
Optimizing Virtual Machine Consolidation Performance on NUMA
Server Architecture for Cloud Workloads

Ming Liu and Tao Li
Intelligent Design of Efficient Architectures Laboratory (IDEAL)

Department of Electrical and Computer Engineering, University of Florida
mingliu@ufl.edu, taoli@ece.ufl.edu

Abstract
Server virtualization and workload consolidation enable

multiple workloads to share a single physical server, result-
ing in significant energy savings and utilization improve-
ments. The shift of physical server architectures to NUMA
and the increasing popularity of scale-out cloud applica-
tions undermine workload consolidation efficiency and re-
sult in overall system degradation. In this work, we charac-
terize the consolidation of cloud workloads on NUMA virtu-
alized systems, estimate four different sources of architec-
ture overhead, and explore optimization opportunities be-
yond the default NUMA-aware hypervisor memory man-
agement.

Motivated by the observed architectural impact on cloud
workload consolidation performance, we propose three op-
timization techniques incorporating NUMA access overhead
into the hypervisor’s virtual machine memory allocation
and page fault handling routines. Among these, estimation
of the memory zone access overhead serves as a foundation
for the other two techniques: a NUMA overhead aware
buddy allocator and a P2M swap FIFO. Cache hit rate,
cycle loss due to cache miss, and IPC serve as indicators to
estimate the access cost of each memory node. Our opti-
mized buddy allocator dynamically selects low-overhead
memory zones and “proportionally” distributes memory
pages across target nodes. The P2M swap FIFO records
recently unused <PFN, MFN> lists for mapping exchanges
to rebalance memory access pressure within one domain.
Our real system based evaluations show a 41.1% perfor-
mance improvement when consolidating 16-VMs on a 4-
socket server (the proposed allocator contributes 22.8% of
the performance gain and the P2M swap FIFO accounts for
the rest). Furthermore, our techniques can cooperate well
with other methods (i.e. vCPU migration) and scale well
when varying VM memory size and the number of sockets in
a physical host.
1. Introduction

Due to increasingly attractive benefits such as a 50%
reduction in hardware and operating costs as well as an 80%
reduction in energy consumption [1], server consolidation,
enabled via virtualization technologies, has been widely
adopted by large-scale cloud computing platforms, such as
Amazon EC2 [2] and Windows Azure [3]. A recent survey
[4] shows that as computing demand increases, rather than
adding additional server resources to existing data center
facilities, over 60% of data center operators will consolidate
their workloads (encapsulated in virtual machines). Howev-
er, when scaling virtual platforms to handle the proliferation

of cloud applications, challenges arise due to constraints on
performance degradation (as a result of performance guaran-
tees in the customer service level agreement), especially in
those environments where VM consolidation density con-
tinues to grow. Therefore, optimizing VM consolidation
performance is increasingly becoming one of the key chal-
lenges faced by the cloud provider community.

Meanwhile, server manufacturers like Dell and HP
gradually replace traditional Uniform Memory Access
(UMA) machines with Non-Uniform Memory Access (NU-
MA) ones due to their higher memory bandwidth and better
system scalability. In a NUMA configuration, multiple
sockets share memory and communicate with each other
through a fast communication interconnect. With current
QPI [5] and Hyper Transport [6] technologies, the differ-
ence between local and remote memory access latencies can
be minimized within 30% [7]. Presently, consolidated work-
loads are shifting from conventional single-task computa-
tion-oriented applications [8] to large-scale cloud and big
data workloads, such as NoSQL data storage [9], Hadoop
cluster computing [10] and online transaction processing
[11]. These cloud workloads generate many diverse interac-
tions and communication patterns (e.g. request partition and
collaboration, massive data caching, data scanning, heart-
beat checking, etc.). Moreover, some of these applications
have a large irregular memory footprint and high memory
consumption, which presents a significant challenge to op-
timizing the efficiency of virtual machine consolidation.

To adapt these two trends, we characterize and optimize
cloud workload consolidation in NUMA-based virtualized
environments. Note that both CPU scheduling and memory
management techniques can be applied to NUMA system
optimization. Prior work in this context falls into following
categories: (1) NUMA-aware scheduling [12], which pins
virtual CPU (vCPU) to the nearest physical cores or those
with the lowest access penalty; and (2) NUMA-aware VM
placement [13] and dynamic load balancing [14]. Such hy-
pervisors (e.g. VMware ESX [15] or Citrix XenServer [16]),
initialize VM memory by minimizing the overhead due to
remote memory access, and rebalance VMs deployment by
moving VMs to lightly loaded nodes via page migration.
Our work also aims at enhancing the efficiency of hypervi-
sor memory management. Unlike existing strategies, which
only consider remote memory access penalty, our optimiza-
tions incorporate other sources of architectural overhead that
are equally important.

Toward this goal, we analyze four NUMA memory ac-
cess overheads, namely, 1) last level cache contention, 2)

978-1-4799-4394-4/14/$31.00 © 2014 IEEE

325

memory controller congestion, 3) interconnection conges-
tion, and 4) remote memory access latency. To estimate
each overhead, we also explore three architectural metrics:
last level cache hit rate, cycle loss due to last level cache
miss, and IPC. We propose three optimizations: namely,
memory zone access overhead analysis, NUMA overhead-
aware buddy memory allocator, and P2M swap FIFO. The
first technique collects virtual machine architectural metrics
and estimates each memory zone’s overhead in the hypervi-
sor. The L3 cache hit rate, cycle loss due to L3 misses (local
and remote), and the IPC ratio between local and remote
nodes are used to estimate the impact on performance due to
these overheads. The other two proposed techniques depend
on the above overhead analysis; instead of reserving
memory directly on the target node, the optimized buddy
allocator examines memory node access overhead, selects a
small list of memory zones, and distributes memory page
allocation. To guarantee fast address translation, a binary
tree organization is maintained. The P2M swap FIFO stores
a list of recently unused <PFN, MFN> (<physical frame
number, machine frame number>) mappings for each allo-
cated memory node within each virtual machine. This ena-
bles rebalancing of node access latencies via mapping ex-
changes, which further improves performance.

We prototype these techniques on Xen 4.1.2 hypervisor
and evaluate their efficiency on an IBM x3850 server. Our
empirical results show that the proposed schemes improve
both performance and architectural metrics. For example, on
a 4-socket system with 16 consolidated VMs, our NUMA
overhead-aware buddy allocator and P2M swap FIFO
schemes improve performance by 22.8% and 18.3% respec-
tively. Moreover, our optimizations cooperate well with
dynamic vCPU scheduling and we verify their scalability to
various VM memory sizes and different numbers of sockets
in the physical host. Our current implementation incurs a
0.46s latency to create a 4GB VM and adds less than
7.46KB of memory usage in the hypervisor, which can be
ignored.

The rest of this paper is organized as follows: Section 2
provides an overview of NUMA architectural overhead and
hypervisor memory management. Section 3 characterizes
cloud workload consolidation in NUMA virtualized sys-
tems. Sections 4 and 5 present our design and implementa-
tion. Section 6 evaluates our prototype and compares with
existing methods. Section 7 discusses related work and Sec-
tion 8 concludes this paper.
2. Background

In this section, we provide the background (i.e. memory
access overhead in NUMA system, and domain guest
memory management in hypervisor) relevant to our study.

