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Abstract—As the scales of parallel applications and platforms
increase the negative impact of communication latencies on per-
formance becomes large. Fortunately, modern High Performance
Computing (HPC) systems can exploit low-latency topologies of
high-radix switches. In this context, we propose the use of random
shortcut topologies, which are generated by augmenting classical
topologies with random links. Using graph analysis we find that
these topologies, when compared to non-random topologies of the
same degree, lead to drastically reduced diameter and average
shortest path length. The best results are obtained when adding
random links to a ring topology, meaning that good random
shortcut topologies can easily be generated for arbitrary numbers
of switches. Using flit-level discrete event simulation we find that
random shortcut topologies achieve throughput comparable to
and latency lower than that of existing non-random topologies
such as hypercubes and tori. Finally, we discuss and quantify
practical challenges for random shortcut topologies, including
routing scalability and larger physical cable lengths.

Index Terms—Topology, interconnection networks, high per-
formance computing, high-radix switches, diameter.

I. INTRODUCTION

Large parallel applications to be deployed on next genera-
tion High Performance Computing (HPC) systems will suffer
from communication latencies that could reach hundreds of
nanoseconds [1], [2]. There is thus a strong need for devel-
oping low-latency networks for these systems. Switch delays
(e.g., about 100 nanoseconds in InfiniBand QDR) are large
relatively to the wire and flit injection delays even including
serial and parallel converters (SerDes). To achieve low latency,
a topology of switches should thus have low diameter and
low average shortest path length, both measured in numbers
of switch hops. Fortunately, high-radix switches with dozens
of ports are now available, as seen in the YARC routers for
folded-Clos or Fat-tree networks [3]. These switches make it
possible to design low-latency topologies that use many more
links per switch than traditional high-diameter topologies, e.g.,
the 3-D torus used in the Blue Gene/L supercomputer [4].

Various topologies of high-radix switches have been pro-
posed that have advantages and drawbacks in terms of diame-
ter, average shortest path length, layout (wire length), routing
algorithms, and fault tolerance. These topologies use highly

regular structures that can match application communication
patterns. One drawback of using a regular structure is that it
strictly defines network size (e.g., kn vertices in a k-ary n-
cube topology) even though the scale of an HPC system should
be determined based on electrical power budget, surface area,
and cost. Furthermore, additional mechanisms must often be
used as part of routing algorithms so as to maintain topological
structure in the face of network component failures [4], [5].
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Figure 1. Diameter and average shortest path length vs. degree for a 215-vertex
ring topology with non-random shortcuts and a ring topology with random
shortcuts.

In this work, we investigate the use of random shortcuts,
i.e., additional random edges, in network topologies for HPC
systems. Bollobás et al. [6] note that, for a given degree and
an upper bound on the diameter, random graphs are much
larger than non-random graphs. Consequently, adding random
links to a base graph can significantly reduce its diameter.
Let us take the example of a ring with N vertices so that
each vertex has degree two. Consider a procedure by which
K non-random shortcuts are added to each vertex i so that it is
connected to vertices i + bN/2kc mod N , for k = 1, . . . , K.
The diameter is thus reduced by approximately a factor two
each time a new set of shortcuts is added until no new shortcut
can be added. Consider now an alternate procedure by which
these shortcuts are added randomly instead, i.e., by picking
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each destination vertex uniformly among the possible 2n − 1
vertices, while enforcing that all the vertices have the same
degree so as to allow a comparison between same-degree
topologies. Figure 1 plots diameter and average shortest path
length vs. degree, using a logarithmic scale for the vertical
axis, for two 215-vertex topologies generated using the above
two procedures. The striking observation is that using random
shortcuts affords dramatically lower diameter and average
shortest path length compared to using non-random shortcuts.
Furthermore, a small number of random shortcuts is sufficient
to obtain large improvements. For instance, adding one random
shortcut per vertex yields a diameter of 18 compared to a
diameter of 8,192 with one non-random shortcut. Achieving a
diameter below 20 using only non-random shortcuts requires
a degree of 23.

Our goal in this work is to make a case for using ran-
dom shortcuts when designing network topologies for HPC
systems, which we term “Random Shortcut Topologies.” Our
main contributions are as follows:

• We show that adding random shortcuts to a base topology
drastically reduces both diameter and average shortest
path length, improving vastly upon non-random popular
topologies of the same degree.

• Using flit-level discrete event simulation we show that
random shortcut topologies achieve throughput compara-
ble to and latency lower than that of existing non-random
topologies such as hypercubes and tori.

• We show that random shortcuts lead to robustness to ran-
dom edge removals due to a small-world effect. In large
HPC systems that use traditional topologies, a large num-
ber of redundant cables or resource sparing is typically
needed to ensure reasonable fault-tolerance with custom
routing algorithms (e.g., in the K-computer [5]). Instead,
when using random shortcut topology, we demonstrate
that a topology-agnostic deadlock-free routing scheme [7]
can be used to degrade the throughput gracefully in the
present of faulty links.

• We compare different methods for generating a ran-
dom shortcut topology, namely the use of different
base topologies and of different shortcut generation ap-
proaches. This comparison leads us to conclude that a
good method for generating a random shortcut topology
is to use the simplest base topology, a ring, and to add
random shortcuts using a simple uniform distribution.

• We discuss and quantify the limitations of random short-
cut topologies in terms of routing scalability and cabling
cost.

The rest of this paper is organized as follows. Related
work is discussed in Section II. In Section III, using graph
analysis, we compare random shortcut topologies to standard
non-random topologies and we investigate various methods
for random shortcut topology generation. In Section IV, we
use discrete-event simulation to compare random shortcut
topologies to standard non-random topologies. Section V dis-
cusses various practical issues that arise with random shortcut

topologies. Finally, Section VI concludes the paper with a brief
summary of our findings.

