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Abstract
General-purpose Graphic processing units (GPGPUs) are

at their best in accelerating computation by exploiting abun-
dant thread-level parallelism (TLP) offered by many classes
of HPC applications. To facilitate such high TLP, emerg-
ing programming models like CUDA and OpenCL allow pro-
grammers to create work abstractions in terms of smaller
work units, called cooperative thread arrays (CTAs), consist-
ing of a group of threads. The CTAs can be executed in any
order, thereby providing ample of opportunities for TLP. The
state-of-the-art GPGPU schedulers allocate maximum possi-
ble CTAs per-core (limited by available on-chip resources)to
enhance performance by exploiting high TLP.

However, we demonstrate in this paper that executing the
maximum possible CTAs on a core is not always the opti-
mal choice from the performance perspective due to ineffi-
cient utilization of core resources. Therefore, we proposea
dynamic CTA scheduling mechanism, called DYNCTA, which
modulates the core-level TLP by allocating optimal number
of CTAs, based on application characteristics. DYNCTA al-
locates more CTAs for compute-intensive applications com-
pared to memory-intensive applications to minimize resource
contention. Simulation results on a 30-core GPGPU plat-
form with 31 applications demonstrate that the proposed CTA
scheduling provides 28% (up to3.6×) improvement in perfor-
mance compared to the existing CTA scheduler, on average.
We further enhance DYNCTA by turning off some cores during
run-time to limit TLP and power consumption. This proposed
scheme, DYNCORE, is shown to provide 21% speedup, while
reducing power consumption by 17% and saving energy by
52%, compared to existing CTA schedulers.

1. Introduction

Interest in GPGPUs has recently garnered momentum be-
cause they offer an excellent computing paradigm for many
classes of applications, specifically HPC applications with
very high thread-level parallelism (TLP) [3, 7, 20, 23]. From

the programmer’s perspective, evolution of CUDA [26] and
OpenCL [24] frameworks has made programming GPGPUs
simpler. In the CUDA programming model, applications are
divided into work units calledCUDA blocks(also called as
cooperative thread arrays– CTAs). A CTA is a group of
threads that can cooperate with each other by synchroniz-
ing their execution. Essentially, a CTA encapsulates all syn-
chronization and barrier primitives associated with its group
of threads. GPGPU architecture provides synchronization
guarantees within a CTA and assumes no dependencies exist
across CTAs, helping in relaxing CTA execution order. This
leads to an increase in parallelism and more effective usage
of cores. Current GPGPU schedulers attempt to allocate max-
imum number of CTAs per-core, based on the available on-
chip resources, to enhance performance.

However, we demonstrate in this paper that exploiting
the maximum possible TLP may not necessarily be the best
choice for improving GPGPU performance since this leads
to high amounts of core inactive time. The primary reason
behind high core inactivity is very high round-trip fetch laten-
cies of memory requests (core to memory and back) mainly
attributed to limited available memory bandwidth. Ideally,
one would expect that exploiting the maximum available TLP
will hide long memory latencies, as increased number of con-
currently running CTAs (in turn, threads) will keep the cores
busy, while some threads wait for their requests to come back
from main memory. On the other hand, more threads also
cause the number of memory requests to escalate, aggravat-
ing the memory fetch latencies. To understand this trade-off,
consider Figure1, which shows performance results of ex-
ecuting optimal number of CTAs per-core (in turn, optimal
TLP) and minimum number of CTAs, which is 1. The opti-
mal number of CTAs per-core is statically obtained by exhaus-
tive analysis. The results are normalized with respect to the
default GPGPU execution approach, where maximum num-
ber of CTAs (restricted by core resources: register file size,
shared memory size, maximum number of threads) are exe-
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Figure 1: Impact of varying TLP on IPC. First bar shows the spe edup when TLP is minimum (only 1 CTA is assigned on each core).
Second bar shows the speedup when TLP is optimal (a core execu tes an optimum number of CTAs such that the performance is
maximized). All results are normalized with respect to the C UDA default, where TLP is maximum [ 26].

cuting on the cores. These results suggest that varying TLP at
the granularity of CTAs has a significant impact on the over-
all performance of GPGPU applications. The average IPC
improvement over all 31 applications with optimal TLP over
maximum TLP is 39% (25% geometric mean (GMN)), and
goes up to 4.9× in IIX and 3.5× in PVC. Thus, the goal of this
paper is to propose a CTA scheduling scheme that enhances
performance by executing the optimal number of CTAs on
the cores. This number might be different for each applica-
tion, and determining it would not be practical as it would
require executing the application exhaustively for all possible
levels of thread/CTA parallelism. Motivated by this, we pro-
pose a method to find the optimal TLP at the granularity of
CTAs dynamically during run-time. We believe that our work
is the first to propose an optimal CTA scheduling algorithm to
improve performance and power of GPGPUs. In this context,
we propose two schemes:
• First, we propose a dynamic CTA scheduling algorithm

(DYNCTA) that modulates per-core TLP. This is achieved by
monitoring two metrics, which reflect the memory intensive-
ness of an application during execution and changing TLP dy-
namically at the granularity of CTAs depending on the mon-
itored metrics. DYNCTA favors higher TLP when the appli-
cation is compute-intensive and lower TLP when memory-
intensive. Evaluation on a 30-core GPGPU platform with 31
applications indicate that DYNCTA increases application per-
formance (IPC) by 28% (up to 3.6×), on average, and gets
close to the potential improvements of 39% with optimal TLP.
• Second, building upon DYNCTA, we propose a core

gating mechanism (DYNCORE) that limits TLP further for
some applications by turning off some cores during run-time.
Similar to DYNCTA, DYNCORE limits TLP for memory-
intensive applications. On average, this scheme increasesper-
formance by 21%, reduces power consumption by 17%, and
provides 52% energy savings compared to the case when max-
imum TLP is exploited.

2. Background

In this section, we provide a brief background on the GPGPU
architecture, applications considered, and typical scheduling
strategies. Further details on these can be found in [1, 10, 11,
15, 21, 22, 31, 32].
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Figure 2: GPGPU Background
Baseline GPGPU Architecture:- A GPGPU consists of
many simple in-order cores (shader cores), with each core typ-
ically having “single-instruction, multiple-threads” (SIMT)
lanes of 8 to 32. Our target GPGPU architecture, shown in
Figure 2a, consists of 30 shader cores each with an SIMT
width of 8, and 8 memory controllers (MCs). This configura-
tion is similar to the ones studied in recent works [8, 9, 30].
Each core has a private L1 data cache, read-only texture and
constant cache, along with a low-latency shared memory. 10
clusters each of which contain 3 cores are connected via a
crossbar interconnect to 8 MCs [8, 9, 30]. Further, each MC
is associated with a slice of shared L2 cache bank. An L2
cache bank with an MC is defined as one “memory partition”.
Detailed baseline platform configuration used in this work is
described in Table1.

