
Warped Gates: Gating Aware Scheduling and
Power Gating for GPGPUs

Mohammad Abdel-Majeed
∗

abdelmaj@usc.edu
Daniel Wong

∗

wongdani@usc.edu
Murali Annavaram

annavara@usc.edu
Ming Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089

ABSTRACT
With the widespread adoption of GPGPUs in varied ap-
plication domains, new opportunities open up to improve
GPGPU energy efficiency. Due to inherent application-level
inefficiencies, GPGPU execution units experience significant
idle time. In this work we propose to power gate idle exe-
cution units to eliminate leakage power, which is becom-
ing a significant concern with technology scaling. We show
that GPGPU execution units are idle for short windows of
time and conventional microprocessor power gating tech-
niques cannot fully exploit these idle windows efficiently due
to power gating overhead. Current warp schedulers greed-
ily intersperse integer and floating point instructions, which
limit power gating opportunities for any given execution unit
type. In order to improve power gating opportunities in
GPGPU execution units, we propose a Gating Aware Two-
level warp scheduler (GATES) that issues clusters of instruc-
tions of the same type before switching to another instruc-
tion type. We also propose a new power gating scheme,
called Blackout, that forces a power gated execution unit to
sleep for at least the break-even time necessary to overcome
the power gating overhead before returning to the active
state. The combination of GATES and Blackout, which we
call Warped Gates, can save 31.6% and 46.5% of integer and
floating point unit static energy. The proposed solutions suf-
fer less than 1% performance and area overhead.

Categories and Subject Descriptors
C.1.4 [Computer Systems Organization]: Processor Ar-
chitectures—Parallel Architectures

∗Abdel-Majeed and Wong made equal contributions to this
work.

c© Abdel-Majeed, Wong, Annavaram 2013. This is the author’s version
of the work. It is posted here for your personal use. Not for redistribu-
tion. The definitive Version of Record was published in Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture.
http://dx.doi.org/10.1145/2540708.2540719
MICRO’46 December 7-11, 2013, Davis, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2638-4/13/12 ...$15.00.

General Terms
Design, Performance

Keywords
GPGPUs, Warp Scheduling, Power Gating

1. INTRODUCTION
Graphics processing units (GPUs) are massively parallel

processors that are designed to run workloads with thou-
sands of concurrent threads. By using a SIMT (single in-
struction multiple threads) execution model, GPUs can ex-
ecute the same instruction but with hundreds of different
data operands concurrently. The simplified control logic
coupled with massive parallelism can achieve hundreds of
GFLOPs of peak throughput at low power. Due to their
high throughput and excellent performance/watt, GPUs are
being re-architected to run applications beyond traditional
multimedia, such as modeling of physical phenomena and
large scale data analytics. When GPU designs are stretched
to become general purpose GPUs (GPGPUs), they suffer
reduced performance/watt due to several reasons. In [5,
12, 14] the authors showed that there is a wide variation in
resource utilization when GPGPUs run applications with di-
verse parallelism demands. This variation leads to resource
underutilization in GPGPUs which reduces power efficiency.
GPGPU power efficiency is a growing concern as reflected
by the recent research activity in this area [5, 12, 16, 22].

In [16], the authors showed component-level power break-
down for the NVidia GTX480 GPGPU. Their results showed
that execution units consume 20.1% of the total platform
power, followed by memory (17.8%) and register file (13.4%).
Using the GPUWattch tool [16] we measured the static and
and dynamic power for integer and floating point units for
NVidia GTX480 GPGPU while running a range of GPGPU
workloads (experimental details provided in Section 7). In
Figure 1b the first two bars show the distribution of static
and dynamic power. These results show that static energy
accounts for about 50% of the total energy consumed in in-
teger execution units, and more than 90% in floating point
units. As technology scaling continues, handling component
leakage power will become increasingly important.

Prior research has reduced static power consumption in
memory and register files of GPGPUs [24, 5], but to the
best of our knowledge, techniques for reducing static power
of execution units within a GPGPU have not been explored.
In this research, we show that due to inherent application-

	 	 	 V	 	 	 	 Dec_INST	 	 	 R	
	 	 	 V	 	 	 	 Dec_INST	 	 	 R	
	 	 	 V	 	 	 	 Dec_INST	 	 	 R	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

C	 C	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

LD/ST	

SFU	

SFU	

SFU	

SFU	

 SFU LD/ST SP0 SP1

INT	
Unit	

Operands	

Result	 Queue	

FP	
Unit	

Warp	 Scheduler	
(2-‐level)	

Register	 File	
128KB	

ExecuLon	 Units	

64KB	 shred	
Memory/L1	 cache	

SM	

InstrucLon	 Cache	
Fetch	 and	 decode	

I_Buffer	

(a) GTX480 SM architecture

0%	
20%	
40%	
60%	
80%	
100%	

Int	 Fp	 Int	 Fp	
Baseline	 Conven7onal	

Power	 Ga7ng	

N
or
m
al
ize

d	
En
er
gy
	

Dynamic	 Overhead	 Sta7c	 	

(b) Power breakdown for execution units

Figure 1: Baseline Nvidia GTX480 details

level inefficiencies GPGPU execution units experience sig-
nificant idle time. We propose to power gate idle execution
units to reduce the static power. Power gating allows unused
execution units to be turned off (or gated) when not in use
thereby mitigating static power consumption. Power gating
has been widely used in microprocessors [13], caches [11],
and NOCs [9]. Power gating has also been used in GPUs,
but at a coarser granularity of gating whole streaming multi-
processor (SM) [22]. However, when applying power gating
at a finer granularity of execution units in a GPGPU sev-
eral new challenges arise. The focus of this work is to first
describe these challenges and propose solutions to address
them.

The following are the contributions of this work:
Conventional power gating limitations for GPGPU

execution units: We found that GPGPU execution units
tend to be idle only for very short periods (majority of time
less than 10 cycles), which conventional power gating tech-
niques [13] are unable to exploit. We show that the Two-
level warp scheduler [12] used in current GPGPUs greedily
schedules instructions to execution units which results in
short switching cycles between different types of execution
units, such as floating point, integer, special function units,
and load/store units. Hence, no single execution unit stays
idle for sufficiently long period to amortize the cost of power
gating overhead.

Gating Aware Two-level warp scheduler: To ad-
dress the inefficiencies of GPGPU scheduler in extracting
idle periods, we present a gating-aware Two-level warp sched-
uler (GATES). GATES prioritizes issuing clusters of instruc-
tions that require the same type of execution unit for longer
intervals before switching to a new instruction type. Thus
GATES stretches the length of idle periods for each execu-
tion unit type. GATES can be built through low overhead
extensions to current Two-level warp scheduler.

Blackout power gating: While GATES extend the idle
periods, there are still many idle windows that are shorter
than the break-even time. To address this concern we pro-
pose a new power gating controller called Blackout. Black-
out places new limitations on power gating state transitions.
In particular, Blackout forces an execution unit to be gated
for at least as many cycles as it takes to recoup the power
gating overhead. This policy is applied even when there are
instructions that are waiting to use the execution unit during
the gated time interval. We show that forcing an execution
unit to stay gated even when there is a ready instruction

does not hurt performance in GPGPUs primarily because of
the abundant heterogeneity of available instruction types.

Adaptive idle detect: Finally, we present a runtime
approach to limit performance loss of Blackout for certain
workloads by adaptively adjusting the amount of time a unit
is idle before the unit is gated. We call this approach Adap-
tive idle detect. Adaptive idle detect relies on easy to obtain
runtime performance metrics to determine the amount of
time a unit must be idle before gating is enabled. We com-
bine GATES and Blackout to create a coordinated power
gating scheme, called Warped Gates, with virtually no per-
formance loss.

The rest of the paper is organized as follows: Section 2
provides background about the GPGPU architecture and
conventional power gating techniques. Section 3 highlights
why current power gating techniques are inefficient when
applied to GPGPU execution units and motivates the need
for more efficient techniques. Sections 4, 5, and 6 discusses
the proposed techniques and the required microarchitectural
support. Section 7 presents the simulation methodology and
results. We discuss related work in section 8 and conclude
in section 9.

2. BACKGROUND
This section provides an overview of the baseline GPGPU

architecture and the conventional power gating technique
that form the foundation for the work presented in this pa-
per.

