.g. NUMA-aware memory allocator in OS 
kernels [19, 7] or hypervisors [12, 13]). As shown in Figure 
3(c), the average IPC decreases from 0.62 to 0.31 as VM 
consolidation density increases. Even though other architec-

tural metrics vary with performance, IPC exhibits the most 
relevance. Note that instead of directly employing IPC, we 
opt to calculate the IPC ratio between local and remote 
memory accesses as an overhead estimator since it manifests 
a higher performance correlation coefficient (0.92) than IPC 
(0.79). 
3.2.4 Interconnection congestion 

In this experiment, VM resources (core and memory) 
are deployed to only two sockets. We create a pair of VMs 
on these sockets every time and configure them to use 
memory within its own socket and the CPU within another 
socket. This deployment introduces significant data traffic 
across the interconnect, especially for memory intensive 
applications. Figure 3(d) shows that performance drops 
13.3% on average when a new pair of VMs is deployed. 
NPB/IS, NPB/UA and TunkRank are the least affected 
benchmarks since they issue a massive number of memory 
requests during the initialization phase, yet minimize the 
number of requests during the rest of the execution period. 
Note that although last level cache contention exists; it is not 
the major contributor to performance degradation. This is 
because the L3 cache hit rate only drops from 0.54 to 0.32 
when VM density increases. We observe that among all 
three hardware performance counters, cycle loss is the most 
accurate with a correlated coefficient value of 0.86 to identi-
fy interconnection congestion overhead. 

Prior studies on VM consolidation for NUMA systems 
largely focus on minimizing remote memory access. In [13], 
the authors treat this as a bin packing problem [32] and pro-
pose a NUMA-aware VM memory allocation with greedy, 
packed, and spread policies. However, these methods fail to 
take the entire memory access overhead of current, state-of-
the-art systems into consideration, and the remote memory 
access latency is sometimes overemphasized. Our character-
ization results show that all four NUMA access overheads 
are equally important and can be inexpensively captured 
with appropriate performance counters, which motivates our 
NUMA overhead-aware design. 
4. Design 

This section describes the key enabling techniques for 
incorporating NUMA overhead awareness within hypervisor 
memory management: namely, memory zone access over-
head estimation, buddy memory allocator and hardware as-
sisted page fault handling optimizations. 

4.1. Memory zone access overhead estimator 
To estimate the overhead in a virtualized NUMA sys-

tem, it is imperative to analyze and summarize memory ac-
tivities of all cores where vCPUs are mapped. To this end, 
we use three performance counters (i.e., IPC, the L3 cache 
hit rate, and cycle loss due to L3 miss) to quantify memory 
access characteristics of vCPUs within each guest domain. 
Each guest domain periodically collects its vCPU(s) statis-
tics and forwards them to the managed domain, which is 
responsible for mapping them to the corresponding physical 
cores and then dispatches to the hypervisor. 
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Figure 4: Pseudo code for memory zone overhead computation 

The hypervisor continues tracking domain-based perfor-
mance characteristics for each memory node (or memory 
zone), under which all associated domains store their 
memory access characteristics in the form of a quadruple 
<running CPU id, ipc, l3 hit miss rate, cycle loss due to l3 
miss> list. The creation of a virtual machine will add a new 
entry to the list of corresponding memory zones where the 
VM memory is allocated. VM destruction, pause, migration 
and checkpointing will remove the corresponding entry from 
the list. To allow concurrent access to the list, the update 
mechanism is protected via locking. To improve accuracy 
and robustness, a sliding window mechanism is used to ob-
tain smoothed statistics. Note that in a remote memory ac-
cess, multiple memory zones are involved and updated. 

A diagnostic process uses the following architectural 
metrics (based on our characterization results in Section 3.2) 
to quantify memory access overhead: 
• Last level cache contention: The last level cache hit rate 

is used for this purpose. The hypervisor traverses each 
memory zone list, computes the average local hit rate 
and chooses the highest value to represent contention. 

• Memory controller congestion: The cache hit rate and 
cycle loss are jointly considered to represent this over-
head. When cache hit rate fluctuation is small, the per-
formance correlated cycle loss variation is from memory 
controller congestion. By inspecting all of the domains 
within a memory zone list, the hypervisor chooses the 
domain with the maximum cycle loss and uses it to esti-
mate congestion overhead. 

