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Abstract the programmer’s perspective, evolution of CUD2G] and

General-purpose Graphic processing units (GPGPUS) areO_penCL P4 frameworks has ma_de programmin_g G,PGPUS
simpler. In the CUDA programming model, applications are

at their best in accelerating computation by exploitingabu > i ,
dant thread-level parallelism (TLP) offered by many classe divided into work units calledcCUDA blocks(a_llso called as
cooperative thread arrays CTAs). A CTA is a group of

of HPC applications. To facilitate such high TLP, emerg- ) )
ing programming models like CUDA and OpenCL allow IorO_f[hreads that can cooperate with each other by synchroniz-

grammers to create work abstractions in terms of smallef"d their éxecution. Essentially, a CTA encapsulates ait sy

work units, called cooperative thread arrays (CTAS), ceisi chronization and barrier primitives associated with itsugr

ing of a group of threads. The CTAs can be executed in an f threads. GPGPU architecture provides synchronization
order, thereby providing ample of opportunities for TLPeTh uarantees within a CTA and assumes no de_pendenmes e_X'St
state-of-the-art GPGPU schedulers allocate maximum possiacroSS CTA?’ helplng_ln relaxmg CTA execution ord_er. This
ble CTAs per-core (limited by available on-chip resourdes) leads to an increase in parallelism and more effective usage
enhance performance by exploiting high TLP. of cores. Current GPGPU schedulers attempt to allocate max-

However, we demonstrate in this paper that executing théT],um number of CTAhS per-cor;a, based on the available on-
maximum possible CTAs on a core is not always the optf2 Ip resources, to enhance performance.
mal choice from the performance perspective due to ineffi-

cient utilization of core resources. Therefore, we propase . : .
. . : ! . the maximum possible TLP may not necessarily be the best
dynamic CTA scheduling mechanism, called DYNCTA, WhICF(%hoice for improving GPGPU performance since this leads

(rﬂog#f;ezgzz dcc())rr?_;evﬁilczlt_iEnbghzlrlggfet:?sgt]igsptlg?h@gbzﬁo high amounts of core inactive time. The primary reason
' PP . . L behind high core inactivity is very high round-trip fetclda-
locates more CTA.‘S for pomput_e-lnf[enswe a.ppllganons COM¥ies of memory requests (core to memory and back) mainly
Eg;?edrfgorgemsqz"g fgﬁ':gsaﬂzllgitlgnss;igg]'gll:)z géefl';;t_attributed to limited available memory bandwidth. Ideally
uon. - simuliat u Pt ne would expect that exploiting the maximum available TLP
form with 31 applications demonstrate that the proposed CTAvviII hide long memory latencies, as increased number of con-
) : o i X ) ,
scheduling provn(jjets Ztﬁ/o (uptﬁ_ﬁxél_lr_r;pm\r/]ergelnt in perfor currently running CTAs (in turn, threads) will keep the core
mance compared fo the existing L 1A scheduler, on averag&]sy, while some threads wait for their requests to come back
We further enhance DYNCTA by turning off some cores durlngrom main memory. On the other hand, more threads also
run-time to limit TLP and power consumption. This proposed ause the number bf memory requests t,o escalate, aggravat-
X . 0 . ,
scheme, DYNCORE, is shown to provide 21% speedup, Wh'lﬁg the memory fetch latencies. To understand this trafie-of

reducing power consumption by 17% and saving energy bXonsider Figurel, which shows performance results of ex-

52%, compared to existing CTA schedulers. ecuting optimal number of CTAs per-core (in turn, optimal
1. Introduction TLP) and minimum number Qf CTAs, which i§ 1. The opti-
mal number of CTAs per-core is statically obtained by exhaus
Interest in GPGPUs has recently garnered momentum béve analysis. The results are normalized with respect ¢o th
cause they offer an excellent computing paradigm for manylefault GPGPU execution approach, where maximum num-
classes of applications, specifically HPC applicationswit ber of CTAs (restricted by core resources: register file,size
very high thread-level parallelism (TLPB,[7, 20, 23]. From  shared memory size, maximum number of threads) are exe-

However, we demonstrate in this paper that exploiting
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Figure 1: Impact of varying TLP on IPC. First bar shows the spe
Second bar shows the speedup when TLP is optimal (a core execu
maximized). All results are normalized with respect to the C

cuting on the cores. These results suggest that varying TLP a

all performance of GPGPU applications. The average IPC
improvement over all 31 applications with optimal TLP over
maximum TLP is 39% (25% geometric mean (GMN)), and
goesuptoMx inl | Xand 35x in PVC. Thus, the goal of this

edup when TLP is minimum (only 1 CTA is assigned on each core).
tes an optimum number of CTAs such that the performance is
UDA default, where TLP is maximum [

paper is to propose a CTA scheduling scheme that enhanc: prav] brav] - - [prav] [prav]
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performance by executing the optimal humber of CTAs on
the cores. This number might be different for each applica
tion, and determining it would not be practical as it would
require executing the application exhaustively for allgibke

(a) Baseline Architecture

(b) Application Hierarchy

Figure 2: GPGPU Background

Baseline GPGPU Architecture:- A GPGPU consists of

levels of thread/CTA parallelism. Motivated by this, we pro many simple in-order cores (shader cores), with each cpre ty
pose a method to find the optimal TLP at the granularity ofically having “single-instruction, multiple-threads” (8T)

CTAs dynamically during run-time. We believe that our work lanes of 8 to 32. Our target GPGPU architecture, shown in
is the first to propose an optimal CTA scheduling algorithm toFigure 23, consists of 30 shader cores each with an SIMT
improve performance and power of GPGPUs. In this contexwidth of 8, and 8 memory controllers (MCs). This configura-

we propose two schemes:

tion is similar to the ones studied in recent works9, 30.

e First, we propose a dynamic CTA scheduling algorithmEach core has a private L1 data cache, read-only texture and
(DYNCTA) that modulates per-core TLP. This is achieved byconstant cache, along with a low-latency shared memory. 10
monitoring two metrics, which reflect the memory intensive-clusters each of which contain 3 cores are connected via a
ness of an application during execution and changing TLP dycrossbar interconnect to 8 MC8, 9, 30]. Further, each MC
namically at the granularity of CTAs depending on the mon/S associated with a slice of shared L2 cache bank. An L2
itored metrics. DYNCTA favors higher TLP when the appli- c@che bank with an MC is defined as one “memory partition”.
cation is compute-intensive and lower TLP when memoryPetailed baseline platform configuration used in this wark i
intensive. Evaluation on a 30-core GPGPU platform with 31described in Tablé.