2.1 Baseline GPGPU architecture
This work uses an Nvidia GTX480 Fermi GPGPU as the

baseline architecture. GTX480 consists of a set of 15 Stream-
ing multiprocessors (SMs). The overall architecture for the
SM is shown in figure 1a. Each SM is comprised of a large
register file, thread scheduler(s) and execution units. Each
SM has its own 64KB shared memory and cache. Fermi
supports up to 48 active warps per SM. Each warp com-
prises of 32 threads executing the same instruction in a lock-
step manner, also called Single Instruction Multiple Thread
(SIMT) execution model. Thus, there are a total of 1,536
active threads per SM. The execution flow within each SM
can be broadly divided into three stages:

Fetch and decode: The instruction fetch and decode
logic has an instruction buffer that stores decoded instruc-
tions. The instruction buffer is divided between warps. Each
entry in the instruction buffer has a valid bit (V in figure 1a),

t0 t1 t2 t3 t4

time
En

er
gy

Eoverhead
!"#$%&'()$*&
+,%+-,)&./"+0&

VDD

GND

Sleep

1*/$2*$)$+)&

34+"56$47()$*&

8(0$2-6&

9"56$47()$*&

9:+/$&;&

9:+/$&
;<=>?&

Ready_intruction_scheduled

Cycles>wakeup_delay

Cycles>idle_detect

Cycles>BET time

Busy

(a) Gating circuit

t0 t1 t2 t3 t4

Eoverhead

Overhead to sleep
and Wakeup

Overhead to sleep

Time

St
at

ic
 E

ne
rg

y

Cumulative energy savings

(b) Break-even time

Idle_detect	

Uncompensated	

Wakeup	

Compensated	

Cycle	 1	

Cycle	
1+BET	 Ready_instruction_scheduled

Cycles>wakeup_delay

Cycles>idle_detect

Cycles>BET time

Busy

(c) Power gating state machine

Figure 2: Power gating overview

the decoded instruction bits (Dec INST), and a ready bit
(R) to indicate that the instruction is ready for execution.
The decoded instruction field includes the instruction type
that determines which execution unit type that instruction
requires for execution, namely an integer unit (INT), float-
ing point unit (FP), special purpose functional unit (SFU),
or load/store unit (LD/ST). The ready bit is set at the is-
sue stage using the scoreboard logic and resource availabil-
ity. The scoreboard logic maintains information regarding
whether input operands for an instruction are already avail-
able in register file or if they are being generated by an
instruction already in the pipeline.

Two-level warp scheduler: In this work the baseline
uses the Two-level warp scheduler [12]. In the Two-level
warp scheduler, all warps waiting on long latency events,
such as memory accesses, are placed into a pending warps
set. The active warps set holds all the warps that are ei-
ther waiting on a short latency dependency or whose input
operands are already available in the register file. The Two-
level warp scheduler only issues an instruction from the ac-
tive warps set when all the input operands are ready for that
instruction. In order to improve performance in GPGPUs,
more than one scheduler can be integrated within an SM.
In GTX480, two schedulers are integrated in each SM and
each scheduler can issue one ready warp per cycle as long as
there are no structural hazards.

Execution units: Figure 1a shows the block diagram
of the execution units inside each SM. The execution units
contain two shader processors (SP), 16 LD/ST units for
memory operations and four SFUs for the special arithmetic
functions like sine and cosine. Each SP contains 16 SIMT
lane cores (called CUDA cores) running at double the core
clock frequency. As a result, each SP can run 32 concurrent
threads over one issue cycle. Each CUDA core contains one
integer unit and one floating point unit.

2.2 Power Gating
Power gating is a technique that is used to cut off the leak-

age current that flows through a circuit block. Power gating
is implemented by adding a properly sized header transis-
tor (between Vdd and the circuit block) or footer transistor
(between the circuit block and Gnd) as shown in figure 2a.
When the transistor is OFF, the circuit block will be power
gated and there will be no path from Vdd to Gnd, result-
ing in a very small leakage current. When the power gating
transistor is ON, then the circuit block will operate normally.

Figure 2b illustrates the cumulative energy savings and
energy overheads when applying conventional power gating
as described in [13]. The solid green curve represents the

cumulative energy savings from reducing leakage in the cir-
cuit. At time t0 the power gating signal is enabled and the
switch will turn off at t1. The leakage energy savings begin
increasing at time t1 and will continue to accumulate with
time as seen by the raising solid curve. The leakage savings
stop at time t4 when the sleep transistor is turned back ON
to bring the circuit back to active state and the circuit block
wakes up.

However, there is a dynamic energy penalty for switching
the sleep transistor on and off. The red dashed curve repre-
sents the cumulative energy overhead due to power gating.
The black dotted line labeled Eoverhead shows the total en-
ergy overhead for each power gating instance. Where the
dotted black line intersects with the energy savings curve
(at t2) is called the break-even time (BET), which is the
minimum number of consecutive power gated cycles that are
required to compensate for the energy overhead of the power
gating switch [13]. If the block is turned ON before t2, then
the power gating overhead exceeds the leakage energy sav-
ings resulting in net negative energy savings.

The time between t3 and t4 is the wakeup delay, which
is the minimum number of cycles required to return the op-
erating voltage range to Vdd. At t4, the functional unit is
fully powered up and operational. Recent studies on power
gating of execution blocks has estimated the wakeup delay
to be around 3 cycles and break-even time to be between 9
and 24 cycles [13]. Since the circuit block cannot wakeup
instantly when a request arrives, the wakeup penalty can
lead to performance degradation. In our experimental eval-
uation we use wakeup delay of 3 cycles. In [13] break-even
values of 9,14,19 and 24 were explored. In our experimen-
tal evaluation we use a value of 14 cycles as the break-even
time.

Power gating state machine: Figure 2c shows the state
machine for the power gating controller. As long as the block
is busy, the block will stay in the Idle detect state. As soon
as the block is idle for at least idle-detect cycles, the block
will be moved into the Uncompensated state and the cir-
cuit block will be power gated. The Uncompensated state
means that the power gating overhead has not been compen-
sated and the energy overhead of operating the sleep switch
exceeds the total leakage savings. The block will stay in
the Uncompensated state as long as the number of cycles
is less than the break-even time. After the break-even time,
the block is moved to the Compensated state. In conven-
tional power gating, the controller will move the block to
the Wakeup state at any time if the block is needed for exe-
cution. In the Wakeup state, the block needs wakeup delay
cycles before switching back to the Idle−detect state again.

0%	
10%	
20%	
30%	
40%	
50%	

0	 5	 10	 15	 20	 25	

Fr
eq

ue
nc
y	

Idle	 period	 length	

83.4%	 10.1%	 6.5%	

(a) Conventional power gating

0%	

10%	

20%	

30%	

0	 5	 10	 15	 20	 25	

Fr
eq

ue
nc
y	

Idle	 period	 length	

59.0%	 22.1%	 18.9%	

(b) Gating Aware scheduler

0%	

10%	

20%	

30%	

0	 5	 10	 15	 20	 25	

Fr
eq

ue
nc
y	

Idle	 period	 length	

54.3%	 0.0%	 45.7%	

(c) Blackout Power Gating

Figure 3: Idle period length distribution with 5 cycle idle-detect and 14 cycle break-even time for hotspot

If the wakeup happens when the block is in Uncompensated
state, then the total energy saved due to the power gating
attempt will be negative.

3. POWER GATING CHALLENGES IN
GPGPUS

In this paper we will focus on leakage energy saving for
CUDA cores, comprising of INT and FP units. The tech-
niques presented can also be applied to SFUs. However,
SFU instructions are relatively rare and hence, conventional
power gating scheme will be sufficient to recover most of the
wasted leakage energy in SFUs. Furthermore, SFUs account
for only 2.5% of total execution unit static power consump-
tion. The relatively large number of INT and FP units,
make them the primary target for leakage energy savings,
compared to SFUs.

As described earlier, Figure 1b shows the average energy
breakdown for the INT and FP units. The first two bars
show the baseline energy consumption breakdown when no
power gating is applied. Static energy accounts for nearly
50% of the total INT energy and 90% of the FP energy. The
large proportion of static energy in the FP unit is due to the
relatively low usage of the FP units compared to the INT
units. Thus, there is a large potential for reducing static
energy with power gating of these two units.