• Interconnection congestion: The cycle losses due to L3 
cache misses represent interconnect congestion. Unlike 
the prior two metrics, interconnect congestion is dictated 
by remote nodes. For each memory node, the hypervisor 
collects corresponding remote quadruples, attributes 
them to different sources (i.e. issuing sockets) and CPUs 
within a given socket. Finally, the interconnect conges-
tion between local node A and remote node B is obtained 
by calculating the maximum values from all CPUs run-
ning on B. 

• Remote memory access latency: The IPC ratio between 
local and remote accesses is used as a metric. The hyper-
visor computes the average IPC for the local node and 
each remote node by traversing the corresponding lists. 
Using these metrics, the access overheads of a memory 

zone are assessed using the algorithm shown in Figure 4. 
When multiple overheads exist in one memory node, we 
evaluate each overhead and then accumulate them together. 
The main control flow is: (1) using predefined threshold 
values to divide each overhead metric into multiple levels 
(Line 1 ~ Line 4); (2) classifying the estimated overhead 
value to a certain level (Line 6 ~ Line 15); and (3) aggregat-
ing them together for each memory zone (Line 16 ~ Line 
28).  The estimated overheads are utilized in the NUMA-
aware buddy allocator and P2M swap FIFO. 

 
Figure 5: Flowchart of NUMA overhead aware buddy allocator 

4.2. NUMA overhead-aware buddy allocator 
The buddy allocator, which is widely used in the Linux 

kernel, splits memory blocks into power-of-two size parti-
tions and organizes the entire memory as a recursive binary-
tree. Hypervisors such as Xen use the buddy allocator for 
virtual machine allocation. According to the size of the 
memory request, the allocator searches available memory 
blocks and assigns the smallest block with a power-of-two 
size. Contemporary hypervisors support NUMA awareness 
during virtual machine memory initialization. Initially, it 
tries to allocate as much memory as possible on the local 
node (to pinned CPU) and later considers remote nodes until 
local memory is unavailable. However, NUMA-aware allo-
cation without access overhead awareness leads to perfor-
mance degradation during multiple VM consolidation. 

Figure 5 illustrates the flowchart of our optimized alloca-
tor. Upon receiving a memory block allocation request, the 
hypervisor first computes the access overhead of all memory 
nodes. The local node (1st choice) or remote nodes (2nd 
choice) with no active VMs have the highest priority to 
serve the memory request. Hence, the allocator reserves the 
maximum possible memory chunk. Lack of such cases or 
unavailability of space on these nodes directs the hypervisor 
to inspect the memory zone lists. To select a subset of 
memory nodes, we use a step function that has an initial zero 
overhead value and increase that value by two in each step.  
The selection stops after four candidate nodes have been 
chosen. This optimization allows the buddy allocator to 

// Clear overhead data of the array
5.  clearup_overhead_array();
// Compute four source overheads of each memory node
6.  for each memory node i
7.  begin
8.        i.LLC_contention = classify_LLC_overhead(i.cache_hit);
9.        i.MC_congestion  = classify_MC_overhead(i.cycle_loss_local);
10.      for each remote memory node j
11.      begin
12.          i.j.INTER_congestion    = classify_INTER_overhead(i.j.cycle_loss_remote);
13.          i.j.RML_latency             = classify_RML_overhead(i.j.remote_ipc);
14.      end
15.  end
// Compute access overhead of each memory node
16.  for each memory node i
17.  begin
18.       if i == local_node
19.       begin
20.           overhead[i] += i.LLC_contention + i.MC_congestion;
21.       end
23.       else
24.       begin
25.           overhead[i] += i.MC_congestion + local_node.i.LLC_contention;
26.           overhead[i] += local_node.i.INTER_congestion + local_node.i.RML_latency;             
27.       end
28.   end

//Classification thresholds definition
1.  #define LLC_Contention_Lx                    LLC_threshold_level_X
2.  #define MC_Congestion_Lx                     MC_threshold_level_X
3.  #define Interconnect_congestion_Lx        INTER_threshold_level_X
4.  #define RML_latency_Lx                         RML_threshold_level_X
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Figure 6: Organization and workflow of NUMA overhead-aware P2M swap FIFO 

determine the access overhead of memory nodes and appro-
priately distribute memory among low overhead nodes, 
which results in performance improvements. 