Table 1: Baseline Configuration

Shader Core Config. [30] 1300MHz, 5-Stage Pipeline (Fetch, Decode, Memory,
Execute, WriteBack), SIMT Width = 8

Resources / Core Max.1024 Threads, 32KB Shared Memory, 32684 Registers
Caches / Core 32KB 8-way L1 Data Cache, 8KB 4-way Texture,

8KB 4-way Constant Cache, 64B Line Size
L2 Unified Cache 256 KB/Memory Partition, 64B Line Size, 16-way associative
Scheduling Round Robin Warp Scheduling (Among Ready Warps),

Load Balanced CTA Scheduling
Features Memory Coalescing, 64 MSHRs/core,

Immediate Post Dominator (Branch Divergence)
Interconnect [30] 1 Crossbar/Direction (SIMT Core Concentration = 3),

650MHz, Dimension-Order Routing, 16B Channel Width,
4VCs, Buffers/VC = 4, Routing Delay = 2,
Channel Latency = 2, Input Speedup = 2

DRAM Model FR-FCFS (128 Request Queue Size/MC), 4B Bus width,
4 DRAM-banks/MC, 2KB page size, 4 Burst Size, 8 MCs

GDDR3 Timing [2, 30, 8] 800MHz,tCL =10,tRP =10,tRC =35,tRAS=25,
tRCD =12,tRRD =8, tCDLR =6, tWR =11

GPGPU Application Design:- Figure 2b shows the hierar-
chy of a GPGPU application consisting of threads, warps,
CTAs, and kernel. Threads associated with a GPGPU appli-
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Figure 3: The average Active Time Ratio (RACT) of applicatio ns. RACT is defined as the average of ratio of cycles during whi ch
a core can fetch new warps, to the total application executio n cycles.

cation are grouped into “warps” or “wavefronts” (group of
32 threads). Group of warps constitute a “CTA” or “thread
block”. A CTA is essentially a batch of threads that can
coordinate amongst each other by synchronizing their execu-
tion streams using barrier instructions. Since all the synchro-
nization primitives are encapsulated in the CTA, executionof
CTAs can be performed in any order. This helps in maximiz-
ing the available parallelism as there are no ordering restric-
tions on CTAs and any core is free to schedule any CTA. Fur-
ther, each kernel is associated with many CTAs as shown in
Figure2b, which in turn form a GPGPU application. Kernels
implement specific modules of a GPGPU application.

Kernel, CTA, Warp and Thread Scheduling:- In GPGPUs,
scheduling is a three-step process. First, a kernel associated
with a GPGPU application is launched on the GPU. In our
work, we assume that only one kernel is active at a time. Af-
ter launching the kernel, the global block (CTA) scheduler
(GigaThread in [27]) assigns CTAs of the launched kernel to
all the available cores (there areC cores in the system) [2, 3].
The CTA assignment is done in a round-robin fashion. For
example, CTA 1 is launched on core 1, CTA 2 is launched
on core 2, and so on. If there are enough CTAs, each core is
assigned at least one CTA. After this assignment, if a core
is capable of executing multiple CTAs, a second round of
assignment starts (provided enough CTAs for the launched
kernel are available). This process continues until all CTAs
have been assigned or all the cores have been assigned their
maximum limit of CTAs. Assuming there are enough CTAs
to schedule, the number of concurrently executing CTAs in
the system is equal toN×C. The maximum CTAs (N) per-
core is limited by core resources (number of threads, shared
memory and register file size [3, 19]), and cannot exceed the
limit of 8 [26]. Given a baseline architecture,N may vary for
a kernel depending on how much resource is needed by the
CTAs of a particular kernel. For example, if a CTA of kernel
X needs minimum 8KB of shared memory and the baseline
architecture has 32KB available, only 4 CTAs of kernel X
can be launched simultaneously on the same core. Also, if
a CTA of kernel X needs more resources than that of kernel
Y, then theN value for kernel X will be smaller compared to
that of kernel Y. After the CTA assignment, the third step is
the scheduling of warps associated with the launched CTA(s)
on a core. The warps are scheduled in a round-robin fashion
to the SIMT lanes of the core. Every 4 cycles, a ready warp
(ready to fetch instruction(s)) is fed into these lanes for exe-
cution. If the progress of a warp is blocked on a long latency

operation (waiting for data to come back from main memory),
the entire warp (32 threads) is scheduled out of the pipeline
and put in the pending queue of warps. When the correspond-
ing data arrives, the warp proceeds to the write-back stage of
the pipeline and marked as ready to fetch new instructions.
Application Suite:- In this paper, we consider a wide range
of CUDA applications targeted to evaluate thegeneral pur-
posecapabilities of GPUs. Our application suite includes
CUDA NVIDIA SDK [ 28] applications, and Rodinia [5]
benchmarks, which are mainly targeted for heterogeneous
CPU-GPU-accelerator platforms. We also study Parboil [17]
benchmarks, which mainly stress throughput-computing fo-
cused architectures. To evaluate the impact of our schemes
on large scale and irregular applications, we also consider
emerging MapReduce [12] and a few third party GPGPU ap-
plications. In total, we study 31 applications tabulated in
Table 2. We evaluate our techniques on GPGPU-Sim [3],
a publicly-available cycle-accurate GPGPU simulator. We
model the configuration described in Table1 in GPGPU-Sim.
Each application is run till completion or 1 billion instruc-
tions, whichever comes first.

3. Detailed Analysis of TLP

3.1. Is More Thread-Level Parallelism Better?

Although maximizing the number of concurrently executing
CTAs on a core is an intuitive way to hide long memory la-
tencies, Figure1 shows the applications do not reach their
potential. For analyzing the primary cause of performance
bottlenecks, we study the core active/inactive times for the
benchmarks shown in Table2. We define the core inactive
time (Ninact) as the number of cycles when a core is not able
to fetch any new instructions (warps) and the core active time
(Nact) as the number of cycles when a core is able to fetch
new warps. The average active time ratio (RACT), is defined
as the average ofNact/(Nact+Ninact) across all cores.