2.1. Memory access overhead in NUMA architecture
Non-Uniform Memory Access (NUMA), a technology

widely adopted in multiprocessor design, outperforms UMA
in terms of scalability and memory bandwidth. In today’s
market, most server systems, such as Dell’s PowerEdge [17]

and HP’s ProLiant [18], are equipped with at least two chip-
multiprocessors communicating via an on-chip interconnect.
Figure 1 illustrates a dual socket NUMA system. In this
example, each multi-core chip consists of four cores that
share the last level cache, memory controller, and physical
memory DIMMs. Sockets communicate with each other via
point-to-point interconnects (e.g. Intel QPI [5]). In a NUMA
system, memory accesses can be classified as: either (a)
local (requests to chip’s own memory), or (b) remote (re-
quests to memory of other sockets). Due to off-socket com-
munication overhead, local is faster than remote access.

There are four sources of overhead [19] when consider-
ing memory access in NUMA systems. These are labeled in
Figure 1:
• Last level cache contention (A): cores within the same

chip-multiprocessors contend for the shared last level
cache. Frequent cache evictions result in significant
performance degradation.

• Memory controller congestion (B): memory requests
issued to the same memory module share the same
memory controller, leading to access congestion. Note
that the controller also includes a memory queue unit.

• Interconnection congestion (C): Since NUMA systems
allow memory access from other sockets; excessive
cross-socket traffic can result in interconnection con-
gestion.

• Remote memory access latency (D): This is the result
of off-socket communication overhead. Actual latency
depends on the distance between source and destina-
tion sockets.

In the past, various performance counters have been
used to measure the above mentioned memory access over-
head for non-virtualized NUMA systems [19, 7]. However,
this becomes more challenging to do in a virtualized envi-
ronment since only limited architectural performance count-
ing metrics are supported [20]. In this study, we explore the
use of IPC, L3 cache miss rate, and cycle loss due to the L3
cache to quantify the above four overheads. Details are ex-
plained in Section 4.

Figure 1: Schematic view of a dual-socket NUMA system

326

2.2. Hypervisor memory management for domain guests
Memory allocation and page table management are two

mechanisms used by the hypervisor to manage the physical
memory of virtual machines. In this work, we leverage these
two knobs to improve performance of virtual machine con-
solidation for NUMA architectures. We use Xen hypervisor
as an example.

During the initialization phase, Xen applies several
memory allocation strategies: e820 memory allocator, boot
allocator and heap allocator. E820 runs first after the system
boots up. It records initial system memory information in
the e820_raw array and reserves a range of page frames.
Next, the boot allocator runs to establish the page frame
bitmap and to register memory from the e820 array with a
one-to-one mapping between physical addresses and linear
addresses. The heap allocator (also known as the buddy al-
locator), which also supplies memory for domain guests, is
the primary allocator during Xen execution. It performs
nearly the same as the Linux memory allocator by associat-
ing memory space with <Node, Zone, Order> triples. Node
refers to the memory location and Zone indicates the range
of memory space. For instance, Zone n comprises all page
frames between [2n, 2n+1-1]. Order indicates the number of
pages to be allocated upon a request. To simplify address
computation, the heap allocator sets the basic memory block
size to be power-of-twos. To minimize fragmentation, each
memory request is assigned the smallest possible block. The
entire memory space is organized as a binary tree and a
larger memory block can be split into two similar but small-
er blocks if needed. Two contiguous free blocks (children)
can be merged to form a parent block. Via the al-
loc_heap_pages function call, both Xen heap and Dom heap
invoke the buddy allocator for page allocation. Note that the
current buddy allocator within the Xen hypervisor already
supports NUMA awareness, allocating local memory blocks
to physical cores.

Since virtualization provides an isolated execution envi-
ronment for the guest, the virtual address requires two layers
of translation. The first layer translates the virtual address to
a guest physical address via a process page table (main-
tained by the guest OS). The second translation further con-
verts the guest physical address to a machine address using
a shadow page table or nested page table (maintained by the
hypervisor). Shadow paging follows a traditional page walk
without any architectural support. It directly maps the guest
virtual address to a system physical address upon a TLB
miss through a per-process based shadow page table, which
duplicates the guest OS’s process page table in the hypervi-
sor. On a page table update, the request is intercepted to
maintain consistency of the corresponding shadow table.

Unlike software-based approaches, hardware assisted
paging (HAP) leverages a two-dimensional page walker and
establishes both the guest page table (VAàPA) and a nest-
ed page table (PAàMA) separately. There are two CR3
registers (X86) for each CPU core: one for the guest page
table and the other for the nested page table. The guest OS

maintains its page table without any hypervisor intervention.
A TLB miss causes the walker to traverse these two tables
to obtain the final mapping. When a nested page fault oc-
curs, it first traps into the hypervisor to check for a violation
of an associated nested page table entry and then performs
an update. If the entry doesn’t exist, the hypervisor will
populate a new page frame and create an entry with the
physical frame number (PFN), machine frame number
(MFN), and access rights. The nested page table can be
viewed as a special organization of PFN-to-MFN mappings
in the hypervisor.

In this work, we target the heap allocator and nested
page table management optimizations by taking NUMA
memory access overhead into consideration. Sections 4 and
5 describe our prototype design and implementation.
3. Characterizing cloud workloads in NUMA

virtualized systems
In this section, we setup experiments on real systems to

study: 1) how NUMA architecture features affect the per-
formance of virtualized cloud workloads, especially with
high VM consolidation densities; and 2) how to estimate the
four above mentioned NUMA architectural overheads with
appropriate hardware performance counters.

Benchmark Description
YCSB with
MySQL

Benchmarking data read/write/update using
MySQL database via YCSB interface

Memcached Simulating the behavior of a Twitter caching
server using Twitter dataset

NPB/IS
NPB/UA

HPC benchmarks from NAS Parallel Benchmark
Suite

TPC-C Benchmarking the OLTP with a warehouse-
centric order processing application

TunkRank Analyzing influence of a Twitter user based on
the number of that user’s followers

Table 1: Cloud workload description

3.1. Experimental environment
All experiments are performed on an IBM x3850 sys-

tem equipped with 8-socket based computing nodes. Each
socket contains one Intel Xeon X7550 (Nehalem architec-
ture [21]) processor and 64GB of DDR3 physical memory.
Each processor further consists of 8 physical cores running
at 2.0 GHz (2.4 GHz when the turbo boost feature is ena-
bled). Each physical core has a 32KB L1 instruction cache,
a 32KB L1 data cache, and a unified 256KB L2 cache. The
processor is also equipped with an 18MB last level cache
(L3). Socket communication is conducted via the Intel
QuickPath Interconnect (QPI) [5] with a throughput of 6.4
GT/s. In our experiments, we use the performance governor,
which sets each physical core to the highest frequency, as
the power management policy. Additionally, we enable the
turbo boost and hyper threading (16 logical cores) features
of the processor. Therefore, there are a total 128 cores and
512GB of memory in each computing node. We configure
the storage system with a 146GB RAID 1 system disk and a
536GB RAID 0 data disk. The system uses a Broadcom
NetXtreme II 5709c 1 Gigabit Ethernet NIC for networking.

327

Figure 2: The four scenarios that we use to characterize NUMA architecture overheads. All VMs are
created with NUMA-aware memory allocation mechanism and pinned to the specified physical cores.

(a). Last level cache contention (b). Memory controller congestion

(c). Remote memory access latency (d). Interconnection congestion

Figure 3: The normalized performance along with corresponding architectural metrics to capture
performance overhead. The values on X-axis are number of consolidated VM in system.

Note that for our characterization experiments, we opt to
configure the IBM x3850 system with 4 sockets, which rep-
resents the current mainstream of NUMA system.