The last two bars show the energy breakdown after ap-
plying conventional power gating [13] with an idle-detect
time of 5 cycles and a break-even time of 14 cycles. Con-
ventional power gating reduces INT and FP unit energy
by 11% and 29%, respectively. However, even after apply-
ing conventional power gating the static power consumption
still accounts for 31% of total INT unit energy consump-
tion and 61% of the total FP unit energy consumption. It
is important to bring attention to the power gating over-
head component in the last two bars. This component of
energy consumption comes from the extra power burned to
turn on and off the sleep transistor. Power gating overhead
accounts for 11% and 29% of the INT and FP units overall
energy, respectively. We will highlight the reasons for high
power gating overhead and missed power gating opportunity
in this section and present solutions to alleviate these issues
in the next section.

3.1 Need for longer idle periods
In order for power gating to be effective, it is not suffi-

cient to just have idle periods, rather it is critical to have
long enough idle periods so that power gating can achieve
net energy savings. In traditional microprocessor functional
units, the majority of idle periods lengths are many 10s of
cycles [10]. Since the idle duration is longer than the typical

break-even time, conventional power gating is an excellent
option to reduce static power in traditional microprocessors.

GPGPUs typically have many ready warps with a di-
verse instruction mix ready for execution. The Two-level
warp scheduler schedules ready warps from the active warps
set without taking into consideration what other instruction
types have been issued prior to the current issue cycle. As
a result, different instruction types get issued within a short
scheduling window. Interspersing different instruction types
results in idle period lengths in the order of a few cycles
for any given execution unit type in GPGPUs. Figure 3a
shows the idle period length distribution in cycles of a rep-
resentative GPGPU benchmark, hotspot [8]. The data in
the figure is partitioned into three regions. The left-most re-
gion (in blue) represents the idle period lengths which falls
within idle-detect time. The middle region (in red) repre-
sents the idle period lengths which falls within idle-detect
and idle-detect + BET. The right most region (in green)
represents idle period lengths which are longer than idle-
detect + BET cycles. For this specific benchmark, 83.4% of
the idle periods are less than the idle-detect, and only 6.5%
of the idle periods are longer than idle-detect + BET cycles.
In conventional power gating, only those idle windows that
are in the last category lead to positive energy savings. The
first category represents wasted idle periods that cannot be
power gated due to their short duration. The middle range
represents the set of idle periods that will result in net en-
ergy loss (or at best energy neutral) if conventional power
gating is used. While the results presented in this figure
correspond to the hotspot benchmark, similar patterns can
be found in all other benchmarks in our experiments. What
is important to note here is that unlike conventional micro-
processor functional units, the majority of idle periods are
only a few cycles long.

Figure 4 illustrates the shortcomings of current warp sched-
uling and its implication on power gating techniques. In this
simplified illustration, the active warps set contains 10 warps
with a mix of integer and floating point instructions. The
order of instructions in the set is shown in the figure at the
top. We assume each instruction is a simple add instruction,
each instruction has a latency of four cycles, and initiation
interval is one cycle. These are the default parameters in
GPGPUSim’s configuration file for Fermi [6]. The Two-
level warp scheduler would issue warps from the front of
the active warps set without regard to instruction type as
shown in the center figure. For instance, in cycle three an
FP instruction is available at the top of the active warps set
which is issued to the FP unit. As a result, the FP unit,
which was idle during the first two cycles, starts executing
an instruction in cycle three. Similarly, the floating point

!"#$!"#% &'$!"#(&'% !"#) !"#* !"#+ !"#, &'(&') !"#-

./0123 $ % () * + , - 4 $5 $$ $% $($) $* 62/
789:;!<12
789:;=0:9>2
!8;'9?21982

./0123 $ % () * + , - 4 $5 $$ $% $($) $*

=0:9>2;@AB?3;!83:BC

!"#+
!"#,

!"#-
&'$

&'
;'
9?
2

#DEF12>21;G;HEI8<;BEJ98

KA:98L;=DAB2;M0N2<I12B

&'(
&')&'

;'
9?
2

!"
#;
'9
?2

!"
#;
'9
?2

!"#$
!"#%

!"#(
!"#)

&'(
&')

!"#$
!"#%

!"#*

!"#-
&'$

&'%

&'%

!"#(
!"#)

!"#*
!"#+

!"#,

Figure 4: Effect of Warp Scheduler on Idle Cycles

unit is assigned another instruction to execute in cycle five.
After the first two floating point instructions are completed,
the FP unit has one idle cycle followed by the execution of
two additional instructions. As a result, during the entire
15 cycle window the FP pipeline experienced three idle pe-
riods of two, one, and one cycle(s), which are too short for
conventional power gating to take advantage of.

4. GATING-AWARE TWO-LEVEL
SCHEDULER (GATES)

The data presented in the previous section points to the
need for a technique that can coalesce short idle periods
(the first two idle period ranges in Figure 3a) into fewer but
longer idle periods. Such a technique will shift the distribu-
tion of idle periods into the right most range in the figure
where power gating is beneficial. To accomplish this goal
we propose a gating-aware Two-level scheduler (GATES)
which takes into account previously issued instruction types
in determining which ready warp to issue next. GATES
prioritizes issuing the same instruction type as was issued
in prior issue cycle to coalesce the utilization and idle pe-
riods of integer and floating point units. GATES will keep
issuing instructions from the same type as long as there are
ready warps in the active warps set. GATES switches to a
warp with different instruction type when there are no more
ready warps in the active warps set with the same instruc-
tion type as the one issued in the previous issue cycle. Note
that GATES does not lead to starvation as long as there is
some dependency between INT and FP instructions. Even-
tually all independent instructions of a given type will be
exhausted leaving room for the other instruction type to
start issuing. The designer can also set a large maximum
switching time threshold to force a scheduler to switch pri-
orities at the end of the threshold.

When GATES is applied to our previous illustrative ex-
ample in figure 4, all the INT instructions would be issued
first, and when there are no additional INT instructions, the
FP instructions would be issued. As shown in the bottom
figure the INT pipeline now has four consecutive idle cycles,
while the FP pipeline has eight consecutive idle cycles. By
coalescing instruction type, we remove isolated bubbles from
the execution unit pipeline and create longer idle periods to
increase opportunities for power gating.

GATES would be effective if there exists sufficient num-
ber of active warps with a good instruction mix of integer

and floating point instructions to allow the scheduler ample
opportunities to rearrange warps. Figure 5a shows the in-
struction mix for a large number of GPGPU workloads. Ex-
cept for a couple of pure integer workloads (such as lavaMD),
most benchmarks have a sufficient mix of integer and float-
ing point instruction types.

Figure 5b shows the maximum and average number of
active warps available during runtime. Majority of bench-
marks have a large number of active warps during runtime
allowing ample opportunities for rearranging ready warps.
Only 5 out of 18 benchmarks have fewer than ten active
warps on average.

4.1 GATES Implementation Details
In this section we describe the microarchitectural support

needed for implementing GATES. We extend the default
Two-level warp scheduler with two enhancements: (1) per
instruction type active warps subset, and (2) a dynamic
priority-based instruction issue scheme.

Per instruction type active warps subset: Since
GATES prioritizes issuing instructions of a specific type, we
propose to logically split the active warp set into four active
warp subsets, namely integer (INT), floating point (FP),
special function unit (SFU) and load/store (LDST) subsets.
Each subset is associated with the corresponding execution
resource. This partitioning of the active warp set can be
done logically, rather than physically separating the set, by
adding two bits per entry of the active warps set. The two
bits in each entry specify the execution unit needed for ex-
ecuting the corresponding warp instruction. Since instruc-
tions entering the active warps set are already decoded, the
decoder can simply set the two-bit execution unit type as
part of the decoded instruction information.

Instruction issue priority: The instruction issue ar-
biter inside the warp issue logic is modified with a simple
priority-based issuing algorithm which assigns each instruc-
tion type an issue priority. We ordered the instructions in
our implementation as: INT/FP, LDST, SFU, FP/ INT.
The ordering implies that either INT or FP is given the high-
est priority first. If INT is given the highest priority, then
FP will be given the lowest priority and vice-versa. This
ordering always separates integer and floating point instruc-
tions to the two ends of the priority. The ordering priority
between LDST and SFU is not relevant to this work, but
we gave LDST a higher priority over SFU assuming mem-
ory operations have longer memory access latency. Fermi’s
instruction scheduler is capable of issuing two instructions
per cycle. The only time an integer and floating point in-
structions are issued in the same cycle is when there is just
one of either INT or FP instruction in highest priority, no
LDST or SFU instructions, and one (or more) of instructions
of INT/FP that are not in the highest priority. By pushing
INT and FP instructions to the two ends of scheduling prior-
ity, units with lowest priority will enjoy longer idle periods.
Furthermore, warps that need lowest priority unit will ac-
cumulate until a priority switch at which time there will be
many ready warps that need the same execution unit type.