Figure3 shows the applications in increasing order of their
RACTs. We observe that, on average, cores are inactive for
almost 49% of the total execution cycles, and this goes up
to around 90% for memory-intensive applications (PVC, SSC,
IIX). It is important to stress that these high percentages are
observed even though maximum possible CTAs are concur-
rently executing on all cores. These results paint an ugly pic-
ture of GPGPUs, which are known for demonstrating high
TLP and delivering high throughput. Inactivity at a core
might happen mainly because of three reasons. First, all the
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Figure 4: Effect of increase in number of CTA on various metri cs. Higher TLP increases latrt . Higher TLP causes util to go down
on some applications. latrt and util have significant impact on IPC.

Table 2: List of benchmarks: Type-C: Compute-intensive appli-
cations, Type-M: Memory-intensive applications, Type-X: Ap-
plications not exhibiting enough parallelism.

# Suite Applications Abbr. Type
1 MapReduce Page View Count PVC Type-M
2 MapReduce Similarity Score SSC Type-M
3 MapReduce Inverted Index IIX Type-M
4 SDK Breadth First Search BFS Type-M
5 Parboil Sum of Abs. Differences SAD Type-M
6 Rodinia Particle Filter (Float) PFF Type-M
7 Rodinia LU Decomposition LUD Type-X
8 Parboil Sparse-Matrix-Mul. SPMV Type-M
9 Rodinia Needleman-Wunsch NW Type-X
10 SDK MUMerGPU MUM Type-M
11 Rodinia Kmeans KM Type-M
12 SDK Weather Prediction WP Type-M
13 SDK Scalar Product SCP Type-M
14 MapReduce Page View Rank PVR Type-M
15 SDK AES Cryptography AES Type-M
16 SDK LIBOR Monte Carlo LIB Type-M
17 SDK N-Queens Solver NQU Type-X
18 Parboil FFT Algorithm FFT Type-M
19 Rodinia SRAD2 SD2 Type-M
20 SDK Backpropogation BP Type-M
21 SDK JPEG Decoding JPEG Type-M
22 SDK Blackscholes BLK Type-C
23 SDK Ray Tracing RAY Type-C
24 Rodinia SRAD1 SD1 Type-C
25 Rodinia Leukocyte LKC Type-C
26 Rodinia Particle Filter (Native) PFN Type-C
27 Rodinia Hotspot HOT Type-C
28 SDK Neural Networks NN Type-C
29 Parboil Matrix Multiplication MM Type-C
30 SDK StoreGPU STO Type-C
31 SDK Coulombic Potential CP Type-C

warps could be waiting for the data from main memory and
hence, their progress is road-blocked. We call this as “mem-
ory waiting time”. Second, pipeline may be stalled because
of excessive write-back (WB) contention at WB stage of the
pipeline, which we call as “stall time”. This may happen
when the data associated with multiple warps arrive in a short
period of time and proceed to WB stage. This leads to stalling
of pipeline for multiple cycles, preventing new warps from be-
ing fetched. Third is the “idle time”, which is the number of
cycles during which the core cannot fetch any warps as all the
warps in the core have finished their execution. We observe
that the first two components are the major contributors for
the core inactivity, whereas the third component constitutes
more than 10% of the total execution cycles for only three
applications. As GPGPU memory bandwidth is limited and
will continue to be a bottleneck with increasing number of

cores, the warps will tend to wait longer periods of time for
the requested data to come back from DRAM and cause the
pipeline to stall. These inactive periods will continue to grow
as more high memory applications are ported to GPGPUs.

To analyze the reason for inactivity, we start by categoriz-
ing the applications into three categories. Applications with
highRACT(> 66%) are categorized as compute-intensive ap-
plications (Type-C). Among the remaining applications, the
ones with small idle time ratio (< 20%) are classified as
memory-intensive (Type-M) applications, and the remaining
as Type-X applications. Type-X applications do not have
enough threads to execute to keep all cores busy, and do
not exhibit high level of parallelism. We observe that, in
many memory-intensive applications, increasing the number
of CTAs has detrimental impact on performance. It is impor-
tant to note that executing more CTAs concurrently leads to
more warps to timeshare the same set of computing resources.
Also, the number of memory requests sent simultaneously
will escalate in proportion, thereby increasing the memoryla-
tency that needs to be hidden. Moreover, this increase in TLP
will saturate the limited DRAM bandwidth even more.

Let us now consider three GPGPU applications with var-
ied properties (AES, MM, JPEG) and observe their behavior as
the number of CTAs/core (parallelism) is increased (Figure4).
Discussion of the fourth application (CP) in this figure is in
Section3.2. We mainly focus on IPC, round-trip fetch la-
tency, and core utilization of the GPGPU system. Round-trip
fetch latency (latrt ) is defined as the number of core clock
cycles between which a memory request leaves the core and
comes back to the core. Core utilization (util ), is defined as
the average ofutil i for all i, whereutil i is the ratio of cycles
when at least one CTA is available on corei, to the total cy-
cles for corei. Note that, in a GPGPU system withC cores,
the maximum number of CTAs that can concurrently execute
on the GPGPU isN×C. In this experiment, we vary the limit
of the number of CTAs launched at a core,n, which is from 1
(minimum) toN (maximum). In turn, we increase parallelism
fromC×1 toC×N, in steps of 1 CTA per core (C CTAs per
GPGPU system). The results for all the three metrics con-
sidered arenormalizedwith respect to their values whenN
CTAs are launched on the core (maximum parallelism).

Figures4a, 4b, and4c show the effect of varying TLP (at
the granularity of CTAs) on IPC, latency, and core utiliza-
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Figure 5: Effect of TLP on core utilization. In (a), all 8 CTAs
are distributed to 2 cores initially. Core 1 finishes executi on
before Core 2 and we observe a significant idle time for Core
1. In (b), only 4 CTAs are distributed to 2 cores initially. On ce
a core finishes executing one CTA, it is assigned another one.
Since only 2 CTAs share the same core resources instead of 4,
execution times of CTAs become shorter compared to (a). In
(b), we see better core utilization and shorter execution ti me
due to better balancing on the distribution of CTAs.

tion, respectively. ForAES, the results are normalized to the
case whereN = 4, as maximum 4 CTAs can execute con-
currently according to the resource restrictions. We observe
that inAES, increasing the number of concurrent CTAs from
n = 1 to n = N (N = 4) has detrimental impact onlatrt (in-
creases by 9×). SinceAES is classified as a Type-M appli-
cation (54% core inactive time), as the number of concurrent
CTAs increases, the number of memory requests escalates,
causing more contention in memory channels. Surprisingly,
we notice thatn = 1 (minimum CTA count per core, mini-
mum TLP) leads to the highest performance (lowestlatrt and
the highestutil ) for this application. Thus, for this applica-
tion, we define optimal CTA count (opt) as 1. On the other
hand, forMM, which is a Type-C application, as we increase
the number of CTAs fromn = 1 to n = 8, IPC improves at
each step, but with a very low slope aftern = 2. The total
IPC improvement is around 34%. Since this application is
compute-intensive, varying TLP does not have a significant
impact onlatrt . Note that the utilization problem is not sig-
nificant in this application and CTA load is balanced across
all cores. InMM, we haveopt = 8. These two applications
demonstrate the impact of exploiting the maximum and mini-
mum TLP available. In comparison,JPEG exhibits interesting
variances in IPC, latency and utilization as TLP is increased.
In this application, when parallelism is not enough (n= 1 and
n = 2), the ability to hide the memory latency is limited, re-
sulting in lower performance compared to when TLP (n= 3)
is higher. However, as the number of CTAs increases beyond
n = 3, the corresponding increase in TLP leads to increase
in the memory access latency, leading to loss in performance.
Hence, we definen= 3 as optimal CTA count forJPEG.