We use the Xen 4.1.2 [22] hypervisor with Intel VT ena-
bled and Linux 2.6.32.40 as the Domain 0’ kernel for eval-
uation. Each HVM VM guest runs Debian Squeeze config-
ured with 2 vCPUs and 4GB memory. We select a set of
high memory consumption and large irregular memory foot-
print benchmark [23, 24], as listed in Table 1. Among those,
YCSB [25], developed by Yahoo! Research, aims to compare
emerging cloud data serving systems (such as MySQL and
Cassandra [26]). Memcached [27] is widely used as the dis-
tributed in-memory key-value store to improve the perfor-
mance of web applications. NPB/IS stands for integer sort
with random data read while NPB/UA represents unstruc-
tured adaptive mesh, dynamic and irregular memory access
[28]. TPC-C is from OLTP-Bench [11], tailored for evaluat-
ing on-line transaction processing (OLTP) and web-oriented
workloads. TunkRank, a package in GraphLab [29] targeting
machine learning and data mining analysis for graphics,
serves as an extension workload to CloudSuite [30]. Among

these workloads, NPB/IS, NPB/UA, and TunkRank are eval-
uated using execution time while others are measured via
throughput. All experiments are performed three times to
obtain the average statistics.

3.2. Evaluation of NUMA architecture overheads
To identify and estimate NUMA architecture overheads,

we carefully design four different scenarios by varying
vCPUs and memory mappings among the multiple sockets,
as shown in Figure 2.

 In the last level cache contention case (Figure 2(A)), we
deploy all VMs on socket 0 and spread them across four
memory controllers. This is similar to the memory controller
congestion case (Figure 2(B)), except that in Figure 2(B)
VMs 1-4 are mapped to controller 0 and VMs 5-8 occupy
controller 3. Note that in Figure 2(B), we did not consolidate
all 8 of the VMs on one controller since the maximum
memory capacity governed by a single controller is 16GB,
and thus can only accommodate four 4GB VMs. To stress
remote memory access, in Figure 2(C), all VMs are evenly
distributed to four sockets and VMs 2-8 remotely read/write
data from neighboring sockets. Figure 2(D) shows VM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

YCSB Memcached NPB/IS NPB/UA TPC-C TunkRank

L3
 C

ac
he

 H
it

Ra
te

No
rm

ali
ze

d
Pe

rf.

1 VM 2 VMs 4 VMs 6 VMs 8 VMs L3 Cache Hit Rate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

YCSB Memcached NPB/IS NPB/UA TPC-C TunkRank

Cy
cle

 lo
ss

du
e t

o L
3 C

ac
he

No
rm

ali
ze

d P
er

f.

1 VM 2 VMs 4 VMs 6 VMs 8 VMs Cycle lose

0

1

2

3

4

5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

YCSB Memcached NPB/IS NPB/UA TPC-C TunkRank

IP
C

Ra
tio

No
rm

ali
ze

d P
er

f.

1 VM 2 VMs 4 VMs 6 VMs 8 VMs IPC ratio

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

YCSB Memcached NPB/IS NPB/UA TPC-C TunkRank

Cy
cle

 lo
ss

du
e t

o L
3 C

ac
he

No
rm

ali
ze

d P
er

f.
1 VM 2 VMs 4 VMs 6 VMs 8 VMs Cycle loss

328

placement in the interconnection congestion scenario. Simi-
lar to Figure 2(C), it also includes remote memory access.
The difference is that we allocate the memory of these four
VMs (i.e. VMs 2, 4, 6, 8) on socket 1 while pin their vCPUs
to the physical CPUs (i.e. cores 17, 19, 21, 23) on socket 2
and this placement is mirrored for the other 4 VMs, resulting
in traffic congestion. To avoid vCPU scheduling effects, we
statically pin these vCPUs to different physical cores. Figure
3 shows the normalized performance along with the corre-
sponding performance counter value on the experimental
NUMA system as VM consolidation density increases. To
estimate various NUMA architectural overheads, we use
IPC, last level cache miss rate (miss rate) and the ratio of
cycle loss due to last level cache misses (cycle loss), which
are collected via the open source Intel Performance Counter
Monitor tools [31]. Our characterization study shows that
above mentioned performance counters are well-correlated
with the workloads’ performance under different NUMA
architecture overheads. This motivates us to use these indi-
rect indicators to recognize the NUMA overheads that cause
applications’ performance degradation. The following sub-
sections discuss various NUMA overheads and most related
indicators in detail.
3.2.1 Last level cache contention

Figure 3(a) shows that, on average, last level cache con-
tention degrades NUMA system performance by 53.4%
when 8 VMs are consolidated together. The L3 cache hit rate
drops from 0.48 to 0.10 as VM density increases. The corre-
lation coefficient between the L3 cache hit rate and normal-
ized performance is 0.90, indicating that the last level cache
contention overhead in NUMA machines can be accurately
captured using the proposed architectural metric. Since the 8
VMs are spread across 4 sockets in this case, memory con-
troller congestion has little impact on performance.
3.2.2 Memory controller congestion

As shown in Figure 3(b), memory controller congestion
decreases performance by 22.1% on average when two VMs
run together, similar to the last level cache contention exper-
iment. However with 8 VMs consolidated, more perfor-
mance degradation (i.e. 18.4%) is observed under the
memory controller congestion scenario when compared to
the last level cache contention case. With four VMs sharing
the same memory node, access congestion extends the
memory request processing latency, especially on read in-
tensive applications, such as YCSB and TPC-C. Note that
although both last level cache contention and memory con-
troller congestion overheads co-exist in this case, we find
that cycle loss has a higher correlation coefficient than the
L3 cache hit rate (0.91 vs. 0.79).
3.2.3 Remote memory access latency

In NUMA architectures, the remote (i.e. off-socket)
memory access latency has been a well-known target for
optimizations (e.g. NUMA-aware memory allocator in OS
kernels [19, 7] or hypervisors [12, 13]). As shown in Figure
3(c), the average IPC decreases from 0.62 to 0.31 as VM
consolidation density increases. Even though other architec-

tural metrics vary with performance, IPC exhibits the most
relevance. Note that instead of directly employing IPC, we
opt to calculate the IPC ratio between local and remote
memory accesses as an overhead estimator since it manifests
a higher performance correlation coefficient (0.92) than IPC
(0.79).
3.2.4 Interconnection congestion

In this experiment, VM resources (core and memory)
are deployed to only two sockets. We create a pair of VMs
on these sockets every time and configure them to use
memory within its own socket and the CPU within another
socket. This deployment introduces significant data traffic
across the interconnect, especially for memory intensive
applications. Figure 3(d) shows that performance drops
13.3% on average when a new pair of VMs is deployed.
NPB/IS, NPB/UA and TunkRank are the least affected
benchmarks since they issue a massive number of memory
requests during the initialization phase, yet minimize the
number of requests during the rest of the execution period.
Note that although last level cache contention exists; it is not
the major contributor to performance degradation. This is
because the L3 cache hit rate only drops from 0.54 to 0.32
when VM density increases. We observe that among all
three hardware performance counters, cycle loss is the most
accurate with a correlated coefficient value of 0.86 to identi-
fy interconnection congestion overhead.

Prior studies on VM consolidation for NUMA systems
largely focus on minimizing remote memory access. In [13],
the authors treat this as a bin packing problem [32] and pro-
pose a NUMA-aware VM memory allocation with greedy,
packed, and spread policies. However, these methods fail to
take the entire memory access overhead of current, state-of-
the-art systems into consideration, and the remote memory
access latency is sometimes overemphasized. Our character-
ization results show that all four NUMA access overheads
are equally important and can be inexpensively captured
with appropriate performance counters, which motivates our
NUMA overhead-aware design.
4. Design

This section describes the key enabling techniques for
incorporating NUMA overhead awareness within hypervisor
memory management: namely, memory zone access over-
head estimation, buddy memory allocator and hardware as-
sisted page fault handling optimizations.