applications indicate that DYNCTA increases applicatien-p

Table 1:

Baseline Configuration

formance (IPC) by 28% (up to.8x), on average, and gets

Shader Core Config3[]

1300MHz, 5-Stage Pipeline (Fetch, Decode, Memory,
Execute, WriteBack), SIMT Width = 8

close to the potential improvements of 39% with optimal TLP

Resources / Core

Max.1024 Threads, 32KB Shared Memory, 32684 Registe

e Second, building upon DYNCTA, we propose a core

Caches/ Core

32KB 8-way L1 Data Cache, 8KB 4-way Texture,
8KB 4-way Constant Cache, 64B Line Size

gating mechanism (DYNCORE) that limits TLP further for

L2 Unified Cache

256 KB/Memory Partition, 64B Line Size, 16-way associati

some applications by turning off some cores during run-time Scheduiing Round Robin Warp Scheduling (Among Ready Warps),
Similar to DYNCTA, DYNCORE limits TLP for memory- Load Balanced CTA Scheduling

. ) . . X . Features Memory Coalescing, 64 MSHRs/core,

intensive applications. On average, this scheme incregmses Immediate Post Dominator (Branch Divergence)
formance by 21%, reduces power consumption by 17%, anid 'nterconnect30] 1 Crossbar/Direction (SIMT Core Concentration = 3),

provides 52% energy savings compared to the case when max-

650MHz, Dimension-Order Routing, 16B Channel Width,
4\/Cs, Buffers/VC = 4, Routing Delay = 2,
Channel Latency = 2, Input Speedup = 2

imum TLP is exploited.

DRAM Model

FR-FCFS (128 Request Queue Size/MC), 4B Bus width,
4 DRAM-banks/MC, 2KB page size, 4 Burst Size, 8 MCs

2. Background

GDDR3 Timing B, 30, 8]

800MHz,tc. =10,tgp =10,trc =35,tras =25,
trep =12,trrp =8, tepLr =6, twr =11

In this section, we provide a brief background on the GPGPU

architecture, applications considered, and typical sglegl GPGPU Application Design:- Figure 2b shows the hierar-

strategies. Further details on these can be found,ih, 11,
15,21, 22, 31, 32.

chy of a GPGPU application consisting of threads, warps,
CTAs, and kernel. Threads associated with a GPGPU appli-
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Figure 3: The average Active Time Ratio (RACT) of applicatio = ns. RACT is defined as the average of ratio of cycles during whi ch
a core can fetch new warps, to the total application executio n cycles.

cation are grouped into “warps” or “wavefronts” (group of operation (waiting for data to come back from main memory),
32 threads). Group of warps constitute a “CTA” or “threadthe entire warp (32 threads) is scheduled out of the pipeline
block”. A CTA is essentially a batch of threads that canand putin the pending queue of warps. When the correspond-
coordinate amongst each other by synchronizing their execing data arrives, the warp proceeds to the write-back sthge o
tion streams using barrier instructions. Since all the bymc  the pipeline and marked as ready to fetch new instructions.
nization primitives are encapsulated in the CTA, executibn Application Suite:- In this paper, we consider a wide range
CTAs can be performed in any order. This helps in maximizef CUDA applications targeted to evaluate tieneral pur-

ing the available parallelism as there are no orderingitestr posecapabilities of GPUs. Our application suite includes
tions on CTAs and any core is free to schedule any CTA. FUEUDA NVIDIA SDK [ 2§ applications, and Rodinia5]

ther, each kernel is associated with many CTAs as shown ibenchmarks, which are mainly targeted for heterogeneous
Figure2b, which in turn form a GPGPU application. Kernels CPU-GPU-accelerator platforms. We also study Parlail [
implement specific modules of a GPGPU application. benchmarks, which mainly stress throughput-computing fo-

Kernel, CTA, Warp and Thread Scheduling:- In GPGPUs, cused archltectures._ To evaluate _the_lmpact of our sche_mes
o . ._on large scale and irregular applications, we also consider
scheduling is a three-step process. First, a kernel assdcia 7 .

. P emerging MapReducé P] and a few third party GPGPU ap-
with a GPGPU application is launched on the GPU. In our lications. In total. we studv 31 apolications tabulated in
work, we assume that only one kernel is active at a time. Af:?allblelz We oval é\t\(lev o rute{:hn' 22 Ion IGPGPUl:ISB]) ['
ter launching the kernel, the global block (CTA) scheduler ) vaiu u 'qu

(GigaThread in27]) assigns CTAs of the launched kernel to a p(;Jbllﬁlly-ava:cl_able t(_:yclg-acc_léraée_ (%I_P;PUGIS;Q;IS[?_' we
all the available cores (there aecores in the systemy] 3]. modetthe configuration describedn 1aiie N

The CTA assignment is done in a round-robin fashion. ForIT:aCh appllcanon IS run F'” completion or 1 billion instruc
ions, whichever comes first.

example, CTA 1 is launched on core 1, CTA 2 is IauncheaI
on core 2, and so on. If there are enpugh QTAs, eaqh core § Detailed Analysis of TLP

assigned at least one CTA. After this assignment, if a core

is capable of executing multiple CTAs, a second round 0f3 1. |s More Thread-Level Parallelism Better?

assignment starts (provided enough CTAs for the launched

kernel are available). This process continues until all €TA Although maximizing the number of concurrently executing
have been assigned or all the cores have been assigned théifAs on a core is an intuitive way to hide long memory la-
maximum limit of CTAs. Assuming there are enough CTAstencies, Figurel shows the applications do not reach their
to schedule, the number of concurrently executing CTAs inpotential. For analyzing the primary cause of performance
the system is equal thl x C. The maximum CTAsN) per- bottlenecks, we study the core active/inactive times fer th
core is limited by core resources (number of threads, sharedenchmarks shown in Table We define the core inactive
memory and register file size3,[19]), and cannot exceed the time (Ninact) as the number of cycles when a core is not able
limit of 8 [26]. Given a baseline architectud,may vary for  to fetch any new instructions (warps) and the core active tim

a kernel depending on how much resource is needed by ti{&lact) as the number of cycles when a core is able to fetch
CTAs of a particular kernel. For example, if a CTA of kernel new warps. The average active time rafACT), is defined

