
 978-1-4799-4394-4/14/$31.00 © 2014 IEEE

Fine-grain Task Aggregation and Coordination on GPUs

Marc S. Orr
†§

 Bradford M. Beckmann
§
 Steven K. Reinhardt

§
 David A. Wood

†§

†
University of Wisconsin–Madison

Computer Sciences

{morr,david}@cs.wisc.edu

§
AMD Research

{brad.beckmann,steve.reinhardt}@amd.com

Abstract

In general-purpose graphics processing unit (GPGPU)

computing, data is processed by concurrent threads execut-

ing the same function. This model, dubbed single-

instruction/multiple-thread (SIMT), requires programmers

to coordinate the synchronous execution of similar opera-

tions across thousands of data elements. To alleviate this

programmer burden, Gaster and Howes outlined the chan-

nel abstraction, which facilitates dynamically aggregating

asynchronously produced fine-grain work into coarser-

grain tasks. However, no practical implementation has been

proposed.

To this end, we propose and evaluate the first channel im-

plementation. To demonstrate the utility of channels, we

present a case study that maps the fine-grain, recursive task

spawning in the Cilk programming language to channels by

representing it as a flow graph. To support data-parallel

recursion in bounded memory, we propose a hardware

mechanism that allows wavefronts to yield their execution

resources. Through channels and wavefront yield, we im-

plement four Cilk benchmarks. We show that Cilk can scale

with the GPU architecture, achieving speedups of as much

as 4.3x on eight compute units.

1. Introduction

Graphics processing units (GPUs) are gaining popularity for

general-purpose, high-performance computing because GPU

architectures tolerate recent technology trends better than

CPU architectures. The GPU’s data-parallel design, which

amortizes front-end hardware across many threads, is more

area- and power-efficient than the massive caches and com-

plex speculation logic that typify CPUs. By dedicating tran-

sistors to as many simple threads as possible, GPUs are

suited better to continue capitalizing on Moore’s Law [1].

Many leading manufacturers now integrate CPUs and GPUs

on the same die, producing what AMD calls accelerated

processing units (APUs) [2][3][4]. This coupling is paving a

path for improved architectural integration. For example,

Heterogeneous System Architecture (HSA) incorporates a

unified virtual address space and coherent shared memory

spanning the APU, the ability of GPUs to spawn tasks, and

user-level task queues for low offload latencies [5]. These

features enable new general-purpose GPU (GPGPU) appli-

cations and are finding support in languages like CUDA 6

[6] and OpenCL 2.0 [7].

Despite this progress, GPUs continue to be confined to

structured parallelism, which requires programmers to coor-

dinate independent threads capable of executing the same

function at the same time. Structured parallelism maps di-

rectly to the GPU’s data-parallel hardware, but many un-

structured applications cannot take advantage of the GPU.

Channels, outlined by Gaster and Howes [8], are multi-

producer/multi-consumer data queues that have potential to

expand GPGPU programming. Channels reside in virtual

memory and act as a medium through which producers and

consumers communicate in a data-flow manner. A given

channel holds fine-grain data items—which we call channel

elements (CEs)—that are processed by the same function.

Constraining each channel to be processed by exactly one

function facilitates efficient aggregation of work that then

can be scheduled onto the GPU’s data-parallel hardware.

While Gaster and Howes defined channels, they did not

propose an implementation, leaving designers to question

their practicality. To this end, we propose and evaluate the

first implementation of channels. We find that GPU threads

often write the same channel at the same time. Thus, we

begin by developing a channel data structure that is lock-

free, non-blocking, and optimized for single-instruction-

multiple-thread (SIMT) accesses.

The finer-grain parallelism enabled by channels requires

more frequent and complex scheduling decisions. To man-

age this behavior, we leverage the existing task-scheduling

hardware in today’s GPUs, which typically is implemented

as a small, in-order, programmable processor, rather than

fixed-function logic. We use this tightly integrated processor

to monitor the channels, manage algorithmic dependencies

among them, and dispatch ready work to the GPU. Our

analysis suggests that replacing the existing in-order proces-

sor with a modest out-of-order processor can mitigate the

scheduling overheads imposed by dynamic aggregation.