Dynamic priority switching: Instead of using static
instruction priority, the priority ordering is switched dynam-
ically during workload execution. We initialize INT as the
highest priority and FP as the lowest priority. During exe-
cution if the INT active warp subset is empty while the FP
active warp subset is not empty, then the priority is switched

0%	
20%	
40%	
60%	
80%	
100%	

la
va
M
D	 nw
	

M
U
M
	

he
ar
tw

al
l	

bf
s	

km
ea
ns
	

bt
re
e	

N
N
	

ho
ts
po

t	
ga
us
sia

n	
sr
ad
	

ba
ck
pr
op

	
W
P	

LI
B	

m
ri-‐
q	

lb
m
	

sg
em

m
	

cu
tc
p	

Benchmarks	

FP	

INT	

SFU	

LDST	

(a) Instruction mix

0	

10	

20	

30	

sr
ad
	

lb
m
	

ba
ck
pr
op

	
m
ri	

M
U
M
	

bf
s	

ho
ts
po

t	
la
va
M
D	

sg
em

m
	

cu
tc
p	

bt
re
e	

he
ar
tw

al
l	

km
ea
ns
	

W
P	

LI
B	

N
N
	

ga
us
sia

n	
nw

	

Ac
Ev
e	
W
ar
ps
	

Benchmarks	

Max	 Average	

(b) Runtime active warps set size

Figure 5: GPGPU workload characteristics

between INT and FP. Similarly, if FP is the highest prior-
ity and the scheduler sees that the FP active warp subset is
empty and the INT warp subset is not empty, then INT is
given the highest priority and FP is given the lowest priority.

GATES creates new idle periods and also lengthens exist-
ing idle periods by coalescing the bubbles in the functional
unit pipelines. Figure 3b shows the effect of using GATES
on the idle period length distribution. With GATES, 59.0%
of idle periods are wasted due to idle-detect window (down
from 83.4% compared to the basic Two-level warp sched-
uler). A larger portion of idle periods were moved into the
power gating safe region, 18.9% (up from 6.5%) of idle pe-
riods are now longer than idle-detect+BET. While GATES
was successful in creating positive power gating opportuni-
ties, unfortunately some of the increased idle periods moved
into the negative energy savings region (centre region), mov-
ing up to 22.1% (from 10.1%). Recall that in this region the
functional unit is power gated after idle-detect window but is
woken up before the break-even time has passed. One poten-
tial solution to this issue is to naively increase the idle-detect
window, thus lowering the possibility of the net energy loss
scenario, but this would also result in more wasted idle pe-
riods. Clearly, there is a need to better address the negative
energy savings region, which is the focus of next section.

5. BLACKOUT POWER GATING
In this section we propose a modified power gating scheme

called Blackout. When a unit is power gated, it is placed into
a blackout state, where the unit cannot be woken up until
it has been power gated for at least the break-even time,
even if there are ready instructions. Blackout completely
eliminates the net energy loss occurrences. Figure 3c shows
the combined effect of GATES with Blackout power gating
on the idle cycle distribution. Blackout power gating essen-
tially pushes all idle cycles within the middle region into the
rightmost region by forcing idleness of execution units. In
the case illustrated in the figure, 45.7% of idle cycles now
result in net energy savings, a 7x increase compared to con-
ventional power gating.

By forcing execution units to be power gated for break-
even time, even when there are ready instructions, conven-
tional wisdom tells us that it will most likely lead to per-
formance penalties. But due to the unique execution envi-
ronment of GPGPUs, Blackout does not suffer from perfor-
mance penalties as feared. The primary reason is that GPG-
PUs have a variety of heterogeneous execution resources
(INT, LDST, FP, and SFUs) coupled with a good mix of
available instructions that are ready to be issued. When one
execution resource type is forced idle, work can still be com-
pleted by the other execution resource types. As a result,

the performance penalty due to forcing idleness on execution
resources is hidden, leading to minimal performance impact.

Furthermore, the trends in GPGPU design shows that
even a single execution resource type is going to be split
into multiple clusters. For instance, in Fermi architecture
there are two clusters of INT and FP units organized into
two SPs as shown in Figure 1a. The more recent Kepler
architecture uses six clusters of INT and FP organized as
six SPs [4]. Similarly, AMD’s GCN architecture currently
has four clusters of SP-like SIMD pipelines in each SM-like
core [3]. Considering these developments, we will propose
an enhanced Blackout mechanism that specifically takes ad-
vantage of the clustered GPGPU architectures to further
reduce the performance losses due to Blackout.

In this section we explore two policies, Naive Blackout and
Coordinated Blackout. Both policies are implemented on top
of GATES, which was discussed in the previous section.

Naive Blackout: In this policy once the unit is idle for
at least idle-detect number of cycles, the unit is placed in
blackout mode. The wakeup mechanism differs from conven-
tional gating scheme. Compared to the conventional power
gating state machine shown in figure 2c, Naive Blackout will
not have a state transition from the uncompensated state to
the wakeup state. The only transition to the wakeup state
takes place from the compensated state. Once a unit enters
the blackout state, the scheduler will simply avoid issuing
instructions to the execution unit until after the break-even
time is over. Once the break-even time is over, the scheduler
is allowed to issue a ready instruction, if any, to the gated
unit and trigger a wake up for the gated unit.

Coordinated Blackout: As mentioned earlier, clustered
integer and floating point units are now common in GPG-
PUs. Coordinated Blackout takes advantage of the clus-
tered architecture. In the description below we assume the
baseline architecture has 32 integer and floating point units
that are clustered into two groups of 16 units each. When
both clusters of a given type (integer or floating point) are
in an active state, Coordinated Blackout simply uses idle-
detect window to detect idle cycles. If the idle cycles of a
given cluster exceed the idle-detect window, then that clus-
ter is placed in power gating mode and enters blackout state.
Once a single cluster enters blackout mode, the second clus-
ter will not use idle-detect cycles any longer in determining
its power gating state. The second cluster will instead check
the number of active warps waiting in the active warps sub-
set associated with that execution resource. If no warp is
waiting in the active warp subset, then the second cluster
enters blackout state immediately, even if its idle cycle win-
dow is less than the idle-detect window. On the other hand,
if a single warp is waiting in the active warp subset then
the second cluster will not power gate even if the idle period

0.95	

1	

1.05	

1.1	

1.15	

0	 5	 10	 15	 20	 25	 30	

N
or
m
al
ize

d	
Ru

n6
m
e	

Cri6cal	 Wakeups	 per	 1000	 cycles	
heartwall	 (0.99)	 NN	 (0.99)	 backprop	 (0.99)	 hotspot	 (0.99)	 nw	 (0.99)	
btree	 (0.99)	 gaussian	 (0.99)	 bfs	 (0.98)	 srad	 (0.97)	 lbm	 (0.96)	
cutcp	 (0.90)	 LIB	 (0.60)	 kmeans	 (-‐0.30)	 MUM	 (-‐0.28)	 lavaMD	 (-‐0.24)	
mri	 (0.21)	 WP	 (0.24)	 sgemm	 (0.06)	

Figure 6: Critical wakeups correlation

length exceeds the idle-detect window.
The Coordinated Blackout mechanism makes the assump-

tion that if there is a warp waiting in the active warp subset,
then it is likely to become ready relatively soon. Since one
of the clusters of that execution resource type has already
entered the blackout state, it is best to avoid putting the
second cluster in blackout state to avoid the performance
penalty associated with waking up the unit. Hence, this ap-
proach improves performance by avoiding excessive wakeups
associated with power gating, and saves power by avoiding
the power gating overhead. Therefore, at least one of the
two clusters will be always ON whenever there is a warp in
the associated active warp subset. With Coordinated Black-
out, GATES instruction priority switching policy is also ex-
tended to switch instruction priority type if both execution
units of the highest priority type are in blackout.

5.1 Reducing Worst Case Blackout Impact
with Adaptive Idle Detect

Till now, all of our proposed approaches use statically
fixed idle-detect window size. Hence, once an idle-detect
window is selected it is not changed at runtime. Further
improvements to Blackout can be achieved by allowing the
idle-detect window to be dynamically changed based on per-
ceived performance loss at runtime due to Blackout. Hence,
Blackout is augmented with an Adaptive idle detect mech-
anism that dynamically adjusts the idle-detect window to
match an application’s runtime behavior. This mechanism
will rely on simple metrics to infer performance loss.