X needs minimum 8KB of shared memory and the baselinés the average Mact/(Nact+ Ninact) across all cores.
architecture has 32KB available, only 4 CTAs of kernel X Figure3 shows the applications in increasing order of their
can be launched simultaneously on the same core. Also, RACTs We observe that, on average, cores are inactive for
a CTA of kernel X needs more resources than that of kernedlmost 49% of the total execution cycles, and this goes up
Y, then theN value for kernel X will be smaller compared to to around 90% for memory-intensive applicatioRrsg, SSC,

that of kernel Y. After the CTA assignment, the third step isi I X). It is important to stress that these high percentages are
the scheduling of warps associated with the launched CTA()bserved even though maximum possible CTAs are concur-
on a core. The warps are scheduled in a round-robin fashiorently executing on all cores. These results paint an ugy pi
to the SIMT lanes of the core. Every 4 cycles, a ready wargure of GPGPUs, which are known for demonstrating high
(ready to fetch instruction(s)) is fed into these lanes fa&-e TLP and delivering high throughput. Inactivity at a core
cution. If the progress of a warp is blocked on a long latencymight happen mainly because of three reasons. First, all the
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Figure 4: Effect of increase in number of CTA on various metri cs. Higher TLP increases laty;. Higher TLP causes util to go down
on some applications. lat and util have significant impact on IPC.
Table 2: List of benchmarks: ~ Type-C Compute-intensive appli- cores, the warps will tend to wait longer periods of time for
cations, Type-M Memory-intensive applications, ~ Type-X Ap- the requested data to come back from DRAM and cause the
plications not exhibiting enough parallelism. pipeline to stall. These inactive periods will continue towy
_ — as more high memory applications are ported to GPGPUs.
# Suite Applications Abbr. Type . L .
T | MapReduce Page View Count PVC | TypeM To analyze the reason for inactivity, we start by categoriz-
2 MapReduce Similarity Score SSC Type-M H H ; ; H H .
5T MapReduce e Tdex X Typo™ ing the applications into three (_:ategorles. Appll(_:at|onl:_*o1w
7 SDK Breadth First Search | BFS | TypeM highRACT (> 66%) are categorized as compute-intensive ap-
5 Parboil | Sum of Abs. Differences| SAD | Type-M plications (Type-C). Among the remaining applications th
6 Rodinia Particle Filter (Float) PFF Type-M . . . . 0 -
= Rodina LU Decomposition TUD | TypeX ones wnh sma_II idle time rat|o<_( 2Q %) are classified as
8 Parboil Sparse-Mairix-Mul. | SPMV | Type-M memory-intensive (Type-M) applications, and the remajnin
5 | Rodina Needleman Wunsch | NW_ | Type-X as Type-X applications. Type-X applications do not have
10 SDK MUMerGPU MUM | Type-M yp pp - 1yp pp
II | Rodina Kmeans KM__| Type-M enough threads to execute to keep all cores busy, and do
12 SDK Weather Prediction WP Type-M ihit hi i i
i3 5% et SCP T TypoM not exhibit h|gh Ievell of pargllel!sm. _We obgerve that, in
14 | MapReduce Page View Rank PVR | TypeM many memory-intensive applications, increasing the numbe
15 SDK AES Cryptography AES | Type-M of CTAs has detrimental impact on performance. It is impor-
16 SDK LIBOR Monte Carlo LIB Type-M .
7 SDK N-Queens Solver NQU | TypeX tant to note tha_t executing more CTAS concurrently leads to
18 Parboil FFT Algorithm FFT_| Type-M more warps to timeshare the same set of computing resources.
19 | Rodiia SRAD2 bz | Type-M Also, the number of memory requests sent simultaneousl
20 SDK Backpropogation BP Type-M = . . y req - - y
21 SDK JPEG Decoding JPEG | TypeM will escalate in proportion, thereby increasing the mentary
22 SDK Blackscholes BLK Type-C ; e ;
- oK Ray Tradhg RAY T Hpe tency that needs_to _be hidden. Moreover, this increase in TLP
24 | Rodinia SRAD1 SD1 | Type-C will saturate the limited DRAM bandwidth even more.
25 Rodinia Leukocyte LKC Type-C . . . .
6 T Rodnia | Partcle Fifer (Naive) | PFN | Type-C ~ Let us now consider three GPGPU applications with var-
27 | _Rodinia Hotspot HOT | Type-C ied propertieSAES, MM JPEG) and observe their behavior as
28 SDK Neural Networks NN Type-C ; o R
5 b Miatrix Mutipication MM Typ6C th.e num.ber of CTAs/core (pargllehsm) is mcr_ea;ed (E|gll_)|re
30 SDK StoreGPU STO | TypeC Discussion of the fourth applicatioie®) in this figure is in
31 SDK Coulombic Potential | CP [ Type-C Section3.2. We mainly focus on IPC, round-trip fetch la-

tency, and core utilization of the GPGPU system. Round-trip

warps could be waiting for the data from main memory andfetch latency lat) is defined as the number of core clock
hence, their progress is road-blocked. We call this as “menfycles between which a memory request leaves the core and
ory waiting time”. Second, pipeline may be stalled becaus&omes back to the core. Core utilizatiasti(), is defined as

of excessive write-back (WB) contention at WB stage of thethe average ofitil; for all i, whereutil; is the ratio of cycles
pipeline, which we call as “stall time”. This may happen when at least one CTA is available on cayé¢o the total cy-
when the data associated with multiple warps arrive in atshorcles for cord. Note that, in a GPGPU system withcores,
period of time and proceed to WB stage. This leads to stallinghe maximum number of CTAs that can concurrently execute
of pipeline for multiple cycles, preventing new warps frosb 0N the GPGPU il x C. In this experiment, we vary the limit
ing fetched. Third is the “idle time”, which is the number of Of the number of CTAs launched at a canewhich is from 1
cycles during which the core cannot fetch any warps as all théminimum) toN (maximum). In turn, we increase parallelism
warps in the core have finished their execution. We observBOmMC x 1toC x N, in steps of 1 CTA per coré{CTAs per
that the first two components are the major contributors foSPGPU system). The results for all the three metrics con-
the core inactivity, whereas the third component constitut Sidered arenormalizedwith respect to their values whev
more than 10% of the total execution cycles for only threeCTAs are launched on the core (maximum parallelism).
applications. As GPGPU memory bandwidth is limited and Figures4a, 4b, and4c show the effect of varying TLP (at
will continue to be a bottleneck with increasing number ofthe granularity of CTAs) on IPC, latency, and core utiliza-
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(a) A case wheren=4 (b) A case where n = 2
Figure 5: Effect of TLP on core utilization. In (a), all 8 CTAs
are distributed to 2 cores initially. Core 1 finishes executi on
before Core 2 and we observe a significant idle time for Core
1. In (b), only 4 CTAs are distributed to 2 cores initially. On ce
a core finishes executing one CTA, it is assigned another one.
Since only 2 CTAs share the same core resources instead of 4,
execution times of CTAs become shorter compared to (a). In
(b), we see better core utilization and shorter execution ti me
due to better balancing on the distribution of CTAs.
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tial reasons for this is the fact that having more CTAs on
cores might increase the time during which some cores are
idle towards the end of execution (once they finish execut-
ing all the CTAs they have), while others are still executing
some CTAs. Although it is not always the case, increagsing
tends to worsen the utilization problem. Thus, this probiem
mostly evident on applications with higth Figure5 depicts