4.3. NUMA overhead-aware P2M swap FIFO 
Note that although our proposed NUMA overhead-aware 

buddy allocator allows virtual machine memory to be appor-
tioned across various low overhead nodes, care should be 
used to balance guest memory accesses when a VM occupies 
several memory nodes and access penalties of these memory 
nodes are quite different.  The proposed P2M swap FIFO of 
each VM could gradually resolve this imbalance and im-
prove the overall performance of the collocated guests. 

In HVM type VMs, the physical frame number to ma-
chine frame number mapping (P2M) is maintained by the 
hypervisor to enable nested page tables and handle HAP 
page faults. We propose a NUMA overhead-aware P2M 
swap FIFO, which is a software-managed buffer with a first-
in-first-out policy maintained by each memory node of the 
virtual machine. Note that we use the FIFO feature to in-
crease page table access locality. Each entry of the buffer 
contains one <PFN, MFN> mapping, as shown in Figure 6 
(A). A P2M swap FIFO is created after the VM memory 
initialization phase on each allocated memory node. When a 
VM P2M page table is updated due to a new entry addition 
or existing entry modification, the hypervisor will perform 
two operations: (a) add this entry to the P2M swap FIFO 
until it is full; and (b) inspect the corresponding memory 
node access overhead. 

When a P2M page table violation occurs and the esti-
mated overhead of the associated memory node exceeds a 
predefined threshold (Figure 6 (B-1)), the hypervisor will 
identify the memory node with the lowest overhead in the 
system. If the estimated overhead of the identified memory 
node is two-levels lower (measured in the same way as Fig-
ure 4 shows), its P2M swap FIFO will pop one entry for 
memory page exchange (Figure 6 (B-2)). To avoid concur-
rency, the hypervisor initially locks the two P2M page tables 
and then performs page data swapping (Figure 6 (B-3)). Af-
ter that, it updates the two P2M page tables with the new 
mapping (Figure 6 (B-4)). Note that due to the complexity of 
this mapping exchange, it is triggered only when a virtual 
machine exhibits extreme access imbalance. 

5. Implementation 
This section describes the implementation details of the 

memory nodes’ access overhead assessment, enhanced bud-
dy memory allocator and page fault handling architecture 
using P2M swap FIFO. 

5.1. Architectural details of memory access overhead 
estimator 
The estimator is comprised of three components: an ar-

chitectural metrics collector, a hypervisor and managed do-
main connector, and an overhead analyzer. To begin with, 
the managed domain (i.e. domain 0 in Xen), which serves as 
a bridge between virtual machines and the hypervisor, initi-
ates the daemon process immediately after boot up. In order 
to collect architectural data from guest domains, we have 
implemented a new hypercall named HYPERVI-
SOR_build_memzone_op, which enables communication 
through sockets and forwards data to the hypervisor. Fur-
thermore, each virtual machine creates its own daemon pro-
cess, registers its domain ID, obtains performance counter 
values with Intel open source tools [31], marshals the data, 
and periodically communicates with the managed domain. 

When the hypervisor receives a HYPERVI-
SOR_build_memzone_op call, it unpacks the performance 
data packet, extracts the related domain ID and updates the 
maintained domain linked-list for each memory node. The 
hypervisor tracks all such events, protects the list from con-
current accesses for each memory node and maintains a 16-
entry sliding window for each domain. On an overhead 
evaluation request, the hypervisor executes the overhead 
estimation algorithm described in Figure 4. 

5.2. Enhanced buddy allocator 
We extend the basic buddy allocator with NUMA over-

head awareness detection, node selection, and page propor-
tional reservation. The overhead detection stage leverages 
performance overhead statistics from the estimator. The se-
lection policy is implemented by grouping the memory 
nodes based on the overhead level, sorting all the groups in 
ascending order of access overhead, and choosing memory 
nodes based on the requested allocation space.  

Page reservation starts on the selected memory node(s). 
Note that page reservation follows approximation of the 
proportion based on binary tree organization. The requests 
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are split using the power-of-two rule. For example, assuming 
a memory request of 28 GB and there are three target nodes 
A, B and C with overheads 2, 4 and 5 respectively. The ap-
proximated overhead based on binary tree organization will 
be 1, 2 and 2. Therefore, nodes A, B and C will allocate 
memory blocks of size 2(8-1), 2(8-2) and 2(8-2) that is 27, 26 and 
26 GB, respectively. 