3.2. Implications of Tuning TLP on Core Utilization

Next, we observe that varying the number of CTAs also has
an impact on the core utilization. This is mainly contributed
by the differing execution times across CTAs, causing an im-
balance on the execution times of cores. One of the poten-

tial reasons for this is the fact that having more CTAs on
cores might increase the time during which some cores are
idle towards the end of execution (once they finish execut-
ing all the CTAs they have), while others are still executing
some CTAs. Although it is not always the case, increasingn
tends to worsen the utilization problem. Thus, this problemis
mostly evident on applications with highN. Figure5 depicts
an example illustrating this problem. We assume that there
are 2 cores executing 8 CTAs. The y-axis shows the number
of concurrently executing CTAs, and the x-axis shows the ex-
ecution time. This example shows the impact of TLP on core
utilization, and how it is related to execution time.

To understand the effect of core utilization on performance,
we pick CP, the most compute-intensive application in our
suite (99% RACT), and observe the impact of varyingn.
Since the application is fetching/decoding a warp without los-
ing much time stalling or waiting for data from the memory,
one would expect to see an increasing performance as we in-
creasen. The effect of varying TLP on IPC,latrt andutil is
plotted in Figure4. As we increasen, we see thatlatrt also in-
creases linearly. However, sincelatrt is low (32 cycles when
n = 1), and the benchmark is highly compute-intensive, in-
creasinglatrt does not have a negative impact on performance.
Except whenn= 1 where memory latency hiding capability
is limited due to low TLP, the IPC bar always follows theutil
bar. As expected, we see thatutil goes down asn approaches
N, and IPC drops due to unbalanced CTA load distribution.
util , hence IPC, reaches its peak whenn= 3.

To summarize, we observe that, out of 31 applications eval-
uated, 15 of them provided more than 5%, and 12 of them
yielded more than 10% (up to 4.9× for IIX) better perfor-
mance with optimal TLP, compared to the baseline. Thus, in-
creasing TLP beyond a certain point has a detrimental effect
on the memory system, and thus on IPC.

4. Proposed CTA and Core Power Modulation

In this section, we describe our approach to determine the
optimal CTA number on a core dynamically, and discuss its
implications on performance and power. Our approach is ap-
plied to each core separately, and consequently, each core can
work with a different CTA count at a given time.

4.1. DYNCTA: Dynamic CTA Scheduling

Problem with finding opt: One way of findingopt for an
application is to run it exhaustively for all possiblen values,
and determine the one that gives the shortest execution time.
This could be a viable option only if we are running a few
predetermined applications all the time. Instead, we would
like our approach to be applicable under all circumstances.
Thus, we propose a scheme which changes the number of
CTAs on a coredynamicallyduring the course of execution.
Idea for dynamic CTA modulation: When an application
exhibits a memory-intensive behavior during a period of time,
we limit TLP by reducing the number of CTAs on the cores.

5
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Figure 6: The overview of DYNCTA algorithm. If C_idle is
high, n is incremented. Otherwise, C_memis checked. If it is
low, n is incremented. If it is high, n is decremented.

On the other hand, when an application is compute-intensive,
we would like to exploit maximum TLP by increasing the
number of CTAs on the cores. Below, we describe our ap-
proach to determine whether an application is memory or
compute-intensive during a period of time.
What metrics to monitor for dynamic modulation: In or-
der to modulaten during run-time, we monitor the following
metrics: (1)C_idle, and (2)C_mem. C_idle is the number
of core cycles during which the pipeline is not stalled, but
there are no threads to be issued on the core and this core is
idle. A very highC_memvalue indicates that the core does
not have enough threads to execute to keep the pipeline busy,
thus it is better to increase TLP.C_memis the number of core
cycles during which all the warps are waiting for their data
to come back, regardless of the pipeline state being stalledor
not. This metric indicates how much pressure the execution is
exerting on the memory channels. If this number is very high,
that means cores are waiting for very long latency memory
operations, thus it is better to limit TLP. Statistics for these
two metrics are collected separately on each core, and a CTA
modulation decision is made locally.
How the algorithm works: Instead of assigningN CTAs to
a core, the global block scheduler starts with assigning⌊N/2⌋
CTAs to each core (n = ⌊N/2⌋). CTAs are distributed to
cores one by one, as in round-robin CTA scheduler. There-
fore, even if there are less thanC×⌊N/2⌋ CTAs in the ap-
plication kernel, the difference between the number of CTAs
on any two cores cannot be greater than 1, whereC denotes
the total number of cores in the system. After this initial-
ization step, at each core,C_mem, andC_idle are checked
periodically (at every 2048 clock cycles, a tunable parame-
ter) to make a decision, and then reset to 0. ForC_idle, we
use a threshold,t_idle, that categorizes the value aslow, or
high. For C_mem, we use a low threshold (t_mem_l), and a
high threshold (t_mem_h) which categorizes the value as low,
medium, or high.

Figure 6 shows how the number of CTAs is modulated.
First,C_idleis checked. If it is high (> t_idle), a new CTA is
assigned to the core. The reason for this is to make an other-
wise idle core busy. IfC_idleis low (< t_idle), then we check
C_memto make a decision. IfC_memis low, the warps do not
wait for a long time for their requests to come back from the
memory. Thus, we can increase the level of parallelism and
assign one more CTA to the core. IfC_memis high, then the
warps are waiting for a long time for their requests to come
back from the memory. This implies thatlatrt has grown too
large to hide the memory latency, thus we decrementn by 1.