Inferring performance loss: It is not possible to pre-
cisely track the performance loss due to Blackout. However,
it is possible to use secondary metrics as a proxy for in-
ferring potential performance loss due to Blackout. While
we explored a number of metrics, for simplicity, we describe
one simple metric that we used in our evaluation. We use a
metric called critical wakeups to measure performance loss.
Critical wakeup is defined as a wakeup that occurs the mo-
ment the blackout period ends. This metric implies that
there was at least one instruction that was blocked in the
active warps subset waiting for its corresponding unit to fin-
ish its break-even time before wakeup. The reason why this
metric is only a proxy for performance loss is that we do not
know how long the instruction has been waiting (it could
be have just entered the ready state, or a few cycles ago in
the middle of the blackout period). Furthermore, not every
blocked instruction leads to a performance loss because in-
struction execution delay does not always fall in the critical
path latency.

Figure 6 shows the correlation of critical wakeups per 1000
cycles and performance loss for each benchmark across a
range of static idle-detect values (0-10). The Pearson cor-
relation coefficient (r) is displayed next to each benchmarks
name. As can be seen, 11 benchmarks have strong correla-
tion (r > 0.9) between critical wakeups and performance
loss, showing great confidence that by regulating critical
wakeups, we can limit performance loss. Some benchmarks
(kmeans, MUM, lavaMD, mri, WP, and sgemm) have relatively
low correlation. The reason for this low correlation is that
these benchmarks do not suffer from any performance loss
due to Blackout to begin with and hence changing idle-detect
window is neither beneficial nor harmful.

Algorithm: Adaptive idle detect breaks execution time
into epochs (in our case, 1000 cycles). During each epoch, a
counter keeps track of the number of critical wakeups that
occur. At the end of the epoch, if the number of critical
wakeups is greater than a defined threshold, then the idle-
detect time will be incremented by one. We explored various
threshold values and empirically determined that a value of
five gives the best balance between performance and energy
savings. During a 1000 cycle window, if there are more than
five critical wakeups for a given unit type, then its idle-detect
time will be incremented by one. By increasing the idle-
detect, we will power gate more conservatively, therefore,
decreasing the number of critical wakeups.

Idle-detect is decremented conservatively every four epochs
only if we do not go over the target critical wakeup. Our
approach quickly increases idle-detect (react quickly to per-
formance critical phases) and slowly decreases idle-detect.
To prevent run away idle-detect values we bound the value
to be between 5-10 cycles. We also explored unbounded
idle-detect values and found that bounded idle-detect yields
better tradeoff between performance and energy savings.

Since each application has its own instruction mix and
scheduling order, in Adaptive idle detect there will be differ-
ent idle-detect values for INT and FP and each of these val-
ues may change over time. As a result, each unit will auto-
matically reach the appropriate idle-detect value that gives
the best combination of power savings and performance.

6. ARCHITECTURAL SUPPORT
Figure 7 shows the architectural support for GATES, Co-

ordinated Blackout and Adaptive idle detect mechanisms.
The additional hardware support needed is shaded in dif-
ferent colors in the figure for each of the three proposed
enhancements.

GATES: The base machine architecture is shown in Fig-
ure 1a. Each entry in the active warps set has a ready bit
which is set whenever all the input operands are ready for
that warp. The ready bit is used by the baseline Two-level
warp scheduler to issue an instruction to the execution units.
GATES requires each active warp entry to have two addi-
tional bits indicating the instruction type of the decoded
instruction. The two-bit instruction type is set by the in-
struction decoder. Existing scheduling mechanisms already
need the resource requirement information of each instruc-
tion for resource reservation purposes. Hence this two-bit
instruction type may already be present in decoded instruc-
tion bits, in which case, GATES can make use of the existing
information.

GATES modifies the instruction issue arbiter to determine
which instruction type has the highest priority for schedul-

	 	 V	 	 	 	 Dec_INST	 INT	 	 R	
	 	 V	 	 	 	 Dec_INST	 FP	 	 R	
	 	 V	 	 	 	 Dec_INST	 SFU	 	 R	
	 	 V	 	 	 	 Dec_INST	 LD	 	 R	

Issue	 Logic	
I_Buffer	

Scoreboard	 Priority	 Logic	

PG_Logic	
BET_counter	

Count_info

PG_status Highest priority

PG_Signals

AdapBve	 idle	
detect	

Critical wakeup
trigger

Conv_PG Gating Aware
Scheduler

Coordinated Blackout Adaptive Idle_detect

ExecuBon	 Units	
Scheduler

CriBcal	 Wakeup	
Counter	

Ready, Type
Ready, Type
Ready, Type
Ready, Type

Arbiter	

FP_ACTV	

Idle	 detect	
logic	

Idle_detect
 value

INT_ACTV	

FP_RDY	 INT_RDY	

SFU_RDY	 LDST_RDY	

Issued
Instruction

Figure 7: Architectural support for GATES, Blackout, and
Adaptive idle detect

ing. In order to dynamically determine instruction priority,
the active warp set is enhanced with two additional counters:
INT ACTV and FP ACTV. These counters are incremented
every time the corresponding instruction type enters the ac-
tive warp subset and decremented whenever an instruction
leaves the active warp subset. The instruction priority logic
will make use of these counters to dynamically determine
the higher instruction priority to pass to the instruction ar-
biter. For instance, if INT ACTV is zero and FP ACTV is
non-zero then the scheduler switches the highest priority to
FP, and vice-versa.

The current scheduling priority is stored as a two-bit value
indicating the highest priority instruction type (either an
INT or FP). Note LDST and SFU have fixed priority and
hence when the highest priority instruction type between
INT or FP is known then the other instruction type will be-
come the lowest priority. Hence the instruction arbiter uses
this two-bit value to determine the total priority ordering.
Based on the current priority, GATES identifies N instruc-
tions to fit the issue width of N. In the Fermi architecture
the value of N is two.

To quickly find the N ready instruction we added four
counters to the issue logic. These counters count the num-
ber of ready instructions of each instruction type that are
present in each active warp set. As mentioned earlier, when
an instruction enters the active warp set, it is not necessar-
ily ready for execution. It may be waiting for short latency
input dependencies to be satisfied from a previously issued
instruction. It is the job of the scoreboard to identify when
the input operands of an active warp entry are ready, at
which point it sets the ready bit. Whenever the ready bit
is set for a given warp, the corresponding instruction type
counter is also incremented. For the Fermi architecture used
in our experiments, each counter is five bits wide, since at
most 32 active warps are present in the active warp set.
Thus, there are four 5-bit counters (shown as INT RDY,
FP RDY, LDST RDY, SFU RDY in Figure 7).

The priority scheduler looks at the current priority and
these counters to see what instruction types must be sched-
uled next. For instance, if the highest priority is INT then
it looks at INT RDY to see if there are at least two INT
instructions ready in the active warp set. If so, it will scan
the active warp set to identify the two INT instructions for
scheduling. Note that even in the base machine the sched-
uler has to scan the active warp set to identify ready in-
structions for scheduling. Hence, our enhanced scheduler
only needs to scan and match the two bit instruction type
information with the current instruction priority. Thus in a
single scan the two instructions that will be issued can be

identified, just as in the base machine without adding any
additional scans on the active warp set. Once the instruc-
tion types are issued, the corresponding ready counters are
decremented appropriately.

Similarly, if the highest priority is INT but INT RDY
shows only one ready warp, then the second issue slot will
be filled with either LDST, SFU or FP instruction, in that
order.

Conventional power gating: We assume that the con-
ventional power gating technique is implemented as shown
in [13]. This approach uses idle-detect logic and the ready-
instruction detect logic. The idle-detect logic can be imple-
mented as a counter that will be incremented every time an
idle cycle is detected and cleared whenever a ready instruc-
tion is detected. Whenever the counter hits the idle-detect
threshold, the power gating logic will trigger the power gat-
ing signal for that specific unit.

Blackout power gating: To support Blackout power
gating, each of the power gated units is associated with an
N-bit count down counter, called the blackout counter. Re-
call that all 16 integer units within a cluster are operated by
a single power gating switch. Hence, for the design shown
in Figure 7 we need four N-bit counters per SM, one counter
per each cluster (two integer and two floating point clusters).
The size of the counter must accommodate the break-even
time for a given power gating design. The counter will be
loaded with the break-even time as soon as the unit is power
gated. Since most execution units need less than 24 cycles
for break-even time in our current implementation, we need
a 5-bit counter to store the break-even time whenever a clus-
ter is power gated. As long as the value of the counter is
not zero the unit will remain power gated and GATES will
not assign an instruction to that unit.