II. RELATED WORK

A. Graphs with Low Diameters

The problem of maximizing the number of vertices in
a graph for given diameter and degree has been studied
by graph theoreticians for decades, striving to approach the
famous Moore bound [8]. Several graphs with tractable and
hierarchical structure and good diameter properties have been
proposed for interconnection networks, including the well-
known De Bruijn graphs [9], (n,k)-star graphs [10], etc. These
graphs are rarely used in interconnection topologies of current
HPC production systems. However, their diversity shows that
the design space for interconnection topologies is large.

B. Topologies of HPC Systems

A few topologies are traditionally used to interconnect
compute nodes in most HPC systems, and these topologies
can be used to interconnect high-radix switches. In direct
topologies, each switch connects directly to a number of
compute nodes as well as to other switches. Popular direct
topologies include k-ary n-cubes, with a degree of 2n, which
lead to tori, meshes, and hypercubes. Each topology leads
to a particular trade-off between degree and diameter. These
topologies are regular, meaning that all switches have the same
degree as each switch is connected to the same number of
switches.

Indirect topologies, i.e., topologies in which some switches
are connected only to the neighboring switches, have also been
proposed. They have low diameter at the expense of larger
numbers of switches when compared to direct topologies. The
best known indirect topologies are Fat trees, Clos network
and related multi-stage interconnection networks such as the
Omega and Butterfly networks. A popular option is (p, q, r)
Fat trees, with a degree of p+q, where p is the number of up-
ward connections, q is the number of downward connections,
and r is the number of tree levels.

More recently, variations of these networks, such as the flat-
tened butterfly [11], have been proposed as a way to improve
cost effectiveness. In fact, for large-scale HPC systems, the
network layout has a high impact on network cost, especially
because longer wires must be optical if high bandwidth is
required [12]. The Dragonfly network uses a group of routers
as a virtual router to reduce the wire length in the context of
high-radix topologies, which is down by distinguishing inter-
cabinet and intra-group networks [13]. Various topologies,
including our random shortcut topologies, can be used for both
the intra-group and inter-cabinet topologies.

Besides popular interconnects based on electric switches,
optical switching devices can provide an attractive alternative
for future interconnects in HPC systems but would require a
topology that has unique properties. Applying optical packet
or burst switching to commercial HPC interconnects still
faces steep challenges, including buffering. By contrast, optical
circuit switching has been widely used for academic Internet
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backbones, and it can be applied to HPC interconnects. Since
it usually takes milliseconds to make or release an end-to-end
circuit path, optoelectric hybrid networks have been discussed
in the HPC context [14]. However, topology design has rarely
been investigated. To minimize large circuit operation over-
head, it is essential to reduce the number of switching elements
on a circuit path. Although random shortcut topologies would
be amenable to this technology, a quantitative evaluation is
beyond the scope of this paper.

C. Distributed Loop Networks (DLN)

A Distributed Loop Network (DLN) is constructed from
a simple ring topology to which are added chordal edges,
or shortcuts. The objective is for these shortcuts to decrease
the diameter while not leading to a large degree increase. An
option is to add sets of “evenly spaced” shortcuts, so that the
diameter decreases exponentially as the degree increases. It
turns out that it is more efficient to add shortcuts in a less
regular manner. For instance, [15] shows an example in which
adding only five shortcuts for a 36-vertex ring can reduce the
diameter from 18 to 9. Determining the minimum-diameter
DLN given a bound on the degree is an open problem. In
this work we make no theoretical claims regarding diameter
properties of DLNs but achieve good practical results based
on the lessons learned in [6].

D. Complex Networks

The usefulness of random, or seemingly random, shortcuts
has been noted for complex networks, e.g., social networks,
and Internet topology. The small-world property of these
networks has received a fair amount of attention in the litera-
ture. Watts and Strogatz [16] proposed a small-world network
model based on a probability parameter that smoothly turns a
single-dimensional lattice into a random graph, and in which
a small number of long edges are used to reduce the diameter
drastically. In addition, scale-free and clustering properties
in complex small-world networks lead to low diameter and
average shortest path length, and also to robustness to random
edge removal.

Researchers have designed approaches that exploit the
small-world property in the areas of computer data net-
works [17], peer-to-peer overlay networks [18] [19], or wire-
less sensor networks [20]. HPC interconnects have a different
structure and thus different salient properties such as uniform
degree, high radix, and low latency. These properties impact
network design when attempting to exploit the small-world
property. For instance, a method that generates random short-
cuts while accounting for topological distance improves the
average shortest path length in large low-radix networks [19].
However, as demonstrated in Section III-F, in the case of
(high-radix) HPC interconnects this method achieves only
marginal improvement over a method that generates random
shortcuts based on a uniform distribution.

Although the small-world property is attractive in inter-
connects of HPC systems, to the best of our knowledge no
works have been published in this context. In this work, by

going beyond traditional topologies in current HPC systems,
we propose an approach that adds random shortcuts to a base
topologies, thereby achieving a small-world effect.

III. GRAPH ANALYSIS

In this section we use graph analysis to compare random
shortcut topologies to non-random topologies in terms of
diameter and average shortest path length, scalability, and fault
tolerance. We then discuss our shortcut random topology gen-
eration method and compare it to alternate methods in terms of
random topology sampling, random shortcut generation, and
choice of base topology.

A. Methodology

We define a network topology as a graph G with N vertices,
where the vertices correspond to identical network switches
with the same radix (i.e., number of ports). On each switch
some of these ports are used to connect to other switches
via network links that correspond to the edges of G. Un-
less specified otherwise, we also consider regular topologies,
meaning that all vertices have the same degree, d, which we
call the degree of the topology. Assuming a radix of 100, the
number of compute nodes supported by the topology is at most
N × (100− d).