Otherwise,n remains the same. Note that the decisions are
made locally. Once a decision is made,C_mem, andC_idle
are reset to 0 to capture the behavior of the next window. Note
that 1≤ n≤ N must always hold, as long as there is a CTA
that is available to be issued to the core. We ensure thatn≥ 1
so that the cores are executing threads, instead of staying idle.
If there are no CTAs available to be assigned on the core, then
n≤ N must hold. These two conditions are always checked
when making a decision on incrementing or decrementingn.
If the resultingn after the decision violates these conditions,
thenn is not changed.
CTA pausing: According to [26], CUDA blocks (CTAs),
once assigned to a core,cannotbe preempted, or assigned
to another core. This presents a problem when our algorithm
wants to reducen. In order to address this problem, we pro-
pose a technique called CTA pausing. This technique deprior-
itizes the warps belonging to the most recently assigned CTA
on the core, ifn needs to be decremented by 1. In this case,
we say that the CTA is paused. Ifn needs to be further decre-
mented by 1, the warps belonging to the second most recently
assigned CTA on the core are also deprioritized. However,
employing CTA pausing has implications on incrementingn.
If n is incremented during a time in which a paused CTA is
present on the core, a new CTA is not issued to the core. In-
stead, the paused CTA, which is the least recently assigned
CTA on the core, resumes execution. The pseudo-code of
DYNCTA with CTA pausing is given in Algorithm1.

To explain the behavior of our algorithm with CTA paus-
ing, let us consider an example whereN = 4 andn = 3 at a
given instant. Let us further assume that CTA1 is the oldest
CTA issued to the core, and CTA3 is the most recently as-
signed CTA on the core. If the algorithm decrementsn by 1,
the warps that belong to CTA3 are deprioritized. This means
that, as long as there is a ready warp that belongs to CTA1 or
CTA2, it will always be prioritized to be fetched over a warp
of CTA3. A warp of CTA3 can be fetched only if there are
no ready warps that belong to CTA1 or CTA2. Let us now
assume thatn is decremented further. This time, CTA2 is de-
prioritized. As long as there are ready warps that belong to
CTA1, they will have the priority to be fetched. Note that
sincen= 1, we cannot decrementn any further. Ifn is incre-
mented by 1, CTA2 again gets the priority to have its warps
fetched. Ifn is incremented further, warps of CTA1, CTA2
and CTA3 have the same priority. To summarize, a CTA is
paused whenn is decremented. It can resume execution only
when another CTA finishes its execution, orn is incremented.
Comparison vs.opt: We observe that some applications can
have high RACT in a given time interval and low RACT in
another interval. For such applications,opt might be differ-
ent for intervals showing different behaviors. Thus, our al-
gorithm potentially can outperform the case wheren = opt
for some applications. As discussed in Section3, the level
of parallelism mainly affectslatrt andutil . The problem re-
lated toutil manifests itself towards the end of kernel execu-
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Algorithm 1 DYNCTA: Dynamic Cooperative Thread Array
Scheduling

⊲ N is the maximum # of CTAs on a core
⊲ n is the CTA limit (running CTAs) on a core

⊲ nCTAis the total number of CTAs (paused and running CTAs) on a core
⊲ Issue_CTAs_To_Cores(n):Default CTA scheduler with CTA limit=n

procedure INITIALIZE

n← ⌊N/2⌋
ISSUE_CTAS_TO_CORES(n)

procedure DYNCTA
INITIALIZE

for all coresdo
if C_idle≥ t_idle then

if nCTA> n then
Unpause least recently assigned CTA

else ifn< N then
n← n+1

else if(C_mem< t_mem_l) then
if nCTA> n then

Unpause least recently assigned CTA
else ifn< N then

n← n+1
else if(C_mem≥ t_mem_h) then

if n> 1 then
n← n−1

for i = 0→ (nCTA−n) do
Pause most recently assigned CTA

tion, as illustrated in Figure5. For this reason, our algorithm
aims to solve the problem caused bylatrt . Since the utiliza-
tion problem is usually more pronounced whenn is large, and
our algorithm limits TLP by limitingn, we indirectly mitigate
the effects of the utilization problem as we limitn for some
applications. For some Type-C applications likeCP, opt is
dependent onutil , as explained in Section3.2. Thus, our
algorithm may not be able to match the performance of the
n = opt case. For example,CP, which is the most compute-
intensive benchmark, we haveopt= 3 andN= 8. The reason
why opt is equal to 3 is explained in Section3.2. SinceCP
is very compute-intensive, our algorithm eventually setsn to
8. Thus, the algorithm fails to converge toopt. Although
there are cases where the algorithm fails to converge toopt
(mostly in Type-C benchmarks which suffer from low core
utilization), the algorithm usually converges to a value that is
close toopt.

Parameters: Our algorithm depends on parameters, such as
t_idle, t_mem_l, and t_mem_h. We determined the values
of these parameters experimentally, which are 16, 128, and
384, respectively. These values are micro-architecture depen-
dent, and need to be recalculated by experiments for different
configurations. These thresholds are based on heuristics, and
they are unlikely to differ significantly across different micro-
architectures. Another parameter is the sampling period of
2048 cycles. Sensitivity analysis of these parameters are re-
ported in Section5.3. All variables and thresholds we used in
this work are given in Table3.

Initial value of n: As described above, all cores are initial-
ized with⌊N/2⌋ CTAs provided that there are enough CTAs.
We also tested our algorithm with initialn values of 1 andN.
Starting withn= 1 gave very similar results to starting with
⌊N/2⌋, and n converged to approximately the same value.

Table 3: Variables and thresholds

Variable Description

Nact Active time, where cores can fetch new warps
Ninact Inactive time, where cores cannot fetch new warps
RACT Active time ratio,Nact/(Nact+Ninact)
C_idle The number of core cycles during which the pipeline is not

stalled, but there are no threads to execute
C_mem The number of core cycles during which all the warps are

waiting for their data to come back
t_idle Threshold that determines whetherC_idle is low or high
t_mem_l & t_mem_h Thresholds that determine ifC_memis low, medium or high
G_act The sum of Nact of each core that is not turned off
t_act Threshold that determines whetherG_act is low or high
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Figure 7: Effects of turning off cores. The results are norma l-
ized with respect to using all the cores in a 30-core system.

However, starting withN did not yield as good results as
starting with 1 or⌊N/2⌋. This is a limitation of our algorithm,
since all possible CTAs are already distributed to the coresini-
tially. However, according to our observations, starting with
a small initialn does not make a significant difference as the
algorithm converges to the same value eventually.
Synchronization: We model atomic instructions and take
into account latency overheads due to inter-CTA synchroniza-
tion. We make sure that we do not deprioritize CTAs indef-
initely to prevent livelocks and starvation. Also, our simu-
lation results show that CTA-pausing provides extra perfor-
mance benefits, which means that the paused CTAs do not
degrade performance because of synchronization.