Coordinated Blackout: Coordinated Blackout requires
the knowledge of whether one of the two clusters is already
in blackout state. In which case, the second cluster will
not enter blackout as long as there is at least one instruc-
tion waiting in the active warp subset. To achieve this, the
INT ACTV or FP ACTV counters available in the priority
logic are used. Note that RDY instruction counters can not
be used since an instruction may be in active warp set but
not yet ready for execution. When one of the two clusters of
a given type is power gated, then the Coordinated Blackout
logic will check INT ACTV or FP ACTV counters to see
if at least one instruction of the given type is in the active
warp subset. If so, then the idle-detect mechanism is dis-
abled to prevent the second cluster from entering the power
gating state. On the same note, if there are zero instructions
waiting in the active warp subset then the second cluster is
immediately put to blackout state, even if the idle period is
less than the idle-detect threshold.

Adaptive idle detect: Adaptive idle detect technique
keeps track of the number of critical wakeups during each
epoch using a critical wakeup counter. The counter will
be incremented every time an execution unit gets a signal
to wake up at the same cycle the break-even time counter
hits zero. At the end of the epoch, the value of the critical
wakeup counter will be compared to a pre-defined thresh-
old, which was empirically set to five as described earlier .
If the counter value is greater than the threshold then the
idle-detect value will be incremented and will be loaded into
the idle-detect register used in baseline power gating tech-
nique. Note that in the baseline the idle-detect value was a

0.9	
1.0	
1.1	
1.2	
1.3	
1.4	

ba
ck
pr
op

	
bf
s	

bt
re
e	

cu
tc
p	

ga
us
sia

n	
he

ar
tw

al
l	

ho
ts
po

t	
km

ea
ns
	

la
va
M
D	

lb
m
	

LI
B	

m
ri	

M
U
M
	

N
N
	

nw
	

sg
em

m
	

sr
ad
	

W
P	

ge
om

ea
n	

N
or
m
al
ize

d	
Fr
ac
Io

n	
of
	

Id
le
	 C
yc
le
s	

Benchmarks	

GATES	 Coordinated	 Blackout	 Warped	 Gates	

(a) Idle cycles

-‐20%	

0%	

20%	

40%	

60%	

80%	

ba
ck
pr
op

	
bf
s	

bt
re
e	

cu
tc
p	

ga
us
sia

n	
he

ar
tw

al
l	

ho
ts
po

t	
km

ea
ns
	

la
va
M
D	

lb
m
	

LI
B	

m
ri	

M
U
M
	

N
N
	

nw
	

sg
em

m
	

sr
ad
	

W
P	

ge
om

ea
n	

Co
m
pe

ns
at
ed

	 C
yc
le
s	

Benchmarks	

ConvPG	
GATES	
Warped	 Gates	

(b) Compensated cycles

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	
1.4	
1.6	

ba
ck
pr
op

	
bf
s	

bt
re
e	

cu
tc
p	

ga
us
sia

n	
he

ar
tw

al
l	

ho
ts
po

t	
km

ea
ns
	

la
va
M
D	

lb
m
	

LI
B	

m
ri	

M
U
M
	

N
N
	

nw
	

sg
em

m
	

sr
ad
	

W
P	

ge
om

ea
n	

N
or
m
al
ize

d	
W
ak
eu

ps
	

Benchmarks	

GATES	 Coordinated	 Blackout	 Warped	 Gates	

(c) Normalized wakeups (PG overhead)

Figure 8: Increasing power gating opportunity for integer units. Floating point units exhibit similar trends.

fixed value that could be hard-coded into the logic. How-
ever, for Adaptive idle detect we need a register that can be
incremented or decremented in an epoch.

7. EVALUATION

7.1 Methodology
We evaluated our proposed techniques for performance

and energy saving using GPGPU-Sim v3.02 [6]. We used
the default Nvidia GTX480-like configuration provided with
GPGPU-sim. The baseline architecture, with a core clock
of 700MHz, contains 15 SMs with two SP units, four SFUs,
and 16 LDST unit per SM. Each SP unit contains 16 double-
frequency CUDA cores, each with individual integer and
floating point pipelines (total of 32 CUDA cores per SM).
The default warp scheduler is the Two-level scheduler with
48 warps per SM and capable of issuing two warps per cycle
per SM. GPUWattch [16] and McPAT [17] are used for power
estimations. We selected eighteen benchmarks to cover a
wide range of scientific and computation domains from sev-
eral benchmark suites including Rodinia [8], Parboil [2], and
ISPASS [6]. For all the power gating results presented in
this section, unless specified otherwise, we assume a default
idle-detect window of 5 cycles and a break-even time of 14
cycles.

7.2 Increasing power gating opportunities
The following naming convention describes the techniques

evaluated and applies to all figures: ConvPG refers to con-
ventional power gating with Two-level scheduler (section 2.1);
GATES refers to the GATES scheduler + conventional power
gating (section 4); Naive Blackout and Coordinated Blackout
(section 5) refers to GATES + Naive Blackout and GATES
+ Coordinated Blackout, respectively. Finally, we collec-
tively refer to the combination of all of our proposed tech-
niques as Warped Gates. Warp gates refers to GATES +
Coordinated Blackout + Adaptive idle detect (section 5.1).

Extracting idle cycles through GATES and Black-
out: Figure 8a shows the effectiveness of our proposed
techniques at extracting idle cycles. The y-axis shows the
fraction of idle cycles (idle cycles/execution cycles) normal-
ized to the fraction of idle cycles extracted by the Two-level
warp scheduler. The numbers reported here are for the in-
teger unit, but the improvements are similar for the floating
point unit. GATES alone was able to extract 3% more idle
cycles than the baseline Two-level warp scheduler. These ex-
tra idle cycles represent the idle cycles that were extracted
by coalescing pipeline bubbles. Coordinated Blackout in-
creases the normalized fraction of idle cycles by 10%. Since
this is a normalized fraction, the increase is not just due to

increase in idle cycles but it is also due to reduced execution
time, which leads to increased fraction of idle cycles.

In most cases warped gates achieves slightly reduced frac-
tion of idle cycles compared to Coordinated Blackout. This
result is due to the fact that warped gates reduces execution
time penalty of power gating by activating fewer power gat-
ing events. But the reduction in execution time is outpaced
by the reduction in idle cycles. In other words, with warped
gates idle cycles were reduced faster than execution time.
This result is not a surprise since in many applications re-
ducing the idle cycles does not correspondingly reduce the
execution cycles, since not all idle cycle reductions are in the
critical path of a program execution. For the same reason,
in heartwall the fraction of idle cycles decreased with Coor-
dinated Blackout compared to GATES. In this benchmark,
with Coordinated Blackout the execution time decrease was
outpaced by idle cycle decrease.

It is also interesting to note that GATES and Blackout
provide savings under different operating regimes. When
there are plenty of instructions in the active warp set, GATES
allows instruction reordering to effectively improve idle cycle
windows. However, when there are only a few active warp
entries then GATES is unable to find opportunities for in-
structions reordering. In this case, Blackout allows instruc-
tion build-up whenever a functional unit is power gated.
When the power gated unit comes out of blackout, then
there are more opportunities for GATES to reorder instruc-
tions again. Hence, they both complement each other in
effectively increasing the idle cycle windows.