4.1. Memory zone access overhead estimator
To estimate the overhead in a virtualized NUMA sys-

tem, it is imperative to analyze and summarize memory ac-
tivities of all cores where vCPUs are mapped. To this end,
we use three performance counters (i.e., IPC, the L3 cache
hit rate, and cycle loss due to L3 miss) to quantify memory
access characteristics of vCPUs within each guest domain.
Each guest domain periodically collects its vCPU(s) statis-
tics and forwards them to the managed domain, which is
responsible for mapping them to the corresponding physical
cores and then dispatches to the hypervisor.

329

Figure 4: Pseudo code for memory zone overhead computation

The hypervisor continues tracking domain-based perfor-
mance characteristics for each memory node (or memory
zone), under which all associated domains store their
memory access characteristics in the form of a quadruple
<running CPU id, ipc, l3 hit miss rate, cycle loss due to l3
miss> list. The creation of a virtual machine will add a new
entry to the list of corresponding memory zones where the
VM memory is allocated. VM destruction, pause, migration
and checkpointing will remove the corresponding entry from
the list. To allow concurrent access to the list, the update
mechanism is protected via locking. To improve accuracy
and robustness, a sliding window mechanism is used to ob-
tain smoothed statistics. Note that in a remote memory ac-
cess, multiple memory zones are involved and updated.

A diagnostic process uses the following architectural
metrics (based on our characterization results in Section 3.2)
to quantify memory access overhead:
• Last level cache contention: The last level cache hit rate

is used for this purpose. The hypervisor traverses each
memory zone list, computes the average local hit rate
and chooses the highest value to represent contention.

• Memory controller congestion: The cache hit rate and
cycle loss are jointly considered to represent this over-
head. When cache hit rate fluctuation is small, the per-
formance correlated cycle loss variation is from memory
controller congestion. By inspecting all of the domains
within a memory zone list, the hypervisor chooses the
domain with the maximum cycle loss and uses it to esti-
mate congestion overhead.

• Interconnection congestion: The cycle losses due to L3
cache misses represent interconnect congestion. Unlike
the prior two metrics, interconnect congestion is dictated
by remote nodes. For each memory node, the hypervisor
collects corresponding remote quadruples, attributes
them to different sources (i.e. issuing sockets) and CPUs
within a given socket. Finally, the interconnect conges-
tion between local node A and remote node B is obtained
by calculating the maximum values from all CPUs run-
ning on B.

• Remote memory access latency: The IPC ratio between
local and remote accesses is used as a metric. The hyper-
visor computes the average IPC for the local node and
each remote node by traversing the corresponding lists.
Using these metrics, the access overheads of a memory

zone are assessed using the algorithm shown in Figure 4.
When multiple overheads exist in one memory node, we
evaluate each overhead and then accumulate them together.
The main control flow is: (1) using predefined threshold
values to divide each overhead metric into multiple levels
(Line 1 ~ Line 4); (2) classifying the estimated overhead
value to a certain level (Line 6 ~ Line 15); and (3) aggregat-
ing them together for each memory zone (Line 16 ~ Line
28). The estimated overheads are utilized in the NUMA-
aware buddy allocator and P2M swap FIFO.

Figure 5: Flowchart of NUMA overhead aware buddy allocator

4.2. NUMA overhead-aware buddy allocator
The buddy allocator, which is widely used in the Linux

kernel, splits memory blocks into power-of-two size parti-
tions and organizes the entire memory as a recursive binary-
tree. Hypervisors such as Xen use the buddy allocator for
virtual machine allocation. According to the size of the
memory request, the allocator searches available memory
blocks and assigns the smallest block with a power-of-two
size. Contemporary hypervisors support NUMA awareness
during virtual machine memory initialization. Initially, it
tries to allocate as much memory as possible on the local
node (to pinned CPU) and later considers remote nodes until
local memory is unavailable. However, NUMA-aware allo-
cation without access overhead awareness leads to perfor-
mance degradation during multiple VM consolidation.

Figure 5 illustrates the flowchart of our optimized alloca-
tor. Upon receiving a memory block allocation request, the
hypervisor first computes the access overhead of all memory
nodes. The local node (1st choice) or remote nodes (2nd
choice) with no active VMs have the highest priority to
serve the memory request. Hence, the allocator reserves the
maximum possible memory chunk. Lack of such cases or
unavailability of space on these nodes directs the hypervisor
to inspect the memory zone lists. To select a subset of
memory nodes, we use a step function that has an initial zero
overhead value and increase that value by two in each step.
The selection stops after four candidate nodes have been
chosen. This optimization allows the buddy allocator to

// Clear overhead data of the array
5. clearup_overhead_array();
// Compute four source overheads of each memory node
6. for each memory node i
7. begin
8. i.LLC_contention = classify_LLC_overhead(i.cache_hit);
9. i.MC_congestion = classify_MC_overhead(i.cycle_loss_local);
10. for each remote memory node j
11. begin
12. i.j.INTER_congestion = classify_INTER_overhead(i.j.cycle_loss_remote);
13. i.j.RML_latency = classify_RML_overhead(i.j.remote_ipc);
14. end
15. end
// Compute access overhead of each memory node
16. for each memory node i
17. begin
18. if i == local_node
19. begin
20. overhead[i] += i.LLC_contention + i.MC_congestion;
21. end
23. else
24. begin
25. overhead[i] += i.MC_congestion + local_node.i.LLC_contention;
26. overhead[i] += local_node.i.INTER_congestion + local_node.i.RML_latency;
27. end
28. end

//Classification thresholds definition
1. #define LLC_Contention_Lx LLC_threshold_level_X
2. #define MC_Congestion_Lx MC_threshold_level_X
3. #define Interconnect_congestion_Lx INTER_threshold_level_X
4. #define RML_latency_Lx RML_threshold_level_X

330

Figure 6: Organization and workflow of NUMA overhead-aware P2M swap FIFO

determine the access overhead of memory nodes and appro-
priately distribute memory among low overhead nodes,
which results in performance improvements.

4.3. NUMA overhead-aware P2M swap FIFO
Note that although our proposed NUMA overhead-aware

buddy allocator allows virtual machine memory to be appor-
tioned across various low overhead nodes, care should be
used to balance guest memory accesses when a VM occupies
several memory nodes and access penalties of these memory
nodes are quite different. The proposed P2M swap FIFO of
each VM could gradually resolve this imbalance and im-
prove the overall performance of the collocated guests.

In HVM type VMs, the physical frame number to ma-
chine frame number mapping (P2M) is maintained by the
hypervisor to enable nested page tables and handle HAP
page faults. We propose a NUMA overhead-aware P2M
swap FIFO, which is a software-managed buffer with a first-
in-first-out policy maintained by each memory node of the
virtual machine. Note that we use the FIFO feature to in-
crease page table access locality. Each entry of the buffer
contains one <PFN, MFN> mapping, as shown in Figure 6
(A). A P2M swap FIFO is created after the VM memory
initialization phase on each allocated memory node. When a
VM P2M page table is updated due to a new entry addition
or existing entry modification, the hypervisor will perform
two operations: (a) add this entry to the P2M swap FIFO
until it is full; and (b) inspect the corresponding memory
node access overhead.