an example illustrating this problem. We assume that there
are 2 cores executing 8 CTAs. The y-axis shows the number
of concurrently executing CTAs, and the x-axis shows the ex-
ecution time. This example shows the impact of TLP on core
utilization, and how it is related to execution time.

To understand the effect of core utilization on performance
we pick CP, the most compute-intensive application in our
suite (99% RACT), and observe the impact of varyimg
Since the application is fetching/decoding a warp withost |
ing much time stalling or waiting for data from the memory,

tion, respectively. FOAES, the results are normalized to the One would expect to see an increasing performance as we in-
case whereN = 4, as maximum 4 CTAs can execute Con_Creasm. The effect of Varying TLP on IPOatn andutil is
currently according to the resource restrictions. We aleser Plotted in Figuret. As we increase, we see thaliaty also in-

that in AES, increasing the number of concurrent CTAs from creases linearly. However, sinta; is low (32 cycles when
n=1ton=N (N = 4) has detrimental impact dat; (in- N= 1), and the benchmark is highly compute-intensive, in-
creases by 9). SinceAEs is classified as a Type-M appli- creasindat;; does not have a negative impact on performance.
cation (54% core inactive time), as the number of concurrenEXcept whem = 1 where memory latency hiding capability
CTAs increases, the number of memory requests escalatés/imited due to low TLP, the IPC bar always follows thl
causing more contention in memory channels. Surprisinghpar. As expected, we see thatl goes down as approaches

we notice thain = 1 (minimum CTA count per core, mini- N, and IPC drops due to unbalanced CTA load distribution.
mum TLP) leads to the highest performance (lowast and  Util, hence IPC, reaches its peak wiren 3.

the highesutil) for this application. Thus, for this applica- 10 Summarize, we observe that, out of 31 applications eval-
tion, we define optimal CTA counbpt) as 1. On the other Uated, 15 of them provided more than 5%, and 12 of them
hand, formv which is a Type-C application, as we increaseYielded more than 10% (up to.9i for I 1 X) better perfor-

the number of CTAs fronm = 1 to n = 8, IPC improves at mance with optimal TLP, compared to the baseline. Thus, in-
each step, but with a very low slope after= 2. The total creasing TLP beyond a certain point has a detrimental effect
IPC improvement is around 34%. Since this application ison the memory system, and thus on IPC.

compute-intensive, varying TLP does not have a significanyy ‘o 50seq CTA and Core Power Modulation
impact onlat;. Note that the utilization problem is not sig-
nificant in this application and CTA load is balanced acrosdn this section, we describe our approach to determine the
all cores. Inmvj we haveopt = 8. These two applications optimal CTA number on a core dynamically, and discuss its
demonstrate the impact of exploiting the maximum and miniimplications on performance and power. Our approach is ap-
mum TLP available. In comparisodPEGexhibits interesting  plied to each core separately, and consequently, eachaore ¢
variances in IPC, latency and utilization as TLP is increlase work with a different CTA count at a given time.

In this application, when parallelism is not enough«1 and

n = 2), the ability to hide the memory latency is limited, re-
sulting in lower performance compared to when TIbP<(3)  Problem with finding opt: One way of findingopt for an

is higher. However, as the number of CTAs increases beyongpplication is to run it exhaustively for all possibievalues,

n= 3, the corresponding increase in TLP leads to increasand determine the one that gives the shortest execution time
in the memory access latency, leading to loss in performancghis could be a viable option only if we are running a few
Hence, we define = 3 as optimal CTA count fos PEG. predetermined applications all the time. Instead, we would
like our approach to be applicable under all circumstances.
Thus, we propose a scheme which changes the number of
Next, we observe that varying the number of CTAs also haTAs on a coralynamicallyduring the course of execution.

an impact on the core utilization. This is mainly contritiite Idea for dynamic CTA modulation: When an application

by the differing execution times across CTAs, causing an imexhibits a memory-intensive behavior during a period o&tim
balance on the execution times of cores. One of the poteme limit TLP by reducing the number of CTAs on the cores.