5.3. Optimized page fault handler 
We have augmented the handler with a P2M swap 

FIFO. It consists of a fixed size array of 256-entries for each 
memory node. The first-in first-out feature is implemented 
using a queue data structure. The FIFO structure is created 
during the P2M page table initialization phase and is de-
stroyed upon guest removal. The overhead threshold is de-
termined empirically.  

During the exchange phase, each PFN needs to obtain its 
privilege from the original P2M page table using get_entry 
method. Machine page frame data exchange is conducted 
using the memory_exchange function. To avoid deadlock 
events of P2M page table spin-lock, we protect the critical 
section using another lock. On completion of the data ex-
change, old entries are removed and the updated entries are 
appended in the page table. The P2M swap FIFO further 
pops one entry, making a free entry for next entry assign-
ment. Note that the reduction of overhead imbalance could 
minimize the probability of mapping exchange. 
6. Evaluation 

We implement our mechanisms in the Xen 4.1.2 hyper-
visor and compare them to the existing NUMA-aware mech-
anisms. Our implementation spreads across guest and man-
aged domains, and hypervisor with 169 LOCs, 302 LOCs 
and 806 LOCs. In this section, we first compare NUMA 
overhead-aware to NUMA-aware under various scenarios. 
We then evaluate the effectiveness of the P2M swap FIFO 
and investigate whether our approaches work well with al-
ternative methods (e.g. vCPU migration). In addition, we 
explore the scalability of our proposed mechanisms by vary-
ing VM memory size and the number of sockets within the 
physical host. The experimental setup (4 sockets of the IBM 
x3850 machine) and benchmarks are the same as in Section 
3. As in our characterization experiments, we use execution 
time for performance measurement of NPB/IS, NPB/UA, and 
TunkRank and use throughput for the others. The overhead 
classification thresholds are empirical, which were obtained 
via regression analysis between performance degradation 
and architecture metrics during characterization. Each exper-
iment is performed three times to obtain average statistics.  

6.1. NUMA overhead-aware vs. NUMA-aware 
We compare our proposed scheme (NUMA overhead-

aware) with NUMA-aware using five scenarios. The first 
four are described in Figure 2. They emphasize last level 
cache contention, memory controller congestion, remote 
memory access, and interconnect congestion respectively. 
The last scenario contains a mix of all kinds of overheads. 

• Last level cache contention scenario 
On average and across all workloads, the NUMA over-

head-aware mechanism achieves a 4.9%, 7.8%, 17.9% and 
23.3% performance improvement on 2, 4, 6 and 8 VMs re-
spectively, as shown in Figure 7(a). Similarly, the L3 cache 
hit rate increases by 0.042, 0.092, 0.105, and 0.151 respec-
tively. Instead of consolidating all VMs on socket 0 as 
shown in Figure 2(a), the proposed approach selects less 
stressed memory nodes to minimize memory request laten-
cy. For instance, when VM2 joins, the hypervisor may 
choose socket 1 as its memory location if the last level cache 
contention in socket 0 becomes significant. As the number 
of consolidated VMs and access overhead increase, the hy-
pervisor then spreads its allocation proportionally across all 
the sockets (e.g. memory allocation for VMs 7 and 8).  

• Memory controller congestion scenario 
When using NUMA-aware VM memory allocation, as 

shown in Figure 2(b), VMs 1-4 initialize their memory on 
controller 1 of socket 0 while VMs 5-8 use memory control-
ler 4, which causes significant data traffic congestion. With 
our proposed method, the cycle loss metric identifies this 
access overhead and triggers the NUMA overhead-aware 
memory allocation. First, it spreads memory allocation to 
other controllers within the same socket and then selects 
remote low-overhead memory nodes.  As shown in Figure 
7(b), performance increases by 4.7%, 20.3%, 22.8%, and 
45.1% (along with 0.074, 0.089, 0.125, and 0.240 drop in 
cycle loss) under 2, 4, 6, and 8-VMs consolidation cases. We 
also enable L3 cache miss rate indicators, which improve 
detection of memory node overhead, resulting in greater 
performance improvement. 