We use three metrics for evaluating and comparing topolo-
gies (unless specified otherwise, we only compare same-degree
topologies). Considering the length, in number of hops, of the
shortest path between every vertex pair, the diameter is defined
as the maximum such length while the average shortest path
length is defined as the average. Having a small diameter and a
small average shortest path length is desirable as these metrics
are strongly correlated with communication latencies experi-
enced between compute nodes, especially when the network is
not saturated. We also define a topology’s fault tolerance as the
average percentage of edges that must be randomly removed,
in 1% increments, from the topology so that the diameter
is increased by at least 2, which we arbitrarily take as our
threshold for unacceptable increase in communication latency,
or so that the graph is no longer connected. This average is
computed using a number of samples sufficient to obtain a
95% confidence interval of length 2.

We consider the following “base” topologies:
• DLN-x: A Distributed Loop Network of degree x. Ver-

tices are arranged in a ring, and a shortcut is added
between vertices i and j such that

j = i + bN/2kc mod N for k = 1, . . . , x− 2 .

• MESH-x: An mesh of maximum degree x in which
vertices are arranged in an x/2-dimensional space so that
each vertex is connected to all its one-hop neighbors.

• TORUS-x: An mesh with additional wrap-around edges
so that each vertex is connected to exactly x one-hop
neighbors.

• HYPERCUBE: A hypercube of degree x for 2x vertices.
• F-HYPERCUBE: A folded hypercube of degree x+1 for

2x vertices, as defined in [21].
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• T-HYPERCUBE: A multiply-twisted hypercube of de-
gree x for 2x vertices, as defined in [22].

• FLATBUTTERFLY: A k-ary n-fly flattened butterfly
topology of degree (k − 1)× (n− 1) as defined in [11].
Given a number of vertices, several (k, n) couples are
possible that achieve different trade-offs between degree
and diameter. Picking the largest possible n produces a
hypercube. Picking a lower n and a higher k can lead to
a smaller diameter at the expense of larger degree. For
large values of k, however, one may obtain a topology of
impractical degree. Given 2x vertices, we pick (k, n) so
that the degree is strictly larger than x (the degree of an
hypercube), is as low as possible, and is no larger than
2x. If no such (k, n) couple can be found, we simply do
not report any result for this topology.

In this section we do not present results for mesh topologies
as they are strictly inferior to tori for the metrics we consider.
We use a TOPO-y naming scheme where TOPO is one of
the above base topologies and y is the additional number of
random shortcuts at each vertex. For instance, TORUS-6-3
corresponds to a 3-D torus topology in which each vertex
has degree 9 (6 edges to the 6 one-hop neighbor vertices,
and 3 edges to 3 randomly selected vertices). To add random
shortcuts to a N -vertex graph with degree x so as to obtain
a topology with degree x + y, we simply add y perfect
matchings to the graph. This is done by scanning a list of
vertices sequentially. For a vertex with degree d, we add
max(0, d−x−y) new edges between this vertex and d−x−y
randomly selected vertices that have degrees strictly lower
than x + y. If there is already an edge between the two
vertices, another random vertex is attempted. We attempt to
find each such random vertex at most 10,000 times. If no
feasible vertex is found after 10,000 trials, we scan the list of
vertices sequentially starting from the last attempted random
vertex. It is possible for this procedure to fail (e.g., if the
last two vertices in the list have degree x + y − 2), in which
case it is attempted again. For a given base topology and a
given value for y, we generate 100 sample random topologies
using this method and pick the one with the smallest diameter.
Among those that achieve the same diameter, the one with the
smallest average shortest path length is selected.

We implemented our graph generation analysis program
using the C++ Snap graph library [23], which provides all
necessary abstractions and algorithms. We use this library to
compute exact diameters and average shortest path lengths of
each generated graph. This computation is costly, thus limiting
the size of our graphs to 213 vertices. Nevertheless, assuming
100-radix switches and a (logarithmic) degree of 13, the largest
topologies considered in this work can support over 700,000
compute nodes.

B. Number of Shortcut Links

In this section we generate random shortcut topologies
using the base topologies with the lowest degree, DLN-
2. Figure 2 plots diameter vs. degree for a topology with
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Figure 2. Diameter vs. degree for non-random topologies and for
random shortcut DLN topologies (N = 210 vertices).
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Figure 3. Average shortest path length vs. degree for non-random
topologies and for random shortcut DLN topologies (N = 210 vertices).

N = 210 switches for our six classes of non-random topolo-
gies: DLN-x-0 (x = 2, 3, . . . , 31), TORUS-x-0 (x = 4, 6, 8),
HYPERCUBE-0, F-HYPERCUBE-0, T-HYPERCUBE-0, and
FLATBUTTERFLY-0; and for the DLN-2-y random shortcut
topology (y = 1, 3, . . . , 29). The curve for DLN-x-0 stops at
x = 19 as there is no further improvement for larger degrees.
The vertical axis uses a logarithmic scale. The main observa-
tion is that the random shortcut DLN widely outperforms non-
random topologies. It achieves equivalent or better diameter
than its competitors at lower degrees. For instance, it achieves
a diameter lower than 10 at degree 4, while no other topology
reaches this diameter until the degree is at least 10. Expectedly,
FLATBUTTERFLY-0 leads to lower diameter than TORUS-x-
0 and HYPERCUBE-0 at the expense of significantly larger
degree, e.g., a diameter of 5 at degree 15. By comparison, the
same diameter is achieved by DLN-2-6 at degree only 8. F-
HYPERCUBE-0 and T-HYPERCUBE-0, which are variations
on a standard hypercube, lead to the best results among
the non-random topologies, both achieving a diameter only
one hop larger than that achieved by DLN-2-y with same
degree. Figure 3 is similar to Figure 2 but plots the average
shortest path length (hence the smoother curves). DLN-2-y
outperforms its competitors for this metric as well, and in
fact wins by a larger margin than in Figure 2. Interestingly,
F-HYPERCUBE-0 and T-HYPERCUBE-0 do not fare better
than the standard hypercube in terms of average shortest path
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length.

C. Scalability
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Figure 4. Diameter increase over DLN-2-y when using non-random topolo-
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same degree, vs. N .