Increasing time in compensated state. Figure 8b
shows the percentage of cycles that the execution unit stays
in the compensated power gating state for the integer unit
for various techniques. Bars with negative values represents
workloads where the execution unit was in an uncompen-
sated state more than a compensated state. This figure
demonstrates the effectiveness of our technique at extend-
ing the idle period length. Some benchmarks (backprop,
lavaMD) tend to have highly utilized functional units and
thus have very few idle cycles. Hence these benchmarks do
not need any static energy saving techniques. There are
a few benchmarks, such as cutcp and mri, that spends a
significant amount of time in an uncompensated state with
either conventional power gating or GATES. In these bench-
marks many wakeups occur before break-even time. How-
ever, Warped Gates was able to significantly increase time
spent in a compensated state that GATES alone cannot
achieve. Warped Gates is able to achieve significant in-
crease in the percentage of time units are in compensated
state. The geometric mean of cycles in compensated state
is 20.9% for conventional power gating, 22.6% for GATES,

20
.1
%
	

31
.6
%
	

-‐0.2	
0.0	
0.2	
0.4	
0.6	
0.8	

ba
ck
pr
op

	

bf
s	

bt
re
e	

cu
tc
p	

ga
us
sia

n	

he
ar
tw

al
l	

ho
ts
po

t	

km
ea
ns
	

la
va
M
D	

lb
m
	

LI
B	

m
ri	

M
U
M
	

N
N
	

nw
	

sg
em

m
	

sr
ad
	

W
P	

av
er
ag
e	

In
t	 S

ta
Kc
	 E
ne

rg
y	
Sa
vi
ng
s	

Benchmarks	

ConvPG	 GATES	 Naive	 Blackout	 Coordinated	 Blackout	 Warped	 Gates	

(a) Int unit

31
.4
%
	

46
.5
%
	

-‐0.2	
0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

ba
ck
pr
op

	

bf
s	

bt
re
e	

cu
tc
p	

ga
us
sia

n	

he
ar
tw

al
l	

ho
ts
po

t	

km
ea
ns
	

la
va
M
D	

lb
m
	

LI
B	

m
ri	

M
U
M
	

N
N
	

nw
	

sg
em

m
	

sr
ad
	

W
P	

av
er
ag
e	

Fp
	 S
ta
Mc
	 E
ne

rg
y	
Sa
vi
ng
s	

Benchmarks	

ConvPG	 GATES	 Naive	 Blackout	 Coordinated	 Blackout	 Warped	 Gates	

(b) FP unit

Figure 9: Static energy impact of proposed techniques.

and 33.5% with Warped Gates.
Power Gating Wakeup and Overhead. Figure 8c

shows the number of wakeups generated by each power gat-
ing technique normalized to the conventional power gating
scheme. The number of wakeups can also be interpreted as
the number of idle windows that are power gated. Power gat-
ing overhead is directly correlated to the number of wakeups.
In general, if we reduce the number of wakeups, we reduce
the power gating overhead. As expected GATES alone in-
creases the number of wakeups in some cases. This result
shows that GATES in some cases increases the idle cycle
window to be just beyond the idle-detect window and hence
triggers gating more often which leads to more wakeups.
Coordinated Blackout, by design, decreases the number of
wakeups by 26% compared to conventional power gating.
Finally, warped gates further brings down the number of
wakeups by 46% compared to conventional power gating by
dynamically changing the idle-detect window to avoid exces-
sive power gating overheads. Thus, our proposed techniques
can essentially reduce power gating overhead in half.

7.3 Energy Impact
Figure 9a and Figure 9b show the static energy savings

by taking into account power gating overhead for the inte-
ger and floating point units. The results are normalized to
a baseline with no power gating. All floating point results
reported in this section excludes integer-only benchmarks
which have no floating point activity. Conventional power
gating with the Two-level warp scheduler saves 20.1% and
31.4% of static power for integer and floating point units,
respectively. Benchmarks such as backprop, cutcp, lavaMD,
and NN experience negative or no energy savings with con-
ventional power gating since the gating overhead exceeds the
static energy savings.

GATES alone with conventional power gating saves 21.5%
and 35.2% of static power for integer and floating point
units, respectively. Hence, GATES alone creates some ad-
ditional opportunities to save static energy. In some bench-
marks GATES pushes some idle cycles windows to go past
idle-detect window but not sufficiently far to overpass the
break-even time. In these cases, GATES triggers more power
gating events which result in uncompensated power gating.
In fact, we already showed this result in figure 8b.

Naive Blackout further increases static energy savings to
27.8% and 41.1% for integer and floating point, respectively.
There are just three cases where Naive Blackout leads to
lower energy savings (backprop, heartwall and NN). Naive
Blackout can potentially power gate too aggressively, lead-
ing to higher power gating overhead in these three bench-
marks. Coordinated Blackout power gates the second cluster

0.7	

0.8	

0.9	

1.0	

1.1	

ba
ck
pr
op

	

bf
s	

bt
re
e	

cu
tc
p	

ga
us
sia

n	

he
ar
tw

al
l	

ho
ts
po

t	

km
ea
ns
	

la
va
M
D	

lb
m
	

LI
B	

m
ri	

M
U
M
	

N
N
	

nw
	

sg
em

m
	

sr
ad
	

W
P	

ge
om

ea
n	

N
or
m
al
ize

d	
Pe

rf
or
m
an
ce
	

Benchmarks	

ConvPG	 GATES	 Naive	 Blackout	 Coordinated	 Blackout	 Warped	 Gates	

Figure 10: Performance impact

more conservatively than Naive Blackout. Hence, Coordi-
nated Blackout increases static energy savings to 31.5% and
45.6% for integer and floating point units. Warped Gates
saves 31.6% and 46.5% for integer and floating point units.
Warped Gates saves ∼1.5x more static power than conven-
tional power gating across both integer and floating point
units.

Note that our approaches do not increase the dynamic
energy of functional units. The amount of work done (total
number of accesses for each functional unit type) is con-
stant per workload, irrespective of power gating. We also
accurately modeled the few microarchitectural counters that
were added to our design using RTL-level design and syn-
thesis. We accurately measured their dynamic power due to
counting activity. Our results show that these counters add
less than 0.1% dynamic energy.

To estimate total on-chip energy savings we first estimate
the fraction of leakage power that is consumed by the exe-
cution units. From GPUWattch, the total on-chip leakage
power of GTX480 accounts for 26.87W. The integer units
and floating point units account for 0.00557W and 4.40W,
respectively. Using these values we estimate that execution
units account for 16.38% of on-chip leakage power. Assum-
ing leakage power accounts for 33% of total on-chip power
and our technique can save 30% - 45% of static power, we
estimate that our technique can save 1.62% - 2.43% of to-
tal on-chip power. As technology scaling continues, it is
expected that static power will account for an increasing
fraction of total on-chip power. If we assume leakage power
accounts for 50% of total on-chip power, then our techniques
can save 2.46% - 3.69% of total on-chip power.

7.4 Performance Impact
Figure 10 shows the performance impact due to power

gating. Conventional power gating and GATES result in
similar performance overheads of 1%. Naive Blackout suf-
fers the worst performance overhead of 5% due to its ag-
gressive shutting down of units for break-even time without

0.4	

0.6	

0.8	

1	

9	 14	 19	 9	 14	 19	 9	 14	 19	
Int	 Fp	 Perf	

N
or
m
.	 E
ne

rg
y	
an
d	
Pe

rf
.	

Break-‐even	 Time	

ConvPG	 Warped	 Gates	

(a) BET

0.4	

0.6	

0.8	

1	

3	 6	 9	 3	 6	 9	 3	 6	 9	
Int	 Fp	 Perf	

N
or
m
.	 E
ne

rg
y	
an
d	
Pe

rf
.	

Wakeup	 Cycles	

ConvPG	 Warped	 Gates	

(b) Wakeup

Figure 11: Sensitivity to BET and Wakeup delay

considering active warps that may be ready soon. Coor-
dinated Blackout alleviates this concern and has 2% per-
formance overhead. By taking into consideration soon-to-
be ready active warps it can avoid aggressive power gating
events. In spite of this effort, Coordinated Blackout suffers
performance losses in certain benchmarks, such as cutup,
heartwall and NN. The primary reason is that Coordinated
Blackout places both the SP0 and SP1 clusters of INT or
FP in blackout state after confirming no instructions are
present in the active warps set. Unfortunately, as soon a
unit is placed in blackout state in both clusters a ready in-
struction immediately enters the active warps set. While
these are rare cases, warped gates changes the idle-detect
window length to avoid even the corner case performance
losses. Hence, warped gates achieves virtually the same per-
formance overhead as conventional power gating, but with
significantly more energy savings.

7.5 Hardware overhead
We implemented the various counters added to the base

machine to enable the proposed techniques in verilog. We
synthesized them using NCSU PDK 45nm library [1]. Also
we extracted the area of the SM from GPUWattch [16].
An SM occupies 48.1 mm2. The set of counters occupies
1,210.8 um2, resulting in an 0.003% area overhead. An SM
uses 1.92 W of dynamic power and 1.61 W of leakage power.
The counters uses 1.55e-3 W of dynamic power and 1.21e-5
W of leakage power total, accounting for 0.08% dynamic and
0.0007% leakage power overhead.

7.6 Sensitivity to power gating parameters
We conducted a sensitivity analysis to various wakeup de-

lays and break-even time values. These results are shown in
figure 11.