• Remote memory access scenario 
We design this experiment via statically pinning vCPUs 

to the physical cores out of their memory node’s socket. 
When there are fewer consolidated VMs (such as two or four 
VMs), both NUMA overhead-aware and NUMA-aware 
methods distribute their VM’s memory and vCPUs across 
different sockets, resulting in similar performance (e.g. 3.2% 
and 5.7% difference respectively). However, as more VMs 
are deployed, the number of overhead-free memory nodes 
drops (each socket has at least one VM) and the proposed 
method starts to select sockets with the least access overhead 
for memory allocation. Some remote memory requests be-
come local and data read/write operations are balanced 
among all of the sockets. Therefore, performance improves 
by 13.7% and 16.9% for 6- and 8-VMs consolidation (along 
with 0.34 and 0.64 IPC ratio increase respectively), as 
shown in Figure 7(c). 

• Interconnect congestion scenario 
In this scenario, we distribute all VMs on nodes 1 and 2 

to generate interleaved memory requests, resulting in a “data 
traffic jam”. Our NUMA overhead-aware mechanism uses 
the cycle loss metric to detect the communication overhead 
for these two sockets and then allocates incoming VMs on 
other nodes. Consequently, the traffic jam problem is suc-
cessfully solved through even distribution. As Figure 7(d) 
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(a). Last level cache contention (b). Memory controller congestion 

  
(c). Remote memory access (d). Interconnect congestion 

Figure 7: Performance comparison between NUMA overhead-aware and NUMA-aware approaches. We also reported archi-
tectural metrics in the first four cases. In all scenarios, our proposed method outperforms the NUMA-aware, especially with 
high VM consolidation density. 

  
Figure 8: Performance comparison between two approaches 
for mixed scenario. All application’s performance is normal-
ized to single VM case. 

Figure 9: Proportional VM memory allocation across 4 sock-
ets for NUMA overhead-aware approach. We present archi-
tectural metrics along with accumulated overhead.  

shows, on average, performance increases from 10.9% for 2-
VMs scenario to nearly 143.9% for 8-VMs deployment 
among all benchmarks. 

• Mixed scenario 
In this scenario, all of the above four architectural over-

heads are present. We design our experiment with 8-VMs, 
12-VMs, and 16-VMs and use 2 (8/4) VMs, 3 (12/4) VMs, 
and 4 (16/4) VMs to create a given type of overhead as de-
scribed above. As shown in Figure 8, our optimization 
achieves 91.1%, 81.1%, and 69.3% of the optimal perfor-
mance in these three cases, which translates to a 10.7%, 
13.8% and 25.8% improvement over the NUMA-aware. Fig-
ure 9 provides a breakdown of the memory partitions when 
creating a VM on socket 1 (i.e. local socket) along with the 
estimated metrics. The overhead proportional value (4: 2: 5: 
7) of four sockets results in nearly 25%, 50%, 15% and 10% 
memory page allocation from socket 0 to socket 3, instead of 
only initializing 1,048,576 pages on the local socket. From 
Figure 8, it is observed that YCSB and Memcached benefit 
the most (nearly 52.1% and 46.0% in 16-VMs case). Both 
benchmarks continuously send random irregular memory 

requests based on clients’ read/update operations, which take
advantage of these distributed memory regions with the least 
access overhead to minimize access latency. TunkRank and 
NPB/UA behave differently: they read a number of memory 
blocks and then perform data calculations and there are few-
er memory requests during their execution. 

6.2. Evaluation of P2M swap FIFO and alternative 
methods 

This section verifies the effectiveness of the P2M swap 
FIFO and explores the adaptability of our techniques to other 
methods (such as vCPU migration). We configure the exper-
iment on a 4-socket physical host with 8-VMs. All four ar-
chitectural overheads exist in this scenario. We also imple-
ment a dynamic vCPU migration policy in the management 
domain. It works as follows: the daemon process leverages 
our architectural overhead evaluation module and dynami-
cally pins vCPUs to physical cores on the nearest and less 
stressed sockets. We perform five comparison scenarios con-
taining various combinations of NUMA-aware, NUMA over-
head-aware, P2M swap FIFO, and vCPU migration ap-
proaches. Figure 10 presents our evaluation results. On aver-
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age, the P2M swap FIFO further improves the NUMA over-
head-aware approach by 18.3% across the four benchmarks. 
Since our NUMA overhead-aware allocator selects a set of 
memory nodes exhibiting similar overhead, it is possible that 
a virtual machine occupies several sockets. As the number of 
VMs that share one memory node increases, the probability 
that they access the same node concurrently increases, re-
sulting in data traffic. The P2M swap FIFO, serving as a VM 
“internal” memory balancer, gradually exchanges memory to 
low overhead nodes to minimize access penalties. As previ-
ously explained, YCSB and Memcached benefit the most; 
achieving 18.5% and 31.2% improvement while perfor-
mance of NPB/UA only increases 2.8%. 