 0

 2

 4

 6

 8

 10

 6  8  10  12  14  16  18  20

In
cr

ea
se

 in
 a

ve
ra

ge
 p

at
h 

le
ng

th
 (h

op
s)

Network size [log2 N]

DLN-3-0
DLN-5-0
DLN-7-0

TORUS-4-0
TORUS-6-0
TORUS-8-0

HYPERCUBE-0
F-HYPERCUBE-0
T-HYPERCUBE-0

FLATBUTTERFLY-0
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The overriding concern for a topology is its scalability, i.e.,
how the diameter and average shortest path length grow as
the topology becomes larger. To see how the advantage of
using random shortcuts evolves as N increases, we compare
the diameter of the DLN-2-y to that of non-random topologies.
To allow for fair comparisons, we only compare DLN-2-y,
which has degree y + 2, to topologies that have also degree
y+2. Figure 4 plots the difference in diameter when compared
to DLN-2-y as N goes from 26 to 213. A positive value
means that DLN-2-y has the advantage. For all non-random
topologies these differences increase with N , meaning that
as topologies become larger it is increasingly beneficial to use
random shortcuts. The increase is steep for DLN-x-0, TORUS-
x-0, and HYPERCUBE-0, and moderate for F-HYPERCUBE-
0, T-HYPERCUBE-0, and FLATBUTTERFLY-0. In fact, for
a small topology with N = 26 F-HYPERCUBE-0 has a
diameter of 3 (for a degree of 7) while DLN-2-5 has a diameter
of 4. Once N ≥ 29, none of these three topologies achieve a
diameter as low as DLN-2-y. At N = 213 they have diameters
larger than that of DLN-2-y by 2 hops. Figure 5 is similar
but shows relative difference in average shortest path length.
We observe that all curves are increasing and that no value
is negative, meaning that DLN-2-y always has the advantage

and that this advantage increases as topologies become larger.
Note that in some cases the ranking between the non-random
topologies is different than that seen in Figure 4. For instance,
F-HYPERCUBE-0 leads to a lower diameter increase over
DLN-2-y than T-HYPERCUBE-0 but to a higher average path
length increase.

Lowering the diameter of a topology is a worthwhile
objective because the diameter is strongly correlated to the
worst-case source-destination latency. However, the diameter
has another important implication: a lower diameter leads to
a lower end-to-end path length diversity since the number
of possible path lengths becomes more constrained. As a
result, latencies between all possible source-destination pairs
are more uniform. The implication is that topology-aware al-
location of tasks to compute nodes, a challenging undertaking
when developing a parallel application, becomes less critical
as the diameter decreases. Put another way, a topology with
more uniform latencies across all possible node pairs makes
it more difficult to produce poor task allocations. While much
parallel application development and tuning effort is spent for
determining good task allocations on standard non-random
topologies, random shortcut topologies provide us with an
attractive alternative. Although they make it likely impossible
to determine an optimal task allocation for a given application
due to their randomness, they should lead to reasonable
application performance regardless of task allocations.

D. Fault Tolerance
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Figure 6. Fault tolerance vs. degree (N = 212 vertices).

An important property of a topology is its resilience to link
failures. In Section III-A we have defined a fault-tolerance
metric, and in this section we evaluate this metric for several
topologies while varying the degree.

Figure 6 shows fault-tolerance results for topologies with
N = 212 vertices (higher values mean better fault-tolerance).
Unsurprisingly, the non-random DLN topology achieves the
worst fault-tolerance results. The torus topology, culminating
in the hypercube, leads to the best results. For instance, for
the hypercube with a degree of 12 fault-tolerance is just
above 40%, meaning that 40% of the edges can be randomly
removed before the diameter reaches a value of 14. The
random DLN topology falls in between with, for instance, a
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fault-tolerance rating around 29% at degree 12. To achieve the
fault-tolerance value of hypercube, the random DLN requires
degree 16. Note that removed edges may be either edges
in the original DLN-2 ring or shortcuts. F-HYPERCUBE-
0 and T-HYPERCUBE-0 lead to fault tolerance lower than
HYPERCUBE-0, comparable to that of DLN-2-y. Recall that
our fault tolerance metric is about diameter degradation due
to edge removals. F-HYPERCUBE-0 and T-HYPERCUBE-
0 have such lower diameter than HYPERCUBE-0 that their
diameter is more sensitive to edge removal. Also, it may
seem surprising that FLATBUTTERFLY-0, which has a higher
degree and thus more edges, leads to a fault-tolerance value
below that of HYPERCUBE-0. But recall that our metric is
computed based on the number of edge removals relative to
the total number of edges, rather than on an absolute number
of edge removals. We observed similar results for all values
of N between 26 and 212. While not as impressive as the
torus and hypercube topology, the random DLN topologies
achieve good fault-tolerance results. Experiencing a diameter
increase of only two when around 30% of the edges are
randomly removed is likely more than sufficient in practice.
Furthermore, although random edge removal is interesting
from a graph analysis point of view, in practice fault-tolerance
depends on the routing scheme. In the case of standard non-
random topologies, custom deadlock-free routing algorithms
are used. These algorithms are typically not robust in the
face of failed links. Instead, robustness must rely on topology-
agnostic routing schemes that can route “around” failed links.

E. Random Topology Sampling
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Figure 7. Diameter and percentage of samples that achieve the best diameter
across the 100 samples vs. degree for DLN-2-y with N = 210 vertices.