4.2. DYNCORE: Power-Performance Optimizations

In this section, we describe how we extend DYNCTA to
achieve power savings as well.
Power problem: As the number of cores in GPUs increases,
power consumption also escalates [14]. In Section3, we have
shown that some applications suffer from low core utiliza-
tion, and some applications spend a lot of time stalling due
to the network and memory congestion. Inefficient usage of
resources can aggravate the power problem further.
Effects of number of cores: A recent work [14] has inves-
tigated the effect of turning off a number of cores, on sys-
tem power and performance. It is suggested that power con-
sumption can be significantly lowered without losing much
performance by turning off cores in memory-intensive appli-
cations. In order to observe the effect of the number of cores
in the system, we have run experiments with various number
of cores. Figure7ashows the normalized IPCs when 0, 4, 8,
12 and 16 cores are turned off in our baseline configuration.
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(c) RAY
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Figure 8: CTA modulation over time. Except RAY, which is a Type-C application suffering from low core utili zation, DYNCTA is
able to modulate TLP accurately.
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Figure7b shows the same graph when DYNCTA is applied.
In both graphs, we observe that Type-C applications’ perfor-
mance loss is almost directly proportional to the number of
cores that are turned off. However, Type-M applications man-
age to tolerate the performance loss due to using fewer cores.
This stems from the fact that Type-M applications suffer from
long inactive times due to congestion in the network and the
memory, and deploying fewer cores would mitigate the neg-
ative effects of high parallelism. However, since Type-C ap-
plications have a lot of core active time, reducing the number
of cores would hamper their processing rate. In a hypotheti-
cal case, where the application is not suffering from low core
utilization described in Section3 (assuming that the load dis-
tribution is perfectly balanced, and all the cores finish their
execution exactly at the same time) andRACT= 100%, the
performance loss of that application would be directly propor-
tional to the number of cores turned off.

Power-performance benefits: In Section4.1, we have de-
scribed our approach that limits TLP to obtain better perfor-
mance over the default CUDA approach. The aim of this sec-
tion is to obtain both power and performance improvements
over baseline. In order to achieve this, we propose DYN-
CORE, which schedules CTAs using DYNCTA, and limits
TLP further by turning off cores.

How power optimization is done: Since Type-M applica-
tions can tolerate execution with fewer cores, we turn off
cores if the application behaves like a Type-M application
(with < 60% RACT) during a period of time. This is achieved
with a strategy similar to that employed in DYNCTA. During
run-time, every 2048 cycles, we monitorG_act, which is the
sum ofNact of each core that is not turned off. Note that
G_act is collected globally, using information from all the

cores in the system, unlikeC_mem, andC_idlewhich are per-
core metrics. IfG_act is greater thant_act, the application
behaves like a Type-C application.t_act is a threshold equal
to 40960, which stands for 66% RACT in a 30-core system
with a sampling period of 2048. Thus, we continue executing
the application using all the cores in the system. On the other
hand, ifG_act < t_act, the application behaves like a Type-
M application and we turn off 8 of the cores in the system
(we analyze why we turn off 8 cores in Section5.3). Since
we cannot preempt a running CTA on a core, we wait for all
the CTAs to finish execution on the cores that are going to be
turned off and we do not assign any new CTAs to these cores.
If G_actbecomes greater thant_actduring the time in which
we are waiting for all CTAs to finish, those cores can continue
scheduling more CTAs, and are not turned off. The number
of CTAs allocated per core is determined by DYNCTA.

4.3. Hardware Overheads

Overheads associated with DYNCTA:-Each core will need
two 11-bit counters to storeC_mem, andC_idle. The incre-
ment signals for each counter come from the pipeline. The
contents of these counters are compared against three pre-
defined threshold values, and the outcome of our CTA mod-
ulation decision is communicated to the global block (CTA)
scheduler, associated with GPUs [27]. Since cores and the
scheduler already communicate (e.g., as soon as a core fin-
ishes the execution of a CTA, global scheduler issues another
CTA), there is no extra communication overhead required.
Overheads associated with DYNCORE:-DYNCORE com-
parest_actagainstG_act. This global parameter is calculated
by gathering information from all the cores. Since the out-
come of the comparison is used by the global scheduler to
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make a decision, the hardware for gathering all local informa-
tion can be accommodated by the global scheduler. This will
entail additional adders and a comparator.

We designed the required hardware using Verilog HDL and
implemented it with TSMC 65 nm libraries using Synopsys
Design Compiler. For a 30-core system, DYNCTA and DYN-
CORE require 0.041mm2 area (less than 0.01% of GeForce
GTX 285 area), and consumes 6.9mW extra dynamic power.

5. Experimental Results

We evaluate DYNCTA and DYNCORE with 31 applications,
using the cycle accurate GPGPU-Sim [3], with the configura-
tion described in Table1. Our baseline configuration uses the
default CUDA approach for determining the number of CTAs
assigned to the cores.

5.1. Performance Results with DYNCTA

We start by showing the dynamism of our algorithm in allo-
cating CTAs to the cores. For each application, we study the
maximum number of CTAs that can be allocated to the cores,
the optimal number of CTAs determined by exhaustive anal-
ysis, and how our algorithm modulates the number of CTAs.
Figure8 shows how the number of CTAs changes during the
execution forSAD, JPEG, RAY, andFFT. In SAD (N = 8), we
start with n = 4. Initially, due to high RACT, the average
of n across all cores goes up to 5, but then fluctuates around
4. For this application, we haveopt = 4, and average ofn
across cores is around 4.3. Note that we do not show average
n beyond the point where all the CTAs are issued to the cores,
since there is nothing to modulate. InJPEG (N = 8), initial
value ofn is 4. Beyond the point where RACT almost reaches

1, n slowly converges to 3, which is equal toopt for this ap-
plication. Since this application is fairly compute-intensive
in the middle of its execution, no CTAs are paused. Thus,
DYNCTA correctly captures the optimal behavior of this ap-
plication. InRAY, we haveN = 6, thus we start withn= 3. In
the beginning, the application is not compute intensive. How-
ever, during this period, most of the inactivity happens due
to write-back contention, not memory waiting time. Thus,n
is not decremented. AfterRACTgoes beyond 0.8,n follows
the trend ofRACT, and eventually reachesN. Since this is
a Type-C application,opt is not equal toN due to the core
utilization problem (see in Section3.2). Although DYNCTA
correctly captures the behavior of this application, it fails to
converge toopt because of the core utilization problem. In
FFT, we haveN = 8 and therefore start withn = 4. Since
this application’s behavior changes very frequently, average
n also fluctuates. Overall, we observe that averagen stays
very close toopt and DYNCTA is successful in capturing the
application behavior. A graph showingN, averagen andopt
for all applications is given in Figure9. We see that DYNCTA
is close toopt for most Type-M applications. Type-C applica-
tions suffering from core utilization problem such asCP and
RAY fail to reach the optimal point. Type-X applications such
asNW andLUD do not have enough threads to be modulated,
so the algorithm fails to reach the optimal point and they do
not benefit from DYNCTA. Overall, averageN is 5.38 and
averageopt is 2.93. With DYNCTA, we get very close toopt,
obtaining an average of 2.69 CTAs across 31 applications.