When a P2M page table violation occurs and the esti-
mated overhead of the associated memory node exceeds a
predefined threshold (Figure 6 (B-1)), the hypervisor will
identify the memory node with the lowest overhead in the
system. If the estimated overhead of the identified memory
node is two-levels lower (measured in the same way as Fig-
ure 4 shows), its P2M swap FIFO will pop one entry for
memory page exchange (Figure 6 (B-2)). To avoid concur-
rency, the hypervisor initially locks the two P2M page tables
and then performs page data swapping (Figure 6 (B-3)). Af-
ter that, it updates the two P2M page tables with the new
mapping (Figure 6 (B-4)). Note that due to the complexity of
this mapping exchange, it is triggered only when a virtual
machine exhibits extreme access imbalance.

5. Implementation
This section describes the implementation details of the

memory nodes’ access overhead assessment, enhanced bud-
dy memory allocator and page fault handling architecture
using P2M swap FIFO.

5.1. Architectural details of memory access overhead
estimator
The estimator is comprised of three components: an ar-

chitectural metrics collector, a hypervisor and managed do-
main connector, and an overhead analyzer. To begin with,
the managed domain (i.e. domain 0 in Xen), which serves as
a bridge between virtual machines and the hypervisor, initi-
ates the daemon process immediately after boot up. In order
to collect architectural data from guest domains, we have
implemented a new hypercall named HYPERVI-
SOR_build_memzone_op, which enables communication
through sockets and forwards data to the hypervisor. Fur-
thermore, each virtual machine creates its own daemon pro-
cess, registers its domain ID, obtains performance counter
values with Intel open source tools [31], marshals the data,
and periodically communicates with the managed domain.

When the hypervisor receives a HYPERVI-
SOR_build_memzone_op call, it unpacks the performance
data packet, extracts the related domain ID and updates the
maintained domain linked-list for each memory node. The
hypervisor tracks all such events, protects the list from con-
current accesses for each memory node and maintains a 16-
entry sliding window for each domain. On an overhead
evaluation request, the hypervisor executes the overhead
estimation algorithm described in Figure 4.

5.2. Enhanced buddy allocator
We extend the basic buddy allocator with NUMA over-

head awareness detection, node selection, and page propor-
tional reservation. The overhead detection stage leverages
performance overhead statistics from the estimator. The se-
lection policy is implemented by grouping the memory
nodes based on the overhead level, sorting all the groups in
ascending order of access overhead, and choosing memory
nodes based on the requested allocation space.

Page reservation starts on the selected memory node(s).
Note that page reservation follows approximation of the
proportion based on binary tree organization. The requests

331

are split using the power-of-two rule. For example, assuming
a memory request of 28 GB and there are three target nodes
A, B and C with overheads 2, 4 and 5 respectively. The ap-
proximated overhead based on binary tree organization will
be 1, 2 and 2. Therefore, nodes A, B and C will allocate
memory blocks of size 2(8-1), 2(8-2) and 2(8-2) that is 27, 26 and
26 GB, respectively.

5.3. Optimized page fault handler
We have augmented the handler with a P2M swap

FIFO. It consists of a fixed size array of 256-entries for each
memory node. The first-in first-out feature is implemented
using a queue data structure. The FIFO structure is created
during the P2M page table initialization phase and is de-
stroyed upon guest removal. The overhead threshold is de-
termined empirically.

During the exchange phase, each PFN needs to obtain its
privilege from the original P2M page table using get_entry
method. Machine page frame data exchange is conducted
using the memory_exchange function. To avoid deadlock
events of P2M page table spin-lock, we protect the critical
section using another lock. On completion of the data ex-
change, old entries are removed and the updated entries are
appended in the page table. The P2M swap FIFO further
pops one entry, making a free entry for next entry assign-
ment. Note that the reduction of overhead imbalance could
minimize the probability of mapping exchange.
6. Evaluation

We implement our mechanisms in the Xen 4.1.2 hyper-
visor and compare them to the existing NUMA-aware mech-
anisms. Our implementation spreads across guest and man-
aged domains, and hypervisor with 169 LOCs, 302 LOCs
and 806 LOCs. In this section, we first compare NUMA
overhead-aware to NUMA-aware under various scenarios.
We then evaluate the effectiveness of the P2M swap FIFO
and investigate whether our approaches work well with al-
ternative methods (e.g. vCPU migration). In addition, we
explore the scalability of our proposed mechanisms by vary-
ing VM memory size and the number of sockets within the
physical host. The experimental setup (4 sockets of the IBM
x3850 machine) and benchmarks are the same as in Section
3. As in our characterization experiments, we use execution
time for performance measurement of NPB/IS, NPB/UA, and
TunkRank and use throughput for the others. The overhead
classification thresholds are empirical, which were obtained
via regression analysis between performance degradation
and architecture metrics during characterization. Each exper-
iment is performed three times to obtain average statistics.

6.1. NUMA overhead-aware vs. NUMA-aware
We compare our proposed scheme (NUMA overhead-

aware) with NUMA-aware using five scenarios. The first
four are described in Figure 2. They emphasize last level
cache contention, memory controller congestion, remote
memory access, and interconnect congestion respectively.
The last scenario contains a mix of all kinds of overheads.

• Last level cache contention scenario
On average and across all workloads, the NUMA over-

head-aware mechanism achieves a 4.9%, 7.8%, 17.9% and
23.3% performance improvement on 2, 4, 6 and 8 VMs re-
spectively, as shown in Figure 7(a). Similarly, the L3 cache
hit rate increases by 0.042, 0.092, 0.105, and 0.151 respec-
tively. Instead of consolidating all VMs on socket 0 as
shown in Figure 2(a), the proposed approach selects less
stressed memory nodes to minimize memory request laten-
cy. For instance, when VM2 joins, the hypervisor may
choose socket 1 as its memory location if the last level cache
contention in socket 0 becomes significant. As the number
of consolidated VMs and access overhead increase, the hy-
pervisor then spreads its allocation proportionally across all
the sockets (e.g. memory allocation for VMs 7 and 8).

• Memory controller congestion scenario
When using NUMA-aware VM memory allocation, as

shown in Figure 2(b), VMs 1-4 initialize their memory on
controller 1 of socket 0 while VMs 5-8 use memory control-
ler 4, which causes significant data traffic congestion. With
our proposed method, the cycle loss metric identifies this
access overhead and triggers the NUMA overhead-aware
memory allocation. First, it spreads memory allocation to
other controllers within the same socket and then selects
remote low-overhead memory nodes. As shown in Figure
7(b), performance increases by 4.7%, 20.3%, 22.8%, and
45.1% (along with 0.074, 0.089, 0.125, and 0.240 drop in
cycle loss) under 2, 4, 6, and 8-VMs consolidation cases. We
also enable L3 cache miss rate indicators, which improve
detection of memory node overhead, resulting in greater
performance improvement.

• Remote memory access scenario
We design this experiment via statically pinning vCPUs

to the physical cores out of their memory node’s socket.
When there are fewer consolidated VMs (such as two or four
VMs), both NUMA overhead-aware and NUMA-aware
methods distribute their VM’s memory and vCPUs across
different sockets, resulting in similar performance (e.g. 3.2%
and 5.7% difference respectively). However, as more VMs
are deployed, the number of overhead-free memory nodes
drops (each socket has at least one VM) and the proposed
method starts to select sockets with the least access overhead
for memory allocation. Some remote memory requests be-
come local and data read/write operations are balanced
among all of the sockets. Therefore, performance improves
by 13.7% and 16.9% for 6- and 8-VMs consolidation (along
with 0.34 and 0.64 IPC ratio increase respectively), as
shown in Figure 7(c).