Regardless of break-even times, warped gates always out-
performs conventional power gating with the Two-level warp
scheduler. With smaller break-even times, the energy sav-
ings gap between warped gates and conventional power gat-
ing narrows since the occurrence of negative power gat-
ing events decrease. As break-even time increases, the en-
ergy savings widens between warped gates and conventional
power gating. For example, at a break-even time of 19 cy-
cles, conventional power gating saves only 17% of integer
static power, while warped gates saves 33%, a nearly 2x in-
crease. Performance remains relatively constant with vary-
ing break-even times.

For higher wakeup delay values, the performance and en-
ergy savings for conventional power gating degrades signifi-
cantly. Recall that conventional power gating results in high
number of wakeups due to aggressive power gating of execu-
tion units. This results in high performance penalty due to

paying more wakeup delays every time, and less power sav-
ings as the unit is consuming power when waking up, but
not doing any useful work. With a wakeup delay of nine
cycles, conventional power gating saves only 6% and 10%
of integer and floating point static energy. Warped gates is
able to sustain 33% and 48% of integer and floating point
static energy savings. Performance-wise, conventional power
gating has a nearly 10% performance impact, while warped
gates suffers 3% overhead with a nine cycle delay.

8. RELATED WORK
GPGPU schedulers: GPGPU scheduler has been

the focus of various optimizations. The Two-level warp
scheduler [12] is an optimization over prior schedulers that
placed all warps, both pending and active warps, in a sin-
gle queue. Narasiman [19] also proposed another two-level
scheduler that improves performance by dividing warps into
fetch groups and rotating fetch groups whenever a long la-
tency event occurs. Rogers [20] proposed a warp scheduler
to improve cache locality. Jog [15] proposed a warp sched-
uler to enable efficient prefetching policies. GATES targets
static power savings as the primary optimization criteria.
We used the two-level scheduler [12] as our baseline sched-
uler in all our evaluations and built GATES on top of it.

Power aware schedulers: Power aware schedulers
for CPUs and multicore systems have been studied exten-
sively [7, 21]. Previous work focused on dynamic power
aware scheduling and DVFS decisions based on available
task and service time. GATES takes advantage of the unique
GPGPU execution environment to rearrange warps for re-
ducing static energy by increasing idle cycle length.

Power gating: Power gating techniques have been widely
applied in microprocessors [13, 18], caches [11], and NOCs [9].
Prior work on GPGPU power gating focused on the gran-
ularity of SM cores [22], which works well when an entire
SM is idle. But this work shows that there are plenty of
opportunities to power gate execution units within an SM,
even when an SM is not idle. In our work, we extended
the power gating techniques to GPGPU execution units and
proposed an enhanced blackout power gating scheme which
takes advantage of the GPGPU execution model.

GPGPU power saving: Power efficiency in GPG-
PUs has been extensively studied. Several works [5, 12, 23]
proposed techniques to save power of the GPGPUs regis-
ter file using circuit level and microarchitectural techniques.
Leng [16] explored clock gating and DVFS to save dynamic
power of the execution units and register file based on the
mask activity and execution phases, but static power was
not considered in Leng’s work, which is the focus of this
paper.

9. CONCLUSION
In this paper we first analyzed the effectiveness of con-

ventional power gating techniques when applied to GPGPU
execution units. We showed that the basic Two-level sched-
uler that frequently intersperses different instruction types
leads to short idle periods for a given execution unit type.
These short idle periods limit the effectiveness of conven-
tional power gating. We proposed GATES to aggregate
instruction issue such that clusters of instructions of the
same type are given priority. GATES is effective in ex-
tracting and coalescing idle periods. We then evaluated a

new power gating scheme called Blackout to avoid the neg-
ative effects of power gating a unit that does not have suf-
ficiently long idle periods, even after applying GATES. We
then proposed an Adaptive idle detection approach that dy-
namically varies the size of the idle detect window before
a power gating event is triggered. We call the combined
approach of using GATES, Blackout and Adaptive idle de-
tect as warped gates. With negligible area and performance
overhead, warped gates saves ∼1.5x more static power than
conventional power gating, achieving 31.6% and 46.5% of
integer and floating point static energy savings overall.

10. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

valuable comments. This work was supported by DARPA-
PERFECT-HR0011-12-2-0020.

11. REFERENCES
[1] The freepdk process design kit.

http://www.eda.ncsu.edu/wiki/FreePDK.

[2] Parboil benchmark suite.
http://impact.crhc.illinois.edu/parboil.php.

[3] Amd graphics cores next (gcn) architecture. Technical
report, AMD, 06 2012.

[4] NvidiaâĂŹs next generation cuda compute architecture:
Kepler tm gk110. Technical report, Nvidia, 2012.

[5] M. Abdel-Majeed and M. Annavaram. Warped register file:
A power efficient register file for gpgpus. In Proceedings of
the 2013 International Symposium on High Performance
Computer Architecture (HPCA), HPCA ’13, 2013.

[6] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing cuda workloads using a detailed gpu simulator.
In IEEE International Symposium on Performance
Analysis of Systems and Software, April 2009.

[7] D. Bautista, J. Sahuquillo, H. Hassan, S. Petit, and
J. Duato. A simple power-aware scheduling for multicore
systems when running real-time applications. In IEEE
International Symposium on Parallel and Distributed
Processing, 2008. IPDPS 2008., pages 1–7, 2008.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In Proceedings of the 2009 IEEE
International Symposium on Workload Characterization
(IISWC), IISWC ’09.

[9] L. Chen and T. Pinkston. Nord: Node-router decoupling
for effective power-gating of on-chip routers. In 45th
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO) 2012, pages 270–281, 2012.

[10] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and
E. G. Friedman. Managing static leakage energy in
microprocessor functional units. In Proceedings of the 35th
annual ACM/IEEE international symposium on
Microarchitecture, MICRO 35, 2002.

[11] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge. Drowsy caches: simple techniques for reducing
leakage power. In Proceedings of the 29th annual
international symposium on Computer architecture, ISCA
’02, 2002.

[12] M. Gebhart, D. Johnson, D. Tarjan, S. Keckler, W. Dally,
E. Lindholm, and K. Skadron. Energy-efficient mechanisms
for managing thread context in throughput processors. In
Proceedings of the 38th Annual International Symposium
on Computer Architecture, pages 235–246, 2011.

[13] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban,
H. Jacobson, and P. Bose. Microarchitectural techniques for
power gating of execution units. In Low Power Electronics
and Design, 2004. ISLPED ’04. Proceedings of the 2004
International Symposium on, pages 32–37, 2004.

[14] H. Jeon and M. Annavaram. Warped-dmr: Light-weight
error detection for gpgpu. In Microarchitecture (MICRO),
2012 45th Annual IEEE/ACM International Symposium
on, 2012.

[15] A. Jog, O. Kayiran, A. Mishra, M. Kandemir, O. Mutlu,
R. Iyer, and C. Das. Orchestrated scheduling and
prefetching for gpgpus. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013.

[16] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S.
Kim, T. M. Aamodt, and V. J. Reddi1. Gpuwattch:
Enabling energy optimizations in gpgpus. In Proceedings of
the 40th Annual International Symposium on Computer
Architecture, 2013.

[17] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. Mcpat: an integrated power,
area, and timing modeling framework for multicore and
manycore architectures. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, 2009.

[18] A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin.
Dynamic power gating with quality guarantees. In
Proceedings of the 14th ACM/IEEE international
symposium on Low power electronics and design, ISLPED
’09, 2009.

[19] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt. Improving gpu performance via
large warps and two-level warp scheduling. In Proceedings
of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-44 ’11, 2011.

[20] T. G. Rogers, M. O’Connor, and T. M. Aamodt.
Cache-conscious wavefront scheduling. In Proceedings of the
2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’12, 2012.

[21] C. Scordino and G. Lipari. Using resource reservation
techniques for power-aware scheduling. In Proceedings of
the 4th ACM international conference on Embedded
software, EMSOFT ’04, pages 16–25, 2004.

[22] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng.
Power gating strategies on gpus. ACM Trans. Archit. Code
Optim.

[23] W. Yu, R. Huang, S. Xu, S.-E. Wang, E. Kan, and G. Suh.
Sram-dram hybrid memory with applications to efficient
register files in fine-grained multi-threading. In 38th Annual
International Symposium on Computer Architecture, pages
247–258, 2011.

[24] J. Zhao and Y. Xie. Optimizing bandwidth and power of
graphics memory with hybrid memory technologies and
adaptive data migration. In Computer-Aided Design
(ICCAD), 2012 IEEE/ACM International Conference on,
2012.