Our method for generating random shortcut topologies
involves selecting one topology among 100 random samples
(the one with the lowest diameter). In this section we first
investigate the variability among these samples and whether
100 samples are sufficient. While answering such questions
theoretically is outside the scope of this work, we can provide
empirical answers. In all sets of 100 samples, we find that

the diameters of the samples differ at most by 1. Figure 7
shows results for DLN -2-y with y = 1, . . . , 30 in the case
N = 210. The curve plots the best diameter achieved over
the 100 samples vs. the degree, while the bar graph plots the
percentage of samples that achieve this best diameter value.
We see that in many cases more than 95% of the samples
have the same (best) diameter. Drops in this percentage occur
when there is a diameter decrease as the degree increases. For
instance, while 100% of the samples achieve a diameter of 5 at
degree 10, only 4% of them achieve a diameter of 4 at degree
11. Once the degree reaches 12, then most of the samples
have a diameter of 5. One may thus wonder whether using
more samples for degree 10 would yield a “lucky” topology
with diameter 4. We ran simulation experiments using 10,000
samples instead of 100, for N = 26, . . . , 213, and did not
observe a single improvement in diameter. In other words,
in all our experiments, a “good” topology is always found
in the first 100 samples. This conclusion holds as well when
considering the variability of the average shortest path length.
In all our experiments the coefficient of variation of this metric
computed over the samples decreases as N increases and as
the degree increases, starting with a value at about 2.3% for
N = 25 and degree 3 (i.e., DLN-2-1). For instance, over the
100 samples for DLN-2-9 for N = 210, the coefficient of
variation of the average shortest path length is below 0.25%.
The largest value of average shortest path length across these
samples is less than 1% larger than the smallest value. Our
overall conclusion is that variability across samples is low, and
that a moderate number of samples is sufficient. Furthermore,
if the number of samples is too small, then the diameter is
typically only increased by one and the average shortest path
is impacted only marginally.

F. Random Shortcut Generation Method

Our approach for building random shortcut topologies does
not take into account the quality/usefulness of the random
shortcuts. All shortcuts may not be equal in their abilities
to reduce diameter and average shortest path length. In this
section we experiment with a more sophisticated, but also
more costly, shortcut generation method. When adding y
shortcuts to a vertex, k×y random feasible destination vertices
are found with k ≥ 1. The length (in number of hops)
of the shortest path to each of these vertices is computed.
The y vertices with the longest shortest paths are selected as
the destinations of shortcuts. The goal is to pick shortcuts
judiciously, i.e., to avoid adding shortcuts between vertices
that already have a short shortest path between them. We
repeated all our experiments with the DLN-2-y topology
for N = 26, . . . , 211, and y = 1, . . . , 28, for a total of
25 × 6 = 150 experiments. We used k = 1 (i.e., our original
approach), k = 2 and k = 5. Over all 150 experiments,
using k = 2 improves the diameter in 11 of the 150 cases
when compared to using k = 1. Using k = 5 leads to an
improved diameter over k = 2 in 6 cases. In all these cases,
the diameter is decreased by 1 and increasing y by 1 leads
to identical diameters regardless of the value of k. In terms
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of average shortest path, relative percentage improvements are
at most 0.02%. We conclude that selecting shortcuts based on
shortest path lengths yields only minor improvements. This
improvement comes at the expense of longer computation time
since the number of shortest path computations is proportional
to k−1. This additional cost is tolerable if the topology needs
to be computed once and for all. In this work, because we
generate many topologies for the purpose of analysis, we use
k = 1 even though marginally better results could be achieved
with k > 1. We experimented with other, less costly, methods
for picking “good” shortcut destination vertices (e.g., ensuring
that they are evenly distributed over the ring, ensure that half
of them are more than N/4 ring-hops away from the source)
but did not observe any improvement over our base approach.

We have only considered random shortcut topologies that
are regular, meaning that all vertices have the same degree.
We now investigate the impact of this constraint by generating
y shortcuts from a source to a random destination regardless
of the destination’s degree. Furthermore, if an edge between a
source and a destination already exists, then we simply ignore
it. The resulting topology has vertices of varying degrees, and
is thus irregular. Figures 8 and 9 show results for diameter and
average shortest path length, respectively, where topologies
generated using this new method are labeled “irr”. We see that
in our results irregular topologies never lead to improvements
over their regular counterparts. Minimum and maximum vertex
degrees for these irregular topologies are shown for selected
network sizes in Table 1 when 2 or 6 random shortcuts
are added to each vertex. Results in this table show the
large degree diversity in the topology, which turns out to
be detrimental to diameter and average shortest path length.
We conclude that our approach, which consists in iteratively
adding random matchings to a base topology, is preferable.
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Figure 8. Diameter vs. N for reg-
ular and irregular random shortcut
topologies.
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random shortcut topologies.

Table 1. Minimum and maximum vertex degrees in irregular topologies for
selected N values.

Network size N = 28 N = 210 N = 212

Avg. degree min max min max min max
4 2 8 2 9 2 11
8 2 12 3 16 2 21

G. Choice of the Base Topology
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Figure 10. Diameter vs. degree for random shortcut topologies generated
using different base topologies (N = 210 vertices).
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In all previous results we have constructed our random
shortcut topologies using DLN-2 as a base topology, i.e.,
the connected topology with the lowest possible degree. In
this section we investigate whether improvements can be
achieved by using other base topologies that have higher
degrees but lower diameters and average shortest path lengths.
We conduct experiments for N = 210 vertices, generating
random shortcut topologies using the method in the previ-
ous section but employing the following base topologies:
DLN-2, DLN-3, DLN-5, TORUS-4, TORUS-6, TORUS-8,
HYPERCUBE, F-HYPERCUBE-0, T-HYPERCUBE-0, and
FLATBUTTERFLY-0. For each obtained topology we com-
pute its diameter, average shortest path length, and fault-
tolerance. As before, we only compare topologies with iden-
tical degrees (e.g., DLN-2-5 and TORUS-4-3). Results are
shown in Figure 10 for the diameter and Figure 11 for the
average shortest path length. As the degree increases, all
generated topologies lead to increasingly lower and similar
values. In other words, once many random shortcuts are
added the choice of the base topology has no impact. The
main observation, however, is that across the board random
shortcut topologies generated from the DLN-2-y are never
outperformed. In other words, among same-degree random
shortcut topologies, the best topology is the one with the
smallest number of non-random edges!