4.1. DYNCTA: Dynamic CTA Scheduling

3.2. Implications of Tuning TLP on Core Utilization



Cdle | t . Otherwise,n remains the same. Note that the decisions are
t e made locally. Once a decision is made,memandC_idle
@E@ ‘Decrmm" are reset to 0 to capture the behavior of the next window. Note
that 1< n < N must always hold, as long as there is a CTA
that is available to be issued to the core. We ensurenthat
so that the cores are executing threads, instead of stajlmg i
If there are no CTAs available to be assigned on the core, then
On the other hand, when an application is compute-intensive < N must hold. These two conditions are always checked
we would like to exploit maximum TLP by increasing the when making a decision on incrementing or decrementing
number of CTAs on the cores. Below, we describe our apH the resultingn after the decision violates these conditions,
proach to determine whether an application is memory othennis not changed.
compute-intensive during a period of time. CTA pausing: According to P6], CUDA blocks (CTAs),
What metrics to monitor for dynamic modulation: In or- once assigned to a coreannotbe preempted, or assigned
der to modulaten during run-time, we monitor the following to another core. This presents a problem when our algorithm
metrics: (1)C_idle and (2)C_mem C_idleis the number wants to reduce. In order to address this problem, we pro-
of core cycles during which the pipeline is not stalled, butpose a technique called CTA pausing. This technique deprior
there are no threads to be issued on the core and this coreites the warps belonging to the most recently assigned CTA
idle. A very highC_memvalue indicates that the core does on the core, iln needs to be decremented by 1. In this case,
not have enough threads to execute to keep the pipeline busye say that the CTA is paused.nfeeds to be further decre-
thus it is better to increase TLE. menis the number of core  mented by 1, the warps belonging to the second most recently
cycles during which all the warps are waiting for their dataassigned CTA on the core are also deprioritized. However,
to come back, regardless of the pipeline state being statled employing CTA pausing has implications on incrementing
not. This metric indicates how much pressure the execwion ilf n is incremented during a time in which a paused CTA is
exerting on the memory channels. If this number is very highpresent on the core, a new CTA is not issued to the core. In-
that means cores are waiting for very long latency memorgtead, the paused CTA, which is the least recently assigned
operations, thus it is better to limit TLP. Statistics foege = CTA on the core, resumes execution. The pseudo-code of
two metrics are collected separately on each core, and a CTBYNCTA with CTA pausing is given in Algorithni.
modulation decision is made locally. To explain the behavior of our algorithm with CTA paus-
How the algorithm works: Instead of assignindl CTAs to  ing, let us consider an example whéde=4 andn=3 at a
acore, the global block scheduler starts with assighi(2 | given instant. Let us further assume that CTA1 is the oldest
CTAs to each coren(= |[N/2]). CTAs are distributed to CTA issued to the core, and CTA3 is the most recently as-
cores one by one, as in round-robin CTA scheduler. Theresigned CTA on the core. If the algorithm decremamtsy 1,
fore, even if there are less th&x |[N/2] CTAs in the ap- the warps that belong to CTA3 are deprioritized. This means
plication kernel, the difference between the number of CTAghat, as long as there is a ready warp that belongs to CTAL or
on any two cores cannot be greater than 1, wikedenotes CTAZ2, it will always be prioritized to be fetched over a warp
the total number of cores in the system. After this initial-of CTA3. A warp of CTA3 can be fetched only if there are
ization step, at each cor€_mem andC_idle are checked no ready warps that belong to CTA1 or CTA2. Let us now
periodically (at every 2048 clock cycles, a tunable parameassume that is decremented further. This time, CTA2 is de-
ter) to make a decision, and then reset to 0. €ordle we  prioritized. As long as there are ready warps that belong to
use a threshold, idle, that categorizes the value lsv, or  CTAL, they will have the priority to be fetched. Note that
high. ForC_memwe use a low threshold (mem ), and a  sincen = 1, we cannot decrementany further. Ifn is incre-
high thresholdt{ mem_hwhich categorizes the value as low, mented by 1, CTA2 again gets the priority to have its warps
medium, or high. fetched. Ifn is incremented further, warps of CTA1, CTA2
Figure 6 shows how the number of CTAs is modulated.and CTA3 have the same priority. To summarize, a CTA is
First,C_idleis checked. Ifitis high%t_idle), anew CTAis paused whenis decremented. It can resume execution only
assigned to the core. The reason for this is to make an otha¥hen another CTA finishes its execution s incremented.
wise idle core busy. I€_idleis low (< t_idle), then we check Comparison vs.opt: We observe that some applications can
C_mento make a decision. IE_menis low, the warpsdo not have high RACT in a given time interval and low RACT in
wait for a long time for their requests to come back from theanother interval. For such applicatiormgt might be differ-
memory. Thus, we can increase the level of parallelism anént for intervals showing different behaviors. Thus, our al
assign one more CTA to the core.Gf menis high, then the gorithm potentially can outperform the case whare opt
warps are waiting for a long time for their requests to comefor some applications. As discussed in Sectirihe level
back from the memory. This implies thiat,; has grown too of parallelism mainly affectsat,; andutil. The problem re-
large to hide the memory latency, thus we decrenndny 1. lated toutil manifests itself towards the end of kernel execu-

Figure 6: The overview of DYNCTA algorithm. If C_idle is
high, Nnis incremented. Otherwise, C_memis checked. If it is
low, Nisincremented. If itis high, nNis decremented.



Table 3: Variables and thresholds

Algorithm 1 DYNCTA: Dynamic Cooperative Thread Array [ Varabe

Description |

SChedu“ng Nact Active time, where cores can fetch new warps
> N is the maximum # of CTAs on a core Ninact Inactive time, where cores cannot fetch new warps
> nis the CTA limit (running CTAs) on a core RACT Active time ratio,Nact/(Nact+ Ninact)
> nCTAis the total number of CTAs (paused and running CTAs) on a core| C_idle The number of core cycles during which the pipeline is ngt
> Issue_CTAs_To_Cores)Default CTA scheduler with CTA limitr stalled, but there are no threads to execute
procedure INITIALIZE C_mem The number of core cycles during which all the warps are
n«+ [N/2] waiting for their data to come back
Issue CTAs_To_CoREegn) t_idle Threshold that determines whetl@ridle is low or high
t_meml & t_memh | Thresholds that determine@ _memis low, medium or high
procedure DYNCTA G_act The sum of Nact of each core that is not turned off
INITIALIZE t_act Threshold that determines whett@ract is low or high
for all coresdo P _ 1
if C_idle > t_idle then ] ~— ] —
if N"CTA> nthen 509 \ S o9 ~—
Unpause least recently assigned CTA S £
else ifn < N then L8 \ L8 \
n«—n+1 2. 2o
else if(C_mem< t_mem|) then g 07 |~ ==Type-C g 07 1 ==Type-C
if "CTA> nthen _ = 0.6 | ~Type-M s 0.6 ~Type-M
Unpause least recently assigned CTA E 05 E 05

else ifn < N then
n«—n+1
else if(C_mem>t_memh) then
if n> 1then
n—n-1
for i =0— (NCTA-n) do
Pause most recently assigned CTA

tion, as illustrated in FigurB. For this reason, our algorithm
aims to solve the problem caused llag;;. Since the utiliza-
tion problem is usually more pronounced whweis large, and
our algorithm limits TLP by limitingn, we indirectly mitigate
the effects of the utilization problem as we linnifor some
applications. For some Type-C applications li&e, opt is
dependent ontil, as explained in Sectio.2. Thus, our

0 4 8 12 16 ] 4 8 12 16
Number of Cores Turned Off Number of Cores Turned Off

(a) Effect of turning off cores onbas (b) Effect of turning off cores on
line DYNCTA

Figure 7: Effects of turning off cores. The results are norma I-
ized with respect to using all the cores in a 30-core system.