• Interconnect congestion scenario
In this scenario, we distribute all VMs on nodes 1 and 2

to generate interleaved memory requests, resulting in a “data
traffic jam”. Our NUMA overhead-aware mechanism uses
the cycle loss metric to detect the communication overhead
for these two sockets and then allocates incoming VMs on
other nodes. Consequently, the traffic jam problem is suc-
cessfully solved through even distribution. As Figure 7(d)

332

(a). Last level cache contention (b). Memory controller congestion

(c). Remote memory access (d). Interconnect congestion

Figure 7: Performance comparison between NUMA overhead-aware and NUMA-aware approaches. We also reported archi-
tectural metrics in the first four cases. In all scenarios, our proposed method outperforms the NUMA-aware, especially with
high VM consolidation density.

Figure 8: Performance comparison between two approaches
for mixed scenario. All application’s performance is normal-
ized to single VM case.

Figure 9: Proportional VM memory allocation across 4 sock-
ets for NUMA overhead-aware approach. We present archi-
tectural metrics along with accumulated overhead.

shows, on average, performance increases from 10.9% for 2-
VMs scenario to nearly 143.9% for 8-VMs deployment
among all benchmarks.

• Mixed scenario
In this scenario, all of the above four architectural over-

heads are present. We design our experiment with 8-VMs,
12-VMs, and 16-VMs and use 2 (8/4) VMs, 3 (12/4) VMs,
and 4 (16/4) VMs to create a given type of overhead as de-
scribed above. As shown in Figure 8, our optimization
achieves 91.1%, 81.1%, and 69.3% of the optimal perfor-
mance in these three cases, which translates to a 10.7%,
13.8% and 25.8% improvement over the NUMA-aware. Fig-
ure 9 provides a breakdown of the memory partitions when
creating a VM on socket 1 (i.e. local socket) along with the
estimated metrics. The overhead proportional value (4: 2: 5:
7) of four sockets results in nearly 25%, 50%, 15% and 10%
memory page allocation from socket 0 to socket 3, instead of
only initializing 1,048,576 pages on the local socket. From
Figure 8, it is observed that YCSB and Memcached benefit
the most (nearly 52.1% and 46.0% in 16-VMs case). Both
benchmarks continuously send random irregular memory

requests based on clients’ read/update operations, which take
advantage of these distributed memory regions with the least
access overhead to minimize access latency. TunkRank and
NPB/UA behave differently: they read a number of memory
blocks and then perform data calculations and there are few-
er memory requests during their execution.

6.2. Evaluation of P2M swap FIFO and alternative
methods

This section verifies the effectiveness of the P2M swap
FIFO and explores the adaptability of our techniques to other
methods (such as vCPU migration). We configure the exper-
iment on a 4-socket physical host with 8-VMs. All four ar-
chitectural overheads exist in this scenario. We also imple-
ment a dynamic vCPU migration policy in the management
domain. It works as follows: the daemon process leverages
our architectural overhead evaluation module and dynami-
cally pins vCPUs to physical cores on the nearest and less
stressed sockets. We perform five comparison scenarios con-
taining various combinations of NUMA-aware, NUMA over-
head-aware, P2M swap FIFO, and vCPU migration ap-
proaches. Figure 10 presents our evaluation results. On aver-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

YCSB Memcached NPB/IS NPB/UA TPC-C TunkRank

L3
 C

ac
he

 H
it

Ra
te

No
rm

al
ize

d
Pe

rf
.

Normalized Perf. NUMA aware Normalized Perf. NUMA Overhead aware
L3 Hit Rate NUMA aware L3 Hit Rate NUMA Overhead aware

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

YCSB Memcached NPB/IS NPB/UA TPC-C TunkRank

Cy
cle

 lo
ss

No
rm

al
ize

d
Pe

rf
.

Normalized Perf. NUMA aware Normalized Perf. NUMA Overhead aware

Cycle loss NUMA aware Cycle loss NUMA Overhead aware

0

1

2

3

4

5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

YCSB Memcached NPB/IS NPB/UA TPC-C TunkRank

IP
C

 r
at

io

N
or

m
al

iz
ed

 P
er

f.

Normalized Perf. NUMA aware Normalized Perf. NUMA Overhead aware

IPC ratio NUMA aware IPC ratio NUMA Overhead aware

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8 1 2 4 6 8

YCSB Memcached NPB/IS NPB/UA TPC-C TunkRank

C
yc

le
 lo

ss

N
or

m
al

iz
ed

 P
er

f.

Normalized Perf. NUMA aware Normalized Perf. NUMA Overhead aware

Cycle loss NUMA aware Cycle loss NUMA Overhead aware

0

0.2

0.4

0.6

0.8

1

8
VMs

12
VMs

16
VMs

8
VMs

12
VMs

16
VMs

8
VMs

12
VMs

16
VMs

8
VMs

12
VMs

16
VMs

8
VMs

12
VMs

16
VMs

TunkRank YCSB NPB/UA Memcached Average

N
or

m
al

iz
ed

 P
er

f.

NUMA-aware NUMA Overhead-aware

262111

523784

157184

105497

Socket 0 Socket 1 Socket 2 Socket 3

333

age, the P2M swap FIFO further improves the NUMA over-
head-aware approach by 18.3% across the four benchmarks.
Since our NUMA overhead-aware allocator selects a set of
memory nodes exhibiting similar overhead, it is possible that
a virtual machine occupies several sockets. As the number of
VMs that share one memory node increases, the probability
that they access the same node concurrently increases, re-
sulting in data traffic. The P2M swap FIFO, serving as a VM
“internal” memory balancer, gradually exchanges memory to
low overhead nodes to minimize access penalties. As previ-
ously explained, YCSB and Memcached benefit the most;
achieving 18.5% and 31.2% improvement while perfor-
mance of NPB/UA only increases 2.8%.

It is well known that both CPU scheduling and memory
management contribute to performance degradation in NU-
MA machines. From Figure 9, it is observed that the NUMA-
aware method works well with vCPU migration, leading to a
13.9% performance improvement on average. Similarly, our
approaches don’t conflict with vCPU migration. Optimiza-
tions combing NUMA overhead-aware, P2M swap FIFO and
vCPU migration outperform the case without vCPU migra-
tion by 4.6% across all workloads. The small performance
increase is due to the fact that our mechanisms have already
increased performance by 41.1% when compared to the
NUMA-aware optimization. Therefore, we conclude that
NUMA overhead aware + P2M swap FIFO memory optimi-
zations can cooperate well with vCPU scheduling technique
and a full-fledged design and implementation will be our
future work.

Figure 10 Performance comparison among various optimiza-
tions. Application’s performance is normalized to NUMA-
aware method.

6.3. Scalability of VM memory size
In this experiment, we vary the VM memory from 4GB

to 32GB. The experimental setup is the same as before: 8-
VMs consolidated on a four-socket host combining the four
architectural overheads. In Table 2, “Default” means NU-
MA-aware approach while “Optimized” refers to NUMA
overhead-aware memory allocation + P2M swap FIFO.

For NUMA-aware approach, as memory size of the VM
increases, the memory of the local node can be easily ex-
hausted. Therefore, the allocator randomly chooses one
socket with available memory. This may cause unpredictable
request congestion. However, our optimizations always dis-
tribute data traffic across low overhead nodes, which im-

prove performance. It is expected that the performance gap
between these two mechanisms will increase when scaling
the memory size. For example, on Memcached, the perfor-
mance difference rises from 6.1% to 17.7% when the
memory size is increased. Similarly, YCSB manifests a 1525
rps/s throughput difference in 32GB memory compared to
1213 rps/s with 4GB memory. Note that NPB/UA issues
dynamic and irregular memory requests. Since we use a
standard C class data set with 3.35×104 elements, it can’t
consume such a large memory space, resulting in nearly sta-
ble performance when increasing memory size.