Comparing these same topologies in terms of fault-
tolerance, no strong trends emerge and no base topology is
always the best. Out of 117 one-to-one topology comparisons
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between DLN-2-y and another random topology of the same
degree but generated using a different base topology, DLN-2-y
leads to a lower fault-tolerance in 56 of the cases. However,
in only 15 of these cases is the difference larger than 5 (recall
that fault-tolerance values are percentage values between 0
and 100), and the largest difference is below 14. These larger
differences disappear once the degree is increased by one.
We conclude that the fault-tolerance of the random shortcut
topology is not sensitive to the choice of the base topology.

H. Guidelines for Generating Random Shortcut Topologies

Our graph analysis results provide several empirical guide-
lines for generating random shortcut topologies:
• The ring (DLN-2) topology is the base topology of choice

when generating random shortcut topologies.
• Few random samples are needed to find a good DLN-2-y

topology.
• Striving to pick high-quality random shortcuts (e.g., ones

between vertices with long shortest paths) yields only
marginal improvements.

• However, preserving base topology regularity by generat-
ing shortcuts based on random matchings leads to better
results than adding shortcuts without considering vertex
degree.

IV. SIMULATION EVALUATION

In this section, we use discrete event network simulation
to evaluate the performance of random shortcut topologies
(DLN-x-y) and compare them to meshes (MESH-x-0), tori
(TORUS-x-0), and hypercube family (HYPERCUBE-0 and
F-HYPERCUBE-0). We do not evaluate T-HYPERCUBE-0
in this section. However, given the results in Section III, it is
unlikely that this topology would lead to significant advantage
over F-HYPERCUBE-0. Because discrete event simulation is
compute intensive, we simulate networks with at most 512
switches. Note, however, that the analysis results in Section III
show that the advantage of random shortcut topologies over
non-random topologies increases as topologies grow in size.

A. Simulation Environment

We use a cycle-accurate network simulator written in
C++ [24]. Every simulated switch is configured to use virtual
cut-through switching. As in the previous section, all switches
have the same number of ports. We only consider regular
topologies, meaning that all switches connect directly to the
same number of hosts (compute nodes) and to the same
number of other switches. A model consisting of channel
buffers, a crossbar, a link controller and the control circuits
is used to simulate the switching fabric. A header flit transfer
requires over 100 nanoseconds that include the routing, virtual-
channel allocation, switch allocation, and flit transfer from
an input channel to an output channel through a crossbar.
The flit injection delay and link delay together are set to
20 nanoseconds. Routing in meshes, hypercubes, and folded
hypercubes is done with the protocol proposed by Duato [25],
and we use dimension-order routing for the escape path. For

random shortcut DLNs we use a topology-agnostic adaptive
routing scheme as described in [26], with up*/down* routing
as the escape path. Once packets are sent along an escape
path they cannot use adaptive paths, but most packets can
take minimal paths. In our simulation, two virtual channels
are used in all topologies. Tori use dimension-order routing,
because the protocol in [25] requires three virtual channels.

We simulate 3 synthetic traffic patterns that determine each
source-and-destination pair: random uniform, bit-reversal,
matrix-transpose. These traffic patterns are commonly used
for measuring the performance of large-scale interconnection
networks, as described for instance in [27]. The hosts inject
packets into the network independently of each other. In our
synthetic traffic, the packet size is set to 33 flits (one of which
is for the header). Each flit is set to 256 bits, and effective
link bandwidth is set at 96 Gbps. We pick these relatively
small packet sizes since we wish to study the performance of
latency-sensitive traffic, which is expected to consist of small
messages [1].

Our results show two important metrics: latency and
throughput. The latency is the elapsed time between the
generation of a packet at a source host and its delivery at
a destination host. We measure latency in simulation cycles,
and then convert to nanoseconds using 2.5ns per cycle. The
throughput, measured in Gbps, is defined as the maximum
accepted traffic, where the accepted traffic is the flit delivery
rate.

B. Number of Shortcut Links

Figures 12 to 20 plot network latency vs. accepted traffic
for 64-, 256-, and 512-switch topologies, in each case for
uniform synthetic traffic (Figures 12, 15, and 18), for bit-
reversal synthetic traffic (Figures 13, 16, and 19), and for
matrix-transpose synthetic traffic (Figures 14, 17, and 20).

Overall, HYPERCUBE-0 or F-HYPERCUBE-0 leads to the
best results among the non-random topologies in terms of
latency and throughput. Still using same-degree comparisons,
we see that DLN-2-y achieves latency up to 18% lower than
HYPERCUBE-0 and up to 12% lower than F-HYPERCUBE-
0 before network saturation in the case of uniform traffic,
and up to 16% and 6% lower in the case of bit reversal
traffic, respectively. This corroborates our results in Section III
in the sense that latency is expected to be correlated with
diameter and average shortest path length. Importantly, DLN-
2-y and HYPERCUBE-0 achieve similar throughput, and in
the case of 512-Switch topologies DLN-2-8 achieves 36%
throughput improvement over F-HYPERCUBE-0. Turning to
lower-degree topologies, we see that the advantage of DLN-2-
y is more pronounced. For instance, DLN-2-4 reduces latency
by up to 27% compared to that of TORUS-6-0, and improves
throughput by up to 43%. Throughput is affected both by
traffic balance and average shortest path lengths, and DLN-2-
y achieves a good trade-off between the two, in part because
it can achieve low average shortest path length at low degree.
Our results show that as N increases, the TORUS/MESH-
4-0 and TORUS/MESH-6-0 topologies do not scale well.
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Figure 12. Latency vs. accepted traffic for non-
random topologies and random shortcut topologies
(64 switches, 256 hosts, uniform).
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Figure 13. Latency vs. accepted traffic for non-
random topologies and random shortcut topologies
(64 switches, 256 hosts, bit reversal).
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Figure 14. Latency vs. accepted traffic for non-
random topologies and random shortcut topologies
(64 switches, 256 hosts, matrix transpose).
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Figure 15. Latency vs. accepted traffic for non-
random topologies and random shortcut topologies
(256 switches, 2,048 hosts, uniform).
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Figure 16. Latency vs. accepted traffic for non-
random topologies and random shortcut topologies
(256 switches, 2,048 hosts, bit reversal).
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Figure 17. Latency vs. accepted traffic for non-
random topologies and random shortcut topologies
(256 switches, 2,048 hosts, matrix transpose).
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Figure 18. Latency vs. accepted traffic for non-
random topologies and random shortcut topologies
(512 switches, 8,192 hosts, uniform).
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Figure 19. Latency vs. accepted traffic for non-
random topologies and random shortcut topologies
(512 switches, 8,192 hosts, bit reversal).
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Figure 20. Latency vs. accepted traffic for non-
random topologies and random shortcut topologies
(512 switches, 8,192 hosts, matrix transpose).