However, starting withiN did not yield as good results as
starting with 1 orfN/2]|. This is a limitation of our algorithm,
since all possible CTAs are already distributed to the cioies
tially. However, according to our observations, startirihw

a small initialn does not make a significant difference as the
algorithm converges to the same value eventually.

algorithm may not be able to match the performance of theSynchronization: We model atomic instructions and take

n = opt case. For exampl&pP, which is the most compute-

intensive benchmark, we haeg@t= 3 andN = 8. The reason
why opt is equal to 3 is explained in Sectiéh2. SinceCP
is very compute-intensive, our algorithm eventually sets
8. Thus, the algorithm fails to converge ¢gt. Although
there are cases where the algorithm fails to convergepto

(mostly in Type-C benchmarks which suffer from low core

utilization), the algorithm usually converges to a valugttis
close toopt.

into account latency overheads due to inter-CTA synchesniz
tion. We make sure that we do not deprioritize CTAs indef-
initely to prevent livelocks and starvation. Also, our simu
lation results show that CTA-pausing provides extra perfor
mance benefits, which means that the paused CTAs do not
degrade performance because of synchronization.

4.2. DYNCORE: Power-Performance Optimizations

In this section, we describe how we extend DYNCTA to

Parameters: Our algorithm depends on parameters, such asichieve power savings as well.
t_idle, t_ mem_| andt_mem_h We determined the values Power problem: As the number of cores in GPUs increases,
of these parameters experimentally, which are 16, 128, angower consumption also escalatég][ In Section3, we have

384, respectively. These values are micro-architectusernte

shown that some applications suffer from low core utiliza-

dent, and need to be recalculated by experiments for diftere tion, and some applications spend a lot of time stalling due
configurations. These thresholds are based on heuristids, ato the network and memory congestion. Inefficient usage of

they are unlikely to differ significantly across differeniam-

resources can aggravate the power problem further.

architectures. Another parameter is the sampling period offfects of number of cores: A recent work [L4] has inves-
2048 cycles. Sensitivity analysis of these parameterseare rtigated the effect of turning off a number of cores, on sys-
portEd in Sectio®.3. All variables and thresholds we used in tem power and performance_ Itis Suggested that power con-

this work are given in Tabl8.

sumption can be significantly lowered without losing much

Initial value of n: As described above, all cores are initial- performance by turning off cores in memaory-intensive appli
ized with|N/2| CTAs provided that there are enough CTAs.cations. In order to observe the effect of the number of cores

We also tested our algorithm with initialvalues of 1 andN.

in the system, we have run experiments with various number

Starting withn = 1 gave very similar results to starting with of cores. Figur&ashows the normalized IPCs when 0, 4, 8,
[N/2], andn converged to approximately the same valuel2 and 16 cores are turned off in our baseline configuration.
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Figure 9: Average number of CTAs assigned to the cores, with t he default CUDA approach, DYNCTA, and the optimal TLP.

Figure 7b shows the same graph when DYNCTA is applied.cores in the system, unliké_memandC _idlewhich are per-

In both graphs, we observe that Type-C applications’ perforcore metrics. IfG_actis greater than_act, the application
mance loss is almost directly proportional to the number obehaves like a Type-C application.actis a threshold equal
cores that are turned off. However, Type-M applicationsmanto 40960, which stands for 66% RACT in a 30-core system
age to tolerate the performance loss due to using fewer coregith a sampling period of 2048. Thus, we continue executing
This stems from the fact that Type-M applications suffenfro the application using all the cores in the system. On therothe
long inactive times due to congestion in the network and thévand, ifG_act < t_act, the application behaves like a Type-
memory, and deploying fewer cores would mitigate the negM application and we turn off 8 of the cores in the system
ative effects of high parallelism. However, since Type-C ap(we analyze why we turn off 8 cores in SectibrB). Since
plications have a lot of core active time, reducing the numbewe cannot preempt a running CTA on a core, we wait for all
of cores would hamper their processing rate. In a hypothetthe CTAs to finish execution on the cores that are going to be
cal case, where the application is not suffering from lowecor turned off and we do not assign any new CTAs to these cores.
utilization described in Sectio® (assuming that the load dis- If G_actbecomes greater thanactduring the time in which
tribution is perfectly balanced, and all the cores finishirthe we are waiting for all CTAs to finish, those cores can continue
execution exactly at the same time) aQRACT = 100%, the scheduling more CTAs, and are not turned off. The number
performance loss of that application would be directly mmp of CTAs allocated per core is determined by DYNCTA.

tional to the number of cores turned off.

. . 4.3. Hardware Overheads
Power-performance benefits: In Section4.1, we have de- W v

scribed our approach that limits TLP to obtain better perforoyerheads associated with DYNCTA:Each core will need
mance over the default CUDA approach. The aim of this seGyg 11-bit counters to stor€ memandC idle The incre-

tion is to obtain both power and performance improvementsnent signals for each counter come from the pipeline. The
over baseline. In order to achieve this, we propose DYNgontents of these counters are compared against three pre-
CORE, which schedules CTAs using DYNCTA, and limits gefined threshold values, and the outcome of our CTA mod-
TLP further by turning off cores. ulation decision is communicated to the global block (CTA)
How power optimization is done: Since Type-M applica- Scheduler, associated with GPUX/]. Since cores and the
tions can tolerate execution with fewer cores, we turn offscheduler already communicate (e.g., as soon as a core fin-
cores if the application behaves like a Type-M applicationishes the execution of a CTA, global scheduler issues anothe
(with < 60% RACT) during a period of time. This is achieved CTA), there is no extra communication overhead required.
with a strategy similar to that employed in DYNCTA. During Overheads associated with DYNCORE:DYNCORE com-
run-time, every 2048 cycles, we monit@r act which isthe pared_actagainsG_act This global parameter is calculated
sum of Nact of each core that is not turned off. Note that by gathering information from all the cores. Since the out-
G_actis collected globally, using information from all the come of the comparison is used by the global scheduler to
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Figure 11: Effects of DYNCTA on round-trip fetch latency (  laty), and core utilization ( util), w.rt. CUDA default.

make a decision, the hardware for gathering all local inform 1, n slowly converges to 3, which is equal opt for this ap-
tion can be accommodated by the global scheduler. This wilplication. Since this application is fairly compute-insare
entail additional adders and a comparator. in the middle of its execution, no CTAs are paused. Thus,
We designed the required hardware using Verilog HDL and®YNCTA correctly captures the optimal behavior of this ap-
implemented it with TSMC 65 nm libraries using Synopsysplication. InRAY, we haveN = 6, thus we start witm = 3. In
Design Compiler. For a 30-core system, DYNCTA and DYN-the beginning, the application is not compute intensivewHo
CORE require 0.04Inn? area (less than 0.01% of GeForce ever, during this period, most of the inactivity happens due