It is well known that both CPU scheduling and memory 
management contribute to performance degradation in NU-
MA machines. From Figure 9, it is observed that the NUMA-
aware method works well with vCPU migration, leading to a 
13.9% performance improvement on average. Similarly, our 
approaches don’t conflict with vCPU migration. Optimiza-
tions combing NUMA overhead-aware, P2M swap FIFO and 
vCPU migration outperform the case without vCPU migra-
tion by 4.6% across all workloads. The small performance 
increase is due to the fact that our mechanisms have already 
increased performance by 41.1% when compared to the 
NUMA-aware optimization. Therefore, we conclude that 
NUMA overhead aware + P2M swap FIFO memory optimi-
zations can cooperate well with vCPU scheduling technique 
and a full-fledged design and implementation will be our 
future work. 

 
Figure 10 Performance comparison among various optimiza-
tions. Application’s performance is normalized to NUMA-
aware method. 

6.3. Scalability of VM memory size 
In this experiment, we vary the VM memory from 4GB 

to 32GB. The experimental setup is the same as before: 8-
VMs consolidated on a four-socket host combining the four 
architectural overheads. In Table 2, “Default” means NU-
MA-aware approach while “Optimized” refers to NUMA 
overhead-aware memory allocation + P2M swap FIFO. 

For NUMA-aware approach, as memory size of the VM 
increases, the memory of the local node can be easily ex-
hausted. Therefore, the allocator randomly chooses one 
socket with available memory. This may cause unpredictable 
request congestion. However, our optimizations always dis-
tribute data traffic across low overhead nodes, which im-

prove performance. It is expected that the performance gap 
between these two mechanisms will increase when scaling 
the memory size. For example, on Memcached, the perfor-
mance difference rises from 6.1% to 17.7% when the 
memory size is increased. Similarly, YCSB manifests a 1525
rps/s throughput difference in 32GB memory compared to 
1213 rps/s with 4GB memory. Note that NPB/UA issues 
dynamic and irregular memory requests. Since we use a 
standard C class data set with 3.35×104 elements, it can’t 
consume such a large memory space, resulting in nearly sta-
ble performance when increasing memory size. 

6.4. Scalability of physical host’s sockets 
This section explores the scalability of our optimization 

with an increase in the number of sockets on the physical 
host. We use a Dell 2U PowerEdge R710 server as the 2-
socket machine and configure the IBM x3850 system to 4-
socket and 8-socket hosts respectively. To fully evaluate the 
system, the 2-socket server is consolidated with 4-VMs 
while the 4-socket and 8-scoket hosts are deployed with 8-
and 16- VMs. Each VM has 2 vCPUs and 4GB memory. We 
use the same VMs setup combining 4 architectural over-
heads. In Table 3, “Default” means NUMA-aware approach 
while “Optimized” stands for NUMA overhead-aware
memory allocation + P2M swap FIFO. 

When more sockets exist in the system, our NUMA 
overhead-aware memory allocator has more choices for 
selecting low-overhead sockets. Additionally, as a VM 
spreads across more sockets, the P2M swap FIFO can easily 
balance data traffic internally with memory exchange opera-
tions. Therefore, our optimizations outperform the default 
scheme. For example, in the dual-socket scenario, the pro-
posed mechanism performs 7.9% better than the NUMA-
aware method across four benchmarks while this perfor-
mance gap rises to 14.1% and 2X for 4-socket and 8-socket 
cases. YCSB benefits the most as it achieves a 5X improve-
ment with 8 sockets since the NUMA-aware method squeez-
es all VMs’ memory to the nearest nodes, leading to high 
last-level cache contention and memory controller conges-
tion while our mechanism successfully mitigates this over-
head. 