By contrast, the latency and throughput of HYPERCUBE-
0, F-HYPERCUBE-0 and DLN-2-y degrade gracefully as N
increases. Finally, we observe that DLN-2-y leads to good
results regardless of the traffic pattern.

A valid concern with the DLN random topology is that of
performance variability between different random instances
of the DLN-2-y configuration. In Section III-E, we have
seen that diameter and average shortest path length variability
across different DLN-2-y samples is low. It turns out that
variability is also low both for throughput and latency. We con-
ducted experiments for 20 different sample 256-switch DLN-
2-6 topologies, i.e., each sample contains different shortcuts.
Figures 21 and 22 show the lowest and highest achieved
latency over these 20 samples vs. accepted traffic for both

the matrix-transpose and bit-reversal synthetic traffic patterns
(results are identical for the uniform traffic pattern). The main
result is that both curves are close to each other, with a relative
difference at most 0.2%.

C. Fault Tolerance

Distributed dynamic or static network reconfiguration tech-
niques to update routing information upon port/link failures are
well developed on irregular topologies [28]. Such techniques
can be applied to random shortcut topologies as well. In this
section, we evaluate the impact of link failures on throughput
and latency once the network has been reconfigured to route
“around” the failed links.

We perform simulation experiments for a DLN-2-6 topolo-
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Figure 21. Latency vs. accepted
traffic for 20 random shortcut pat-
terns of DLN-2-6 (256 switches, bit
reversal).
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Figure 22. Latency vs. accepted
traffic for 20 random shortcut pat-
terns of DLN-2-6 (256 switches, ma-
trix transpose).

gies with 256 switches. We randomly remove 0%, 5%, 10%,
and 20% of the network links, and simulate the uniform,
bit-reversal, and matrix-transpose synthetic traffics used in
the previous section. Recall that even links that are part of
the original ring may be removed. For the random shortcut
DLN we employ topology-agnostic routing even when there
are no faults, as opposed to standard non-random topologies
that employ custom routing to exploit the regularity of their
structures in fault-free conditions. In the results presented
hereafter the topology remains connected after link removal.

Figures 23 to 25 show latency and accepted traffic results
for uniform and bit reversal traffic patterns, respectively. The
key observation here is that latency and throughput decrease
gracefully regardless of the traffic pattern, which indicates that
random shortcut DLN topologies are robust to link failures.

V. DISCUSSION OF LIMITATIONS

A. Case Study: Random Shortcut Links on Myrinet-Clos

A popular topology in HPC systems is the indirect Myrinet-
Clos [29], and in this section we investigate the impact of
adding random shortcuts to it. We consider a 256-host three-
layer Myrinet-Clos with 80 16-port switches. Hosts are split in
four 64-host (non-blocking) Clos groups each with 16 switches
(including leaf and midspine).

We consider two ways in which this topology can be
randomized. First, we consider the swapping of end-points
between randomly selected leaf-midspine links. We experi-
ment with swapping 20%, 50%, or 80% of the links. We also
consider adding random links to the topology, thus increasing
the degree. We experiment with adding 1 or 2 random links
per switch. We also add 8 or 16 random links per 64x64 Clos
group. This corresponds to adding 1 or 2 links per switch so
that each group is randomly connected to a midspine block
with 8 or 16 links. Latency and accepted traffic results for
all these variants, and for the original topology, are shown in
Figure 26.

Some of the results in this figure reveal that using random
shortcuts decreases throughput significantly, although random
shortcuts are always beneficial for latency, as is expected
due to the reduced average shortest path length. Myrinet-Clos

provides well distributed paths, with a relatively low diameter.
Replacing original links by random links, or adding random
links between midspine and leaves, introduces imbalance that
reduces the achievable throughput. The only cases in which the
throughput is not impacted, and in fact slightly improved, is
when random links are added to 64x64 blocks. This is because
these additions do not create imbalance since each block is
connected to each midspine blocks.

These results show that randomness is no always beneficial
in terms of throughput, in this case due to path imbalance.
Given a base topology, identifying topological features that
determine whether the addition or random shortcuts would be
beneficial or detrimental is an interesting open problem.
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Figure 26. Latency vs. accepted traffic for random shortcut patterns on
Myrinet Clos (80 switches, 256 hosts).

B. Routing Scalability

Custom routing implementations in large-scale HPC sys-
tems that use non-random topologies can exploit topological
regularity, e.g., dimension-order routing, to make routing logic
simple and small. By contrast, random shortcut topologies
cannot rely on such schemes because the topology does not
have a simple structure. Source routing or distributed routing
using routing tables is thus needed. Consequently, the scale
of random shortcut topologies can be limited by routing
table size at each switch. However, we note that 87% of the
supercomputers posted on the November 2011 Top500 list [30]
are based on Ethernet or InfiniBand. For all these systems, the
routing table size is thus also a scalability limitation regardless
of the topology used. Techniques have been developed to
compact routing table entries, such as region-based routing
in network-on-chip settings[31], and can be used to mitigate
this scalability concern.