6.4. Scalability of physical host’s sockets
This section explores the scalability of our optimization

with an increase in the number of sockets on the physical
host. We use a Dell 2U PowerEdge R710 server as the 2-
socket machine and configure the IBM x3850 system to 4-
socket and 8-socket hosts respectively. To fully evaluate the
system, the 2-socket server is consolidated with 4-VMs
while the 4-socket and 8-scoket hosts are deployed with 8-
and 16- VMs. Each VM has 2 vCPUs and 4GB memory. We
use the same VMs setup combining 4 architectural over-
heads. In Table 3, “Default” means NUMA-aware approach
while “Optimized” stands for NUMA overhead-aware
memory allocation + P2M swap FIFO.

When more sockets exist in the system, our NUMA
overhead-aware memory allocator has more choices for
selecting low-overhead sockets. Additionally, as a VM
spreads across more sockets, the P2M swap FIFO can easily
balance data traffic internally with memory exchange opera-
tions. Therefore, our optimizations outperform the default
scheme. For example, in the dual-socket scenario, the pro-
posed mechanism performs 7.9% better than the NUMA-
aware method across four benchmarks while this perfor-
mance gap rises to 14.1% and 2X for 4-socket and 8-socket
cases. YCSB benefits the most as it achieves a 5X improve-
ment with 8 sockets since the NUMA-aware method squeez-
es all VMs’ memory to the nearest nodes, leading to high
last-level cache contention and memory controller conges-
tion while our mechanism successfully mitigates this over-
head.

6.5. Overhead discussion
Sources of overhead for our optimized schemes are: data

storage and operation latency. The NUMA overhead-aware
buddy allocator requires 442 bytes (includes 16-entries slide
window for 3 architectural metrics) for each domain. For
each VM, the P2M swap FIFO allocates 1KB space for eve-
ry socket. In the case where there are 8-VMs, each with 4GB
memory spread across 4 sockets; the total memory space
requirement is less than 7.46KB, which is negligible. Since
the optimized buddy allocator incurs overhead due to NU-
MA overhead detection, node selection, and proportional
distribution, VM management performance could experience
some degradation. For example, the “xm create” operation
requires additional 0.46s.

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

TunkRank YCSB NPB/UA Memcached Average

N
or

m
al

iz
ed

 P
er

f.

NUMA aware NUMA aware + vCPU migration

NUMA overhead aware NUMA overhead aware + P2M swap FIFO

NUMA overhead aware + P2M swap FIFO + vCPU migration

334

 TunkRank (s) YCSB (rqs/s) NPB/UA (s) Memcached (rqs/s)
 Default Optimized Default Optimized Default Optimized Default Optimized

4G 154.5 140.3 (9.2%) 6262.0 7475.0 (19.4%) 473.2 464.9 (1.8%) 7195.0 7634.0 (6.1%)
8G 153.1 142.1 (7.2%) 6076.3 7295.2 (20.1%) 476.4 462.9 (2.8%) 6627.3 7124.4 (7.5%)

16G 156.2 142.4 (8.8%) 6121.7 7432.8 (21.4%) 475.9 464.1 (2.5%) 6590.8 7623.6 (15.7%)
32G 158.5 142.3 (10.2%) 6080.4 7605.3 (25.1%) 475.6 464.1 (2.4%) 6660.1 7841.0 (12.3%)

Table 2: Performance variation among 4 benchmarks while increasing VM memory size. The percentage numbers are perfor-
mance improvement of the proposed techniques.

TunkRank (s) YCSB (rqs/s) NPB/UA (s) Memcached (rqs/s)
 Default Optimized Default Optimized Default Optimized Default Optimized

2 Sockets 122.4 118.9 (2.9%) 8274.0 9373.3 (13.3%) 440.3 432.5 (1.8%) 9555.0 10844.9 (13.5%)
4 Sockets 153.4 138.6 (9.7%) 6347.1 7578.4 (19.4%) 479.4 450.6 (6.0%) 6432.8 7719.4 (20.0%)
8 Sockets 184.7 143.3 (22.4%) 1133.0 5597.5 (4.9X) 530.0 467.5 (11.8%) 6303.0 7354.0 (16.7%)
 Table 3: Performance comparison among 4 benchmarks when scaling out the number of sockets on the physical host. The per-

centage numbers are performance improvement of the proposed techniques.
7. Related Work

This study addresses the NUMA access overhead prob-
lem in virtualized systems via optimizing hypervisor
memory management. Our research study spans several are-
as from cloud workloads and virtual machine consolidation
to dynamic memory management and NUMA system opti-
mizations.

Cloud workload study. Cloud computing has emerged as
one dominant computing paradigm to deliver scalable online
services ranging from web search to social networks. Its
flexible communication workflow and explosive growth of
large volume data sets bring new challenges for traditional
system design and optimization. Lately, the architecture re-
search community has been emphasizing the analysis of
cloud workloads characteristics and redesigning convention-
al mechanisms to adapt to these new features. At the proces-
sor micro-architecture level, Ferdman [30] et al. firstly in-
troduced a set of scale-out workloads, CloudSuite, to identi-
fy inefficiencies in today’s multiprocessors when executing
these applications; Atta [24] focused on instruction stalls
resulting from large instruction footprint in online transac-
tion processing (OLTP) workloads and proposed a hardware
method to improve instruction reuse in first level cache. At
the server system level, Basu [23] aimed to replace page-
based virtual memory with a direct segment method to alle-
viate TLB miss overhead in big memory systems. The irreg-
ular and large memory footprint feature of multiple consoli-
dated VMs in virtualized cloud also motivates us to explore
the integration of memory access overhead estimation with
hypervisor memory management for NUMA machine.

Virtual machine consolidation. Virtualization enables
multiple virtual machines running different applications to
share one physical system, which is widely used in cloud
computing platform. Performance interference, which affects
application’s quality-of-service (QoS), is a critical perfor-
mance issue when applying consolidation and deserves
comprehensive analysis and optimization. To this end,
Nathuji [33] developed a QoS-aware control framework to
reserve suitable resources for workloads. Paul [34] per-
formed a detailed characterization of co-locating different
types of VMs under various core placement schemes and
proposed an interference metric and regression model. Our
study focuses on performance improvement via hypervisor

memory management, especially for high VM consolidation
scenario.

Dynamic memory management. Disco [35] and
VMware ESX [36] are two typical systems providing dy-
namic memory management. Disco implements a dynamic
page migration and a page replication system for CC-
NUMA machines to maintain locality between a virtual
CPU’s cache misses and the associated memory pages to
which the cache misses occur. VMware ESX [36] applies a
statistical sampling approach to obtain aggregate VM work-
ing set directly without any guest involvement. This accurate
estimation of the fraction of memory in active use results in
the system responding rapidly to memory usage increases
while more gradually to the decrease of memory utilization.
Our performance counter driven memory management ap-
proach, which is motivated by these systems, differs from
them in two aspects: (1) instead of maximizing local
memory accesses, our optimization also evaluates three oth-
er NUMA architecture overheads (last level cache conten-
tion, memory controller congestion, and interconnection
congestion); (2) We use various performance counters
(cache miss, cycle loss, and IPC) online to identify and esti-
mate each overhead respectively.

NUMA system optimization. How to leverage NUMA
systems’ architecture features and minimize memory request
overhead is an interesting research topic. Prior studies can be
found in both non-virtualized and virtualized environments.