GTX 285 area), and consumes @9V extra dynamic power. to write-back contention, not memory waiting time. Thas,
is not decremented. AftdRACT goes beyond 0.8) follows

5. Experimental Results the trend ofRACT, and eventually reaché¢. Since this is

] o a Type-C applicationgpt is not equal toN due to the core
We evaluate DYNCTA and DYNCORE with 31 applications, ilization problem (see in Sectich?). Although DYNCTA
using the cycle accurate GPGPU-Sig, with the configura-  cqrrectly captures the behavior of this application, itsfd
tion described in Tablé. Our baseline configuration uses the converge taopt because of the core utilization problem. In
default CUDA approach for determining the number of CTASFFT, we haveN = 8 and therefore start with = 4. Since
assigned to the cores. this application’s behavior changes very frequently, ager

5.1. Performance Results with DYNCTA n also fluctuates. Overall, we observe that avenagtays
very close taopt and DYNCTA is successful in capturing the
We start by showing the dynamism of our algorithm in allo-application behavior. A graph showimy averagen andopt
cating CTAs to the cores. For each application, we study théor all applications is given in Figur@ We see that DYNCTA
maximum number of CTAs that can be allocated to the coreds close tooptfor most Type-M applications. Type-C applica-
the optimal number of CTAs determined by exhaustive analions suffering from core utilization problem such@sand
ysis, and how our algorithm modulates the number of CTAsRAY fail to reach the optimal point. Type-X applications such
Figure8 shows how the number of CTAs changes during theasNwandLUD do not have enough threads to be modulated,
execution forSAD, JPEG, RAY, andFFT. In SAD (N = 8), we SO the algorithm fails to reach the optimal point and they do
start withn = 4. Initially, due to high RACT, the average not benefit from DYNCTA. Overall, average is 5.38 and
of n across all cores goes up to 5, but then fluctuates aroun@verageptis 2.93. With DYNCTA, we get very close tpt,
4. For this application, we havept = 4, and average af  Obtaining an average of 2.69 CTAs across 31 applications.
across cores is around34 Note that we do not show average  Figure10 shows the performance improvements obtained
n beyond the point where all the CTAs are issued to the coreby DYNCTA. Across 31 applications, we observe an average
since there is nothing to modulate. JPEG (N = 8), initial ~ speedup of 28% (18% geometric mean (GMN)). This result
value ofnis 4. Beyond the point where RACT almost reachesis close to the improvements we can get if we nseopt for



O DYNCTA @ DYNCORE with power gating B DYNCORE without power gating

T
i1 | 0L i A A LA LA LA N T
ESP P TS F PP EF LIS P ELE ISP 8

R
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Figure 13: Energy efficiency with DYNCTA and DYNCORE. Result s are normalized with respect to the default CUDA approach.

each application (39% mean, 25% GMN). Most Type-M ap-uler (TL) proposed by Narasiman et &5. Our experiments
plications such asl X (2.9x), PVC (3.6x), SAD (2.9x), and  show that DYNCTA outperforms TL by 12.5%, on average.
KM (1.9x) benefit significantly from DYNCTA. Some Type- TL yields significantly higher performance than DYNCTA in

M applications such agP andLI B do not have any room for RAY, andBLK. TL sends the memory requests in groups, in-
improvementsince the number of CTAs available on the corestead of sending them at once. This approach allows cores to
is not high enough for modulation. For exampleB has 64  receive data in groups as well, reducing the write-back con-
CTAs. Although we havé\ = 8, the cores cannot get more tention. InBLK, this proves effective, and even though the
than 3 CTAs according to load balanced CTA assignment in amemory waiting time is less in DYNCTA, TL manages write-
30-core systenPFF hasN = 2, and does not have much room back better, and shows better performance, even outperform
for improvement since we can only modulate between eitheing optimal TLP.RAY performs better with TL because the

1 or 2 CTAs per core. We do not getimprovements from Typeload distribution across cores becomes more balanced com-
X applications QW LUD, andNQU), since they do not exhibit pared to DYNCTA, due to the similar reasons explained ear-
enough parallelism and have very few threads. Also, Typdier in this section. Note that TL is a warp scheduling palicy

C applications do not benefit from DYNCTA, except &y  and DYNCTA is a CTA scheduling policy, and they are inde-
andcp. They gain improvements due to mitigating the effectspendent of each other. In fact, these two schemes can be used
of low core utilization, although the improvements &Y  in tandem to boost GPGPU performance further.

are far from reaching optimal TLP results. There are 4 appli- gjnce DYNCTA mainly targets Type-M applications by re-
cations that lose more than 2% performance with DYNCTAducing DRAM contention, we expetity to be lower com-

The performance reductionsiw which is Type-X, and®LK  hareq tg that of the default CUDA approach. Although we
are around 2%. DYNCTA degrades the performancerf  paye shown the effects otil on IPC for some applications,
by 2.5%, andsCP by 3%. DYNCTA does not directly aim to improvetil. Figure11l
Although more evident in Type-C applications, almost all plots the impact of DYNCTA orlat; and util, compared
applications suffer fromutil towards the end of kernel exe- to the baseline. DYNCTA provides a better load balanc-
cution. DYNCTA does not aim to optimize TLP according ing in NQU, CP, andRAY, and increasestil by 28%, 19%,
to util, which is an important factor in determining the opti- and 12%, respectively. For the rest of the applicatiani,
mal TLP. Thus, DYNCTA fails to outperform optimal TLP in  does not change significantly. We observe ta drops
most cases. Among 31 applications, 10 applications perforfor most applications, which is consistent with the IPC im-
at least as good as optimal TLP. DYNCTA outperforms optiprovements that those applications are getting. Most Type-
mal TLP by more than 2% iBFS, sD1, STO, andPVC. We  applications also have lowéat, , but since they are compute-
observe a 4 reduction inlat for STO. DYNCTA reduces intensive, change itat; does not translate to change in IPC.
the memory waiting time 0BFS by 2.2x. SD1 benefits from  The average reduction iat;; is 18% across all applications.
reductions in both memory waiting time afad;; . DYNCTA effectively reduces the memory fetch latency while
We also compared DYNCTA against the two-level schedkeeping the cores busy, which in turn, translates to perfor-
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mance improvements. Since limiting the number of CTAs repending on the value d&_act As we turn off more cores,
duces the working set of the application in the memory, datgperformance drops, but power savings and energy efficiency
locality also improves, resulting in better cache hitrafeége  (assuming PCPG is applied) increase. Since we want DYN-
to space constraints, we report a brief overview of the cach€ ORE to achieve both power and performance improvements,
performance of DYNCTA. On average, L1 miss rates reduceve choose to turn off 8 cores in DYNCORE.