Another potential scalability issue is the computational cost
of path computation for topology-agnostic deadlock-free rout-
ing, which is more complex than when routing on structured
topologies (see the survey in [7]). Essentially, the complexity
of the path computation is O(N2) or higher, where N is the
number of switches. However, this computation needs to be
performed only when initially deploying the system and after
a change in system configuration (e.g., due to link/switch fail-
ure). Consequently, concerns about path computation should
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Figure 23. Latency vs. accepted traffic for faulty
DLN-2-6 (256 switches, 2,048 hosts, uniform).
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Figure 24. Latency vs. accepted traffic for faulty
DLN-2-6 (256 switches, 2,048 hosts, bit reversal).
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Figure 25. Latency vs. accepted traffic for faulty
DLN-2-6 (256 switches, 2,048 hosts, matrix trans-
pose).

arise only at extremely large scale.

C. Physical Cable Length and Maintainability

Beyond the metrics that we have already investigated in
previous sections, another practical concern when deploying
an HPC interconnect is physical cable length, which impacts
cost [13]. If the cable length for inter-cabinet connection is one
or more orders of magnitude longer than the intra-cabinet con-
nection, inter-cabinet cables would need to be optical. In the
case of InfiniBand, typical maximum length of passive copper
is 10m, that of active copper is 40m, connectorized copper is
30m, and embedded optical is 100m [12]. Aggregate cable
length can reach astronomical proportions, e.g., about two
thousands kilometers in the first Earth Simulator platform [32].
The addition of random shortcuts can further increase cable
length, and thus cost. In this section we approximately quantify
the impact of random shortcuts on average cable length,
comparing DLN-2-y to tori and hypercubes.

We estimate average cable length based on the parameters
and the layout presented in [11]: 128 nodes per cabinet,
0.57m × 1.44m cabinet footprint, 2m cable overhead when
wiring inter cabinet cables, and 75 nodes/m2 density. The inter
cabinet cables are set to be 2m, and eight hosts are connected
to a switch. We assume that each cabinet is located in a 2-D
dimensional square. To make the wiring layout as regular as
possible, each cable is not drawn as a straight line between two
components, but instead drawn as a sequence of orthogonal
horizontal and vertical segments inside the 2-D square. In
other words, cable lengths are computed using the Manhattan
distance. We consider two layout patterns. In the distributed
layout, each switch is located near its local hosts in the same
cabinet while in the centralized layout all switches are in
central cabinets that only store switches. Although traditional
direct topologies typically fit with the distributed layout, for
high-radix switches with larger number of links to switches
than to local hosts the centralized layout may be preferable.

Figures 27 and 28 plot average cable length, for both inter-
and intra-cabinet links between switches, for both layouts. All
topologies have the same number of same-length links between
hosts and switches, and these lengths are not included in the
computation of the average cable length.
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Figure 27. Average cable length
vs. N for non-random topologies
and random shortcut DLN with dis-
tributed switch layout.
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Figure 28. Average cable length vs.
N for non-random topologies and
random shortcut DLN with central-
ized switch layout.

Not surprisingly, the centralized switch layout reduces the
number of inter-cabinet cables between switches compared
to the distributed switch layout. The average cable length of
TORUS-6-0 is low across the board. This is because all wires
for two-dimensional surfaces are stored within a single cabinet,
due to a 3-D natural mapping to the layout, whether centralized
or distributed. In the case of the centralized switch layout,
the hypercube also fits nicely within the central cabinets.
At any rate, these results show that the random shortcut
DLN increases the average cable length by about 2m in the
centralized switch layout when N = 210, or about 10m when
N = 212. While this is a significant increase, the important
point is that it is not so high as to mandate the replacement
of electrical cables by optical cables. This increase may thus
be a small price to pay given the large benefits in terms of
diameter and average shortest path length, at least for up to
N = 212 switches.

Another cable-related concern is maintainability. Once an
HPC system is built on a floor, wiring a new cable below
or above this floor is costly. Over many years a fraction of
the cables incur soft errors that mandates cable replacement.
Consequently, some recent HPC systems with non-random
topologies initially use backup cables, which is costly. By
contrast, random shortcut topologies with topology-agnostic
routing can work well on any set of switches and links and
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do not require backup cables.

VI. CONCLUSIONS

We have proposed the use of random shortcuts in network
topologies primarily as a way to improve communication
latency. We have shown that, when comparing to classical
topologies of identical degree, random shortcuts improve the
diameter by up to one order of magnitude. For instance, a
ring with two random shortcuts per switch for a total degree
of 4 has a smaller diameter than a hypercube with degree 12
in the case of N = 4, 096 switches. Similar improvements
are achieved for average path length. Random shortcuts also
bring benefits in terms of fault tolerance, meaning that a large
fraction of network links can fail without the diameter increas-
ing by more than two hops. Results from flit-level discrete
event simulation have shown that random shortcuts can reduce
communication latency by up to 18% when compared to a
hypercube topology and by up to 12% to a folded hypercube
topology, while leading to similar or higher throughput. More
generally, as the number of shortcuts increases, both the
latency and throughput improve.

We have determined that a simple method to pick shortcuts
applied to a ring base topology leads to a good random shortcut
topology, which we called DLN-2-y. To enable comparison
to other topologies, we have only generated random shortcut
topologies with numbers of switches that are powers of two.
However, an advantage of DLN-2-y, unlike other non-random
topologies, is that it does not impose any constraints on
the total number of switches in the network. As a result
the scale of the network can be determined solely based on
space, power, cooling, and budget constraints. Finally, we have
investigated limitations of our approach, most importantly in
terms of routing scalability and cable length. We have found
that although challenges arise at very large scale, high-radix
DLN-2-y can be used to support systems with hundreds of
thousands of compute nodes.
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