In non-virtualized systems, Lachaize [37] developed the
first NUMA memory profile (MemProf) based on temporal
flows of interactions between threads and in-memory ob-
jects. The goal is to provide precise and valuable infor-
mation for multithreaded execution in NUMA multicore
machines. Zhuravlev [38] addressed shared resource conten-
tion among multicore processors via DI and DIO algorithms.
They [19] further extended the contention analysis to NU-
MA systems and proposed DINO NUMA-aware manage-
ment algorithm. Dashti [7] investigated the overhead of
NUMA systems and concluded that traffic congestion
(memory controller and interconnection) is the major over-
head.

In virtualized environments, NUMA optimization in-
volves coordination between vCPU scheduling and memory
management. Rao [12] proposed using a “un-core” penalty

335

as a performance index to dynamically determine the opti-
mal vCPU-to-core assignment for NUMA sensitive virtual
machines. Recently, the Xen hypervisor incorporated NU-
MA-aware VM memory initialization with three heuristics
(i.e., greedy, packed, and spread) placement policies. In ad-
dition, VMware ESX [14] supports VM dynamic rebalanc-
ing and intelligent memory migration mechanisms: it trans-
parently moves one VM to the least-loaded node and gradu-
ally migrates memory from the original socket to a new one
to eliminate remote memory access penalty. Nevertheless,
all of these mechanisms only consider remote memory ac-
cess overhead and use the VM consolidation ratio to trigger
balancing and migration operations. Our study profiles and
incorporates four NUMA architectural overhead estimations
with VM memory management. Furthermore, we verify that
our NUMA overhead-aware allocator + P2M swap FIFO
techniques can work seamlessly with vCPU scheduling op-
timizations. Note that the studies on extending NUMA to-
pology to the VM guest [39, 40] (such as vNUMA-mgr) are
orthogonal to the optimization proposed in this paper.
8. Conclusions

This work explores performance optimization opportuni-
ties when consolidating cloud workloads in NUMA virtual-
ized systems. Based on our comprehensive characterization
results from multiple experimental scenarios, three tech-
niques are proposed: memory zone access overhead estima-
tion, a NUMA overhead-aware buddy allocator, and a P2M
swap FIFO. The overhead analysis approach takes the cache
hit rate, the cycle loss due to cache misses and the IPC as
indicators to analyze architecture overhead. Our main idea is
to leverage NUMA overhead awareness in the hypervisor’s
memory management. The optimized allocator reserves
memory pages across selected low-overhead memory nodes.
The P2M swap FIFO provides mapping exchange when
memory pressure is unbalanced across guest’s different
nodes. Our prototyped implementation shows notable per-
formance improvements when consolidating multiple virtual
machines on a real-world server (IBM x3850) system. We
perform further evaluation to examine its adaptability to
other approaches, scalability among different VMs and
physical hosts, and feasibility in terms of operation latency
and storage overhead.
Acknowledgements

We thank the anonymous reviewers and our shepherd,
Boris Grot for their help and feedback. This work is support-
ed in part by NSF grants 1320100, 0845721(CAREER), and
by Microsoft Research Safe and Scalable Multi-core Com-
puting Awards. Ming Liu is also supported by University of
Florida Graduate Fellowship.
References
[1] Server Consolidation Benefits,
http://www.vmware.com/solutions/consolidation/consolidate.html
[2] Amazon EC2, http://aws.amazon.com/ec2/
[3] Windows Azure, http://www.windowsazure.com/en-us/
[4] The 2012 Uptime Institute Data Center Industry Survey, The Uptime
Institute, 2012

[5] Intel QPI, “An Introduction to the Intel QuickPath Interconnect”, White
Paper, 2009
[6] AMD HyperTransport, http://en.wikipedia.org/wiki/HyperTransport
[7] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V.
Quema and M. Roth, “Traffic Management: A Holistic Approach to
Memory Placement on NUMA Systems”, In ASPLOS, 2013
[8] SPEC CPU2006, http://www.spec.org/cpu2006/
[9] NoSQL Database, http://nosql-database.org
[10] Apache Hadoop, http://hadoop.apache.org
[11] OLTP-Bench,
http://oltpbenchmark.com/wiki/index.php?title=Main_Page
[12] J. Rao, K. Wang, X. Zhou and C. Xu, “Optimizing Virtual Machine
Scheduling in NUMA Multicore System”, in HPCA, 2013
[13] Scheduling and Placement of NUMA in Xen System,
http://wiki.xen.org/wiki/Xen_Numa_Scheduling_and_Placement
[14] VMware ESX Server 2 NUMA Support, White Paper
[15] VMware ESX,
http://www.vmware.com/products/vsphere-hypervisor
[16] Citrix XenServer,
 http://www.citrix.com/products/xenserver/overview.html
[17] Dell PowerEdge Server, www.dell.com/PowerEdge
[18] HP Proliant Server, www.hp.com/go/proliant
[19] S. Blagodurov, S. Zhuravlev, M. Dashti and A. Fedorova, “A Case for
NUMA-aware Contention Management on Multicore Systems”, In USENIX
ATC, 2011
[20] R. Nikolaev and G. Back, “Perfctr-Xen: A Framework for Performance
Counter Virtualization”, in VEE, 2011
[21] Intel whitepaper, “First the Tick, Now the Tock: Next Generation Intel
Microarchitecture (Nehalem)”, 2008
[22] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt and A. Warfield, “Xen and the Art of Virtualization”,
in SOSP, 2003
[23] A. Basu, J. Gandhi, J. Chang, M. D. Hill and M. M. Swift, “Efficient
Virtual Memory for Big Memory Servers”, in ISCA, 2013
[24] I. Atta, P. Tozun, X. Tong, A. Ailamaki and A. Moshovos, “STREX:
Boosting Instruction Cache Reuse in OLTP Workloads Through Stratified
Transaction Execution”, in ISCA, 2013
[25] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB”, in SoCC, 2010
[26] Apache Cassandra, http://cassandra.apache.org
[27] Memcached, http://memcached.org
[28] NAS Parallel Benchmarks,
http://www.nas.nasa.gov/publications/npb.html
[29] GraphLab, http://graphlab.org
[30] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D.
Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki and B. Falsafi, “Clearing
the Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-
ware”, in ASPLOS, 2012
[31] Intel Performance Counter Monitor, http://software.intel.com/en-
us/articles/intel-performance-counter-monitor-a-better-way-to-measure-cpu-
utilization
[32] Bin packing problem,
http://en.wikipedia.org/wiki/Bin_packing_problem
[33] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-Clouds: Managing
Performance Interference Effects for QoS-Aware Clouds”, in Eurosys, 2010
[34] I. Paul, S. Yalamanchili, and L. K. John, “Performance Impact of Vir-
tual Machine Placement in a Datacenter”, in IPCCC, 2012
[35] E. Bugnion, S. Devine, and M. Rosenblum, “Disco: Running Com-
modity Operating Systems on Scalable Multiprocessors”, in SOSP, 1997
[36] C. A. Waldspurger, “Memory Resource Management in VMware ESX
Server”, in OSDI, 2002
[37] R. Lachaize, B. Lepers and V. Quema, “MemProf: a Memory Profiler
for NUMA Multicore Systems”, in USENIX ATC, 2012
[38] S. Zhuravlev, S. Blagodurov and A. Fedorova, “Addressing Shared
Resource Contention in Multicore Processors via Scheduling”, in ASPLOS,
2010
[39] D. S. Rao and K. Schwan, “vNUMA-mgr: Managing VM Memory on
NUMA Platforms”, in HiPC, 2010
[40] Q. Ali, V. Kiriansky, J. Simons and P. Zaroo, “Performance Evaluation
of HPC Benchmark on VMware’s ESXi Server”, in ICPP, 2011

336