from 71% to 64%. These results show that increasing hit rates Figurel4bshows how DYNCORE performs in larger sys-

is a contributor of the performance of DYNCTA. tems. Since crossbar is not scalable for larger systems, we
. conducted sensitivity analysis using a 2-D mesh intercoinne
5.2. Power-Performance Results with DYNCORE As we increase the number of core) (n the system, we

In this section, we evaluate the impact of DYNCORE on perexpect more DRAM contention, which would increase the
formance, power consumption and energy efficiency of théenefits of our schemes. On the other hand, increaSing
applications. To calculate power consumption, we have agvould limit the working region of DYNCTA, since there will
sumed that half of the total GPGPU power is “idle power”,be fewer CTAs assigned to the cores, limiting the benefits of
as suggested bylf]. Idle power constitutes a significant our schemes. In a 56 core system with 8 MCs@mesh),
portion of the total power consumption when per-core-peweron average, we obtain 9% speedup, and 10% power savings.
gating (PCPG) techniques are not employed. NVIDIA TegraEven though we have increas€dvhile keeping the number
architecture9] is an example that employs PCPG for CPUs.0f MCs constant, the improvements are moderate. In a 110
Even though current GPUs do not use PCPG, future architegore system with 11 MCs (1% 11 mesh), we obtain 27%
tures are expected to employ this mechanism as the powé&peedup, and 32% power savings, on average. Here, DRAM
problem becomes more severe. Based on the model4jy [ contention plays a bigger role, and the benefits of our scheme
we estimate theelative power consumption of DYNCORE are more significant. Note that DYNCORE turns off 16 cores
with respect to the baseline. The number of each type of inh @ 56-core system, and 32 cores in a 110-core system.
structions (e.g. ALU, FP, REG) does not differ across our As DYNCTA mostly helps Type-M applications, the num-
schemes (e.g. same FP instructions are executed), thut noter of memory requests sent from a core is an important factor
fecting the relative power consumption. The main diffeenc that can affect its benefits. To evaluate this, we variedittee s
comes from the number of active cores, and the utilizatiorPf MSHR per core and observed that changing MSHR/core
of these active cores. When the cores are not utilized, theffom 64 to 32 degrades the performance by 0.3%. Reducing
consume idle power. Turned-off cores consume zero powet to 16 causes 0.6% performance loss, on average.
if PCPG is deployed, and idle power if not. Idle power con- Next, we examined the impact of memory frequency.
sumption is estimated from a simple model derived from théVe evaluated our schemes on systems consisting of 1107
experimental results given irif]. In this work, we only fo- MHz [2] and 1333 MHz GDDRS3, and observed up to only
cus on the core power, not memory and network power. 1% reduction in our benefits. Slight performance loss is ex-
Figure12 shows the power consumption of GPGPU appli-Pected, since DYNCTA aims to improve memory bandwidth.
cations. DYNCTA consumes 2% more power compared tdiowever, memory bandwidth is the main bottleneck in GPUs,
the baseline. With DYNCORE, the average power saving&nd projected to be even more so in the futurél.[ Thus,
are 17% and 8%, with and without PCPG, respectively. Adve believe that our schemes will be applicable to upcoming
DYNCORE mainly targets Type-M applications, the power GPUs.
savings in Type-M applications are greater than Type-C ap- We also conducted a sensitivity analysis on the parameters
plications. Figurel3 shows the energy efficiency of GPGPU in DYNCTA algorithm. Changing the metric sampling pe-
applications. We define energy efficiency as “the number ofiod from 2048 cycles to 4096 cycles degraded our benefits
instructions committed per Watt”. DYNCTA achieves an av-by 0.1%. We have also varied the threshotdgd(e, t_mem_|
erage energy efficiency improvement of 26% compared t@ndt_mem_tetween 50% and 150% of their default values
the baseline. This improvement is contributed by higher pefgiven in Sectiort.1), and observed a loss between 0.7% and
formance, and the same power envelope. With DYNCOREL.6%. Thus, DYNCTA can work with almost equal efficiency
where we turn off 8 cores, the average energy efficiencyvith a broad range of threshold values.
improvements are 52% and 33%, with and without PCPG
respectively. DYNCORE achieves an average speedup oq Related Work
21% (12% GMN) (see Figure4g compared to the baseline. while previous works 3, 13] observed the problem caused
Thus, the energy efficiency improvement of DYNCORE is aty exploiting all available TLP, the only mechanism that has
tributed to both performance and power benefits. placed sanctions on TLP is proposed by Rogers et34]. |
It applies a warp scheduling method to lower the effect of
TLP on cache contention. However, in our work, we attack
Figurel4ashows the effect of the number of cores turned offthe same problem to reduce long memory latencies and write-
As explained in Sectiod.2, DYNCORE turns off 8 cores de- back contention. We believe that this work is one of the first

5.3. Sensitivity Analysis
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instead of hiding the longer memory latencies through TLP,
more threads could degrade system performance. The main
contribution of this paper is to mitigate the negative effec
of high TLP by proposing a dynamic CTA scheduling al-
gorithm for GPGPUs that attempts to allocate optimal num-
ber of CTAs per core based on application demands. The
proposed DYNCTA scheme uses two metri€s idle and
C_menyto decide the optimal allocation of CTAs. Itis shown
that DYNCTA enhances application performance on average
by 28% (up to Ix) compared to the default CTA alloca-
tion, and is close to the best possible static allocation¢hvh

is shown to provide 39% performance improvement. In addi-

works that proposes an architectural squt|on to dynaryical tion, DYNCORE, a dynamic core gating mechanism, is pro-

optimize TLP in GPUs. Bakhoda et aB][shows that 7 out

posed. DYNCORE works in conjunction with DYNCTA to

of 15 applications show improvements over baseline when thehut down shader cores for power-performance optimization
number of CTAs is lowered. We have evaluated the applican GPGPU platforms. Detailed evaluation shows that, on av-

tions with all possible CTA limits, wherea8][shows results

erage, DYNCORE can provide 21% IPC improvement, while
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