Figure10 shows the performance improvements obtained
by DYNCTA. Across 31 applications, we observe an average
speedup of 28% (18% geometric mean (GMN)). This result
is close to the improvements we can get if we usen= opt for
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each application (39% mean, 25% GMN). Most Type-M ap-
plications such asIIX (2.9×), PVC (3.6×), SAD (2.9×), and
KM (1.9×) benefit significantly from DYNCTA. Some Type-
M applications such asWP andLIB do not have any room for
improvement since the number of CTAs available on the cores
is not high enough for modulation. For example,LIB has 64
CTAs. Although we haveN = 8, the cores cannot get more
than 3 CTAs according to load balanced CTA assignment in a
30-core system.PFF hasN= 2, and does not have much room
for improvement since we can only modulate between either
1 or 2 CTAs per core. We do not get improvements from Type-
X applications (NW, LUD, andNQU), since they do not exhibit
enough parallelism and have very few threads. Also, Type-
C applications do not benefit from DYNCTA, except forRAY

andCP. They gain improvements due to mitigating the effects
of low core utilization, although the improvements forRAY

are far from reaching optimal TLP results. There are 4 appli-
cations that lose more than 2% performance with DYNCTA.
The performance reductions inNW, which is Type-X, andBLK
are around 2%. DYNCTA degrades the performance ofPFF

by 2.5%, andSCP by 3%.
Although more evident in Type-C applications, almost all

applications suffer fromutil towards the end of kernel exe-
cution. DYNCTA does not aim to optimize TLP according
to util , which is an important factor in determining the opti-
mal TLP. Thus, DYNCTA fails to outperform optimal TLP in
most cases. Among 31 applications, 10 applications perform
at least as good as optimal TLP. DYNCTA outperforms opti-
mal TLP by more than 2% inBFS, SD1, STO, andPVC. We
observe a 4× reduction inlatrt for STO. DYNCTA reduces
the memory waiting time ofBFS by 2.2×. SD1 benefits from
reductions in both memory waiting time andlatrt .

We also compared DYNCTA against the two-level sched-

uler (TL) proposed by Narasiman et al. [25]. Our experiments
show that DYNCTA outperforms TL by 12.5%, on average.
TL yields significantly higher performance than DYNCTA in
RAY, andBLK. TL sends the memory requests in groups, in-
stead of sending them at once. This approach allows cores to
receive data in groups as well, reducing the write-back con-
tention. InBLK, this proves effective, and even though the
memory waiting time is less in DYNCTA, TL manages write-
back better, and shows better performance, even outperform-
ing optimal TLP.RAY performs better with TL because the
load distribution across cores becomes more balanced com-
pared to DYNCTA, due to the similar reasons explained ear-
lier in this section. Note that TL is a warp scheduling policy,
and DYNCTA is a CTA scheduling policy, and they are inde-
pendent of each other. In fact, these two schemes can be used
in tandem to boost GPGPU performance further.

Since DYNCTA mainly targets Type-M applications by re-
ducing DRAM contention, we expectlatrt to be lower com-
pared to that of the default CUDA approach. Although we
have shown the effects ofutil on IPC for some applications,
DYNCTA does not directly aim to improveutil . Figure11
plots the impact of DYNCTA onlatrt and util , compared
to the baseline. DYNCTA provides a better load balanc-
ing in NQU, CP, andRAY, and increasesutil by 28%, 19%,
and 12%, respectively. For the rest of the applications,util
does not change significantly. We observe thatlatrt drops
for most applications, which is consistent with the IPC im-
provements that those applications are getting. Most Type-C
applications also have lowerlatrt , but since they are compute-
intensive, change inlatrt does not translate to change in IPC.
The average reduction inlatrt is 18% across all applications.
DYNCTA effectively reduces the memory fetch latency while
keeping the cores busy, which in turn, translates to perfor-
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mance improvements. Since limiting the number of CTAs re-
duces the working set of the application in the memory, data
locality also improves, resulting in better cache hit rates. Due
to space constraints, we report a brief overview of the cache
performance of DYNCTA. On average, L1 miss rates reduce
from 71% to 64%. These results show that increasing hit rates
is a contributor of the performance of DYNCTA.

5.2. Power-Performance Results with DYNCORE

In this section, we evaluate the impact of DYNCORE on per-
formance, power consumption and energy efficiency of the
applications. To calculate power consumption, we have as-
sumed that half of the total GPGPU power is “idle power”,
as suggested by [14]. Idle power constitutes a significant
portion of the total power consumption when per-core-power-
gating (PCPG) techniques are not employed. NVIDIA Tegra
architecture [29] is an example that employs PCPG for CPUs.
Even though current GPUs do not use PCPG, future architec-
tures are expected to employ this mechanism as the power
problem becomes more severe. Based on the model by [14],
we estimate therelative power consumption of DYNCORE
with respect to the baseline. The number of each type of in-
structions (e.g. ALU, FP, REG) does not differ across our
schemes (e.g. same FP instructions are executed), thus not af-
fecting the relative power consumption. The main difference
comes from the number of active cores, and the utilization
of these active cores. When the cores are not utilized, they
consume idle power. Turned-off cores consume zero power
if PCPG is deployed, and idle power if not. Idle power con-
sumption is estimated from a simple model derived from the
experimental results given in [14]. In this work, we only fo-
cus on the core power, not memory and network power.

Figure12 shows the power consumption of GPGPU appli-
cations. DYNCTA consumes 2% more power compared to
the baseline. With DYNCORE, the average power savings
are 17% and 8%, with and without PCPG, respectively. As
DYNCORE mainly targets Type-M applications, the power
savings in Type-M applications are greater than Type-C ap-
plications. Figure13 shows the energy efficiency of GPGPU
applications. We define energy efficiency as “the number of
instructions committed per Watt”. DYNCTA achieves an av-
erage energy efficiency improvement of 26% compared to
the baseline. This improvement is contributed by higher per-
formance, and the same power envelope. With DYNCORE,
where we turn off 8 cores, the average energy efficiency
improvements are 52% and 33%, with and without PCPG,
respectively. DYNCORE achieves an average speedup of
21% (12% GMN) (see Figure14a) compared to the baseline.
Thus, the energy efficiency improvement of DYNCORE is at-
tributed to both performance and power benefits.