Because no existing programs are written specifically for

channels, we evaluate our implementation by mapping flow

graph-based programs to channels. A flow graph is a data-

driven graph representation of a parallel application. It is a

popular abstraction used by many modern parallel pro-

gramming languages, including Intel’s Threading Building

Blocks (TBB) [9]. Flow-graph nodes represent the pro-

gram’s computation, while messages flowing over directed

edges represent communication and coordination. We use

channels to aggregate individual messages into coarser-

grain units that can be scheduled efficiently onto the GPU.

Channel-flow graphs increase the diversity of applications

that map well to GPUs by enabling higher-level program-

ming languages with less rigid task abstractions than today’s

GPGPU languages.

We specifically explore mapping programs written in Cilk

to channels. Cilk is a parallel extension to C/C++ for ex-

pressing recursive parallelism. We define a set of transfor-

mations to map a subset of Cilk to a channel-flow graph so

that it can execute on a GPU. This presented two important

challenges. First, GPUs do not provide a call stack, which

CPUs normally use to handle recursion. Our solution is to

map Cilk’s task tree to “stacks of channels”. Second, previ-

ous Cilk runtimes use depth-first recursion to bound

memory usage. However, although breadth-first scheduling

is more effective at populating a GPU’s thousands of hard-

ware thread contexts, it requires exponential memory re-

sources [10]. To solve this problem, we propose a bounded

breadth-first traversal, relying on a novel yield mechanism

that allows wavefronts to release their execution resources.

Through channels and wavefront yield, we implement four

Cilk workloads and use them to demonstrate the scalability

of Cilk in our simulated prototype.

To summarize, our contributions are:

 We enable efficient fine-grain task scheduling on GPUs

by proposing the first channel implementation and as-

sociated hardware support.

 We propose a mechanism for GPU wavefronts to yield

their execution resources, enabling wavefronts to spawn

tasks recursively while bounding memory consumption.

 Using channels and wavefront yield, we enable Cilk on

GPUs and show that its performance scales with the ar-

chitecture.

2. GPU Architecture and Programming Model

This section gives an overview of today’s GPU program-

ming abstractions and how they help programmers coordi-

nate structured parallelism so that it executes efficiently on

the GPU’s data-parallel hardware.

2.1 GPU Programming Model

The GPU’s underlying execution resource is the single-

instruction/multiple-data (SIMD) unit, which is a number of

functional units, or lanes, that execute in lockstep (64 on

AMD GPUs and 32 on NVIDIA GPUs [6]). GPGPU lan-

guages, like OpenCL™ and CUDA, are called SIMT be-

cause they map the programmer’s view of a thread to a

SIMD lane. Threads executing on the same SIMD unit in

lockstep are called a wavefront (warp in CUDA). In SIMT

languages, a task is defined by three components:

1. A function (called a kernel).

2. Data (the kernel’s parameters).

3. A dense 1- to 3-dimensional index space of threads

called an NDRange (grid in CUDA).

Figure 1 shows an OpenCL NDRange. The smallest unit is a

work-item (thread in CUDA), which is an SIMT thread that

maps to a SIMD lane. Work-items are grouped into 1- to 3-

dimensional arrays called work-groups (thread blocks in

CUDA). Multiple work-groups are combined to form the

NDRange. The NDRange helps programmers schedule

structured parallelism to the GPU’s data-parallel hardware,

but makes mapping unstructured parallelism difficult.

2.2 GPU Architecture

Figure 2 highlights important architectural features of a ge-

neric GPU. Compute units (CUs, called streaming multipro-

cessors in CUDA), are defined by a set of SIMD units, a

pool of wavefront contexts (CTX), a register file, and a pro-

grammer-managed cache called local data store (LDS, or

shared memory in CUDA). A CTX maintains state for an

executing wavefront. Each wavefront owns a slice of the

register file that partially defines its state. Each CU has a

private L1 cache that feeds into a shared L2 cache. While

today’s GPUs and APUs provide some combination of co-

herent and incoherent caches, next-generation GPUs and

APUs that adhere to HSA will provide a fully coherent

cache hierarchy [5].