6.5. Overhead discussion 
Sources of overhead for our optimized schemes are: data 

storage and operation latency. The NUMA overhead-aware 
buddy allocator requires 442 bytes (includes 16-entries slide 
window for 3 architectural metrics) for each domain. For 
each VM, the P2M swap FIFO allocates 1KB space for eve-
ry socket. In the case where there are 8-VMs, each with 4GB
memory spread across 4 sockets; the total memory space
requirement is less than 7.46KB, which is negligible. Since 
the optimized buddy allocator incurs overhead due to NU-
MA overhead detection, node selection, and proportional 
distribution, VM management performance could experience 
some degradation. For example, the “xm create” operation 
requires additional 0.46s. 
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 TunkRank (s) YCSB (rqs/s) NPB/UA (s) Memcached (rqs/s) 
 Default Optimized Default Optimized Default Optimized Default Optimized 

4G 154.5 140.3 (9.2%) 6262.0 7475.0 (19.4%) 473.2 464.9 (1.8%) 7195.0 7634.0 (6.1%) 
8G 153.1 142.1 (7.2%) 6076.3 7295.2 (20.1%) 476.4 462.9 (2.8%) 6627.3 7124.4 (7.5%) 

16G 156.2 142.4 (8.8%) 6121.7 7432.8 (21.4%) 475.9 464.1 (2.5%) 6590.8 7623.6 (15.7%) 
32G 158.5 142.3 (10.2%) 6080.4 7605.3 (25.1%) 475.6 464.1 (2.4%) 6660.1 7841.0 (12.3%) 

Table 2: Performance variation among 4 benchmarks while increasing VM memory size. The percentage numbers are perfor-
mance improvement of the proposed techniques. 

TunkRank (s) YCSB (rqs/s) NPB/UA (s) Memcached (rqs/s) 
 Default Optimized Default Optimized Default Optimized Default Optimized 

2 Sockets 122.4 118.9 (2.9%) 8274.0 9373.3 (13.3%) 440.3 432.5 (1.8%) 9555.0 10844.9 (13.5%) 
4 Sockets 153.4 138.6 (9.7%) 6347.1 7578.4 (19.4%) 479.4 450.6 (6.0%) 6432.8 7719.4 (20.0%) 
8 Sockets 184.7 143.3 (22.4%) 1133.0 5597.5 (4.9X) 530.0 467.5 (11.8%) 6303.0 7354.0 (16.7%) 
 Table 3: Performance comparison among 4 benchmarks when scaling out the number of sockets on the physical host. The per-

centage numbers are performance improvement of the proposed techniques. 
7. Related Work 

This study addresses the NUMA access overhead prob-
lem in virtualized systems via optimizing hypervisor 
memory management. Our research study spans several are-
as from cloud workloads and virtual machine consolidation 
to dynamic memory management and NUMA system opti-
mizations. 

Cloud workload study. Cloud computing has emerged as 
one dominant computing paradigm to deliver scalable online 
services ranging from web search to social networks. Its 
flexible communication workflow and explosive growth of 
large volume data sets bring new challenges for traditional 
system design and optimization. Lately, the architecture re-
search community has been emphasizing the analysis of 
cloud workloads characteristics and redesigning convention-
al mechanisms to adapt to these new features. At the proces-
sor micro-architecture level, Ferdman [30] et al. firstly in-
troduced a set of scale-out workloads, CloudSuite, to identi-
fy inefficiencies in today’s multiprocessors when executing 
these applications; Atta [24] focused on instruction stalls 
resulting from large instruction footprint in online transac-
tion processing (OLTP) workloads and proposed a hardware 
method to improve instruction reuse in first level cache. At 
the server system level, Basu [23] aimed to replace page-
based virtual memory with a direct segment method to alle-
viate TLB miss overhead in big memory systems. The irreg-
ular and large memory footprint feature of multiple consoli-
dated VMs in virtualized cloud also motivates us to explore 
the integration of memory access overhead estimation with 
hypervisor memory management for NUMA machine. 

Virtual machine consolidation. Virtualization enables 
multiple virtual machines running different applications to 
share one physical system, which is widely used in cloud 
computing platform. Performance interference, which affects 
application’s quality-of-service (QoS), is a critical perfor-
mance issue when applying consolidation and deserves 
comprehensive analysis and optimization. To this end, 
Nathuji [33] developed a QoS-aware control framework to 
reserve suitable resources for workloads. Paul [34] per-
formed a detailed characterization of co-locating different 
types of VMs under various core placement schemes and 
proposed an interference metric and regression model. Our 
study focuses on performance improvement via hypervisor 

memory management, especially for high VM consolidation 
scenario. 