5.3. Sensitivity Analysis

Figure14ashows the effect of the number of cores turned off.
As explained in Section4.2, DYNCORE turns off 8 cores de-

pending on the value ofG_act. As we turn off more cores,
performance drops, but power savings and energy efficiency
(assuming PCPG is applied) increase. Since we want DYN-
CORE to achieve both power and performance improvements,
we choose to turn off 8 cores in DYNCORE.

Figure14bshows how DYNCORE performs in larger sys-
tems. Since crossbar is not scalable for larger systems, we
conducted sensitivity analysis using a 2-D mesh interconnect.
As we increase the number of cores (C) in the system, we
expect more DRAM contention, which would increase the
benefits of our schemes. On the other hand, increasingC
would limit the working region of DYNCTA, since there will
be fewer CTAs assigned to the cores, limiting the benefits of
our schemes. In a 56 core system with 8 MCs (8×8 mesh),
on average, we obtain 9% speedup, and 10% power savings.
Even though we have increasedC while keeping the number
of MCs constant, the improvements are moderate. In a 110
core system with 11 MCs (11× 11 mesh), we obtain 27%
speedup, and 32% power savings, on average. Here, DRAM
contention plays a bigger role, and the benefits of our schemes
are more significant. Note that DYNCORE turns off 16 cores
in a 56-core system, and 32 cores in a 110-core system.

As DYNCTA mostly helps Type-M applications, the num-
ber of memory requests sent from a core is an important factor
that can affect its benefits. To evaluate this, we varied the size
of MSHR per core and observed that changing MSHR/core
from 64 to 32 degrades the performance by 0.3%. Reducing
it to 16 causes 0.6% performance loss, on average.

Next, we examined the impact of memory frequency.
We evaluated our schemes on systems consisting of 1107
MHz [2] and 1333 MHz GDDR3, and observed up to only
1% reduction in our benefits. Slight performance loss is ex-
pected, since DYNCTA aims to improve memory bandwidth.
However, memory bandwidth is the main bottleneck in GPUs,
and projected to be even more so in the future [18]. Thus,
we believe that our schemes will be applicable to upcoming
GPUs.

We also conducted a sensitivity analysis on the parameters
in DYNCTA algorithm. Changing the metric sampling pe-
riod from 2048 cycles to 4096 cycles degraded our benefits
by 0.1%. We have also varied the thresholds (t_idle, t_mem_l,
andt_mem_hbetween 50% and 150% of their default values
(given in Section4.1), and observed a loss between 0.7% and
1.6%. Thus, DYNCTA can work with almost equal efficiency
with a broad range of threshold values.

6. Related Work

While previous works [3, 13] observed the problem caused
by exploiting all available TLP, the only mechanism that has
placed sanctions on TLP is proposed by Rogers et al. [30].
It applies a warp scheduling method to lower the effect of
TLP on cache contention. However, in our work, we attack
the same problem to reduce long memory latencies and write-
back contention. We believe that this work is one of the first
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Figure 14: Sensitivity analysis of DYNCORE. In (a), the re-
sults are normalized with respect to the baseline with no cor es
turned off. In (b), the results are normalized with respect t o the
baseline with 64 and 121 nodes, using a 2-D mesh.
works that proposes an architectural solution to dynamically
optimize TLP in GPUs. Bakhoda et al. [3] shows that 7 out
of 15 applications show improvements over baseline when the
number of CTAs is lowered. We have evaluated the applica-
tions with all possible CTA limits, whereas [3] shows results
for only 25%, 50%, and 100% of the default CUDA limit.
Chen et al. [6] proposed an analytical model showing the ef-
fects of the number of concurrent threads on shared caches for
multicores; whereas we mainly consider the effects of TLP
on the memory system. Chadha et al. [4] proposed a dynamic
TLP management scheme for CMPs. Hong et al. [13] de-
veloped an analytical model to predict the execution time of
GPUs. This prediction considers available TLP and memory
intensiveness of an application. However, in our paper, we
proposed dynamic techniques which incorporate the chang-
ing behavior of an application and calculates the optimal TLP
for the GPGPU system. Moreover, we modeled network and
memory congestion in detail and controlled the parallelismat
CTA-level. Tuning TLP in GPGPUs via CTA allocation is
a much effective way mainly because of two reasons. First,
the work assignment on cores is done at the CTA-level and
hence, one can potentially control how much work to be as-
signed to cores during the scheduling process. Second, ac-
cording to Jia et al. [16] the threads that belong to the same
CTA exhibit good data locality and therefore, limiting TLP at
the granularity of CTAs also brings the benefit of maintaining,
and even improving data locality and thus, increasing cache
performance. Hong et al. [14] presented a GPGPU power
model to determine the optimal number of cores required to
optimize the power and performance of the system. In our
work, we strive to amalgamate the performance benefits with
the power savings obtained by turning off cores at run time.

7. Conclusions

Enhancing the performance of applications through abundant
TLP is the primary advantage of GPGPUs compared to CPUs.
Therefore, current GPGPU scheduling attempts to allocate
maximum number of CTAs per core to maximize TLP. How-
ever, we show that executing maximum number of CTAs per
core is not always the best solution to boost performance.
This is primarily due to high core inactive times caused by
longer round-trip fetch latencies of memory requests. Thus,

instead of hiding the longer memory latencies through TLP,
more threads could degrade system performance. The main
contribution of this paper is to mitigate the negative effects
of high TLP by proposing a dynamic CTA scheduling al-
gorithm for GPGPUs that attempts to allocate optimal num-
ber of CTAs per core based on application demands. The
proposed DYNCTA scheme uses two metrics (C_idle and
C_mem) to decide the optimal allocation of CTAs. It is shown
that DYNCTA enhances application performance on average
by 28% (up to 3.6×) compared to the default CTA alloca-
tion, and is close to the best possible static allocation, which
is shown to provide 39% performance improvement. In addi-
tion, DYNCORE, a dynamic core gating mechanism, is pro-
posed. DYNCORE works in conjunction with DYNCTA to
shut down shader cores for power-performance optimization
in GPGPU platforms. Detailed evaluation shows that, on av-
erage, DYNCORE can provide 21% IPC improvement, while
reducing power and energy consumption by 17% and 52%,
respectively, compared to the default CUDA approach.
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