Dynamic memory management. Disco [35] and 
VMware ESX [36] are two typical systems providing dy-
namic memory management. Disco implements a dynamic 
page migration and a page replication system for CC-
NUMA machines to maintain locality between a virtual 
CPU’s cache misses and the associated memory pages to 
which the cache misses occur. VMware ESX [36] applies a 
statistical sampling approach to obtain aggregate VM work-
ing set directly without any guest involvement. This accurate 
estimation of the fraction of memory in active use results in 
the system responding rapidly to memory usage increases 
while more gradually to the decrease of memory utilization. 
Our performance counter driven memory management ap-
proach, which is motivated by these systems, differs from 
them in two aspects: (1) instead of maximizing local 
memory accesses, our optimization also evaluates three oth-
er NUMA architecture overheads (last level cache conten-
tion, memory controller congestion, and interconnection 
congestion); (2) We use various performance counters 
(cache miss, cycle loss, and IPC) online to identify and esti-
mate each overhead respectively. 

NUMA system optimization. How to leverage NUMA 
systems’ architecture features and minimize memory request 
overhead is an interesting research topic. Prior studies can be 
found in both non-virtualized and virtualized environments.  

In non-virtualized systems, Lachaize [37] developed the 
first NUMA memory profile (MemProf) based on temporal 
flows of interactions between threads and in-memory ob-
jects. The goal is to provide precise and valuable infor-
mation for multithreaded execution in NUMA multicore 
machines. Zhuravlev [38] addressed shared resource conten-
tion among multicore processors via DI and DIO algorithms. 
They [19] further extended the contention analysis to NU-
MA systems and proposed DINO NUMA-aware manage-
ment algorithm. Dashti [7] investigated the overhead of 
NUMA systems and concluded that traffic congestion 
(memory controller and interconnection) is the major over-
head. 

In virtualized environments, NUMA optimization in-
volves coordination between vCPU scheduling and memory 
management. Rao [12] proposed using a “un-core” penalty 
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as a performance index to dynamically determine the opti-
mal vCPU-to-core assignment for NUMA sensitive virtual 
machines. Recently, the Xen hypervisor incorporated NU-
MA-aware VM memory initialization with three heuristics 
(i.e., greedy, packed, and spread) placement policies. In ad-
dition, VMware ESX [14] supports VM dynamic rebalanc-
ing and intelligent memory migration mechanisms: it trans-
parently moves one VM to the least-loaded node and gradu-
ally migrates memory from the original socket to a new one 
to eliminate remote memory access penalty. Nevertheless, 
all of these mechanisms only consider remote memory ac-
cess overhead and use the VM consolidation ratio to trigger 
balancing and migration operations. Our study profiles and 
incorporates four NUMA architectural overhead estimations 
with VM memory management. Furthermore, we verify that 
our NUMA overhead-aware allocator + P2M swap FIFO 
techniques can work seamlessly with vCPU scheduling op-
timizations. Note that the studies on extending NUMA to-
pology to the VM guest [39, 40] (such as vNUMA-mgr) are 
orthogonal to the optimization proposed in this paper.  
8. Conclusions 

This work explores performance optimization opportuni-
ties when consolidating cloud workloads in NUMA virtual-
ized systems. Based on our comprehensive characterization 
results from multiple experimental scenarios, three tech-
niques are proposed: memory zone access overhead estima-
tion, a NUMA overhead-aware buddy allocator, and a P2M 
swap FIFO. The overhead analysis approach takes the cache 
hit rate, the cycle loss due to cache misses and the IPC as 
indicators to analyze architecture overhead. Our main idea is 
to leverage NUMA overhead awareness in the hypervisor’s 
memory management. The optimized allocator reserves 
memory pages across selected low-overhead memory nodes. 
The P2M swap FIFO provides mapping exchange when 
memory pressure is unbalanced across guest’s different 
nodes. Our prototyped implementation shows notable per-
formance improvements when consolidating multiple virtual 
machines on a real-world server (IBM x3850) system. We 
perform further evaluation to examine its adaptability to 
other approaches, scalability among different VMs and 
physical hosts, and feasibility in terms of operation latency 
and storage overhead. 
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