The control processor, also shown in the generic GPU archi-

tecture picture (Figure 2), obtains SIMT tasks from a set of

task queues that it manages. To schedule a task, the control

processor assigns its work-groups to available CUs. The

control processor also coordinates simultaneous graphics

and compute, virtualizes GPU resources, and performs pow-

er management. To carry out its many roles, this front-end

hardware has evolved from fixed function logic into a set of

scalar processors managed by firmware.

Figure 1: OpenCL NDRange

NDRange

work-item

work-group

Figure 2: Generic GPU architecture

SIMDSIMDSIMDSIMD

Compute Unit

Registers

LDS

CTX

CTX

CTX

CTX

CTX

CTX

CTX

CTX

CTX

CTX

CTX

CTX

GPU

L1 Cache

L2 Cache

Control
Processor

3. Channel Definition and Implementation

Gaster and Howes suggested channels to improve on today’s

coarse-grain GPU task abstractions. In this section, we

summarize their vision and propose the first channel imple-

mentation, which executes on forward-looking APUs.

3.1 Prior Work on Channels

A channel is a finite queue in virtual memory, through

which fine-grain data (channel elements, or CEs) are pro-

duced and consumed in a data-flow manner. Channels re-

semble conventional task queues, but differ in three ways:

1. Data in a channel is processed by exactly one function

permanently associated with that channel.

2. CEs are aggregated dynamically into structured, coarse-

grain tasks that execute efficiently on GPUs.

3. Each channel has a “predicate” function for making

dynamic scheduling decisions.

Figure 3 shows data moving through channels in an APU-

like system that includes a CPU and a GPU connected to a

coherent shared memory. The GPU’s control processor is

extended to monitor and manage channels. Because we are

concerned primarily with this new capability, we call the

control processor the aggregator (labeled Agg in Figure 3)

for the remainder of this paper.

At time 0 (t0) in Figure 3, the host initializes two channels

and populates them with CEs. At time 1 (t1), the aggregator,

controlled through a user-defined scheduler, probes the

channels; it detects enough CEs to justify a dispatch to GPU

hardware. The GPU consumes the CEs at t2 and produces

new CEs in a different channel at t3.

Restricting each channel to processing by exactly one func-

tion avoids burdening the aggregator with inspecting indi-

vidual CEs. This constraint does not limit fine-grain task-

parallelism because channels are mapped to shared virtual

memory and therefore are visible to all producers.

The predicate is a Boolean function that assists the aggrega-

tor in making scheduling decisions. The simplest predicate

is one that returns false unless enough CEs are available to

populate all of a SIMD unit’s lanes. This is what we assume

for this paper.

3.2 Lock-free Channel Implementation

To realize finer-grain task abstractions on GPUs, we intro-

duce a novel multi-producer/multi-consumer queue that is

lock-free, non-blocking, and array-based. Lock-free queues

have a rich history in the context of CPUs. Early work con-

sidered array-based designs [11][12][13], but linked lists are

preferred [14][15]. Linked lists are not well suited for GPUs

because different work-items in a wavefront consuming

adjacent CEs are susceptible to memory divergence, which

occurs when the work-items access different cache blocks;

if the requests had been to the same cache block, the GPU’s

coalescing hardware could have merged them. We find that

our queue implementation accommodates the high levels of

contention that are typical on a massively threaded GPU.

3.2.1 Array-based Channel Implementation

Our array-based channel is implemented as three structures:

1. Data array: Buffer for produced CEs.

2. Control array: Buffer of data-array offsets, populated

by producers and monitored by the aggregator.

3. Done-count array: Adjacent data-array elements can

share a done-count element. The aggregator monitors

the done-count array to free data-array elements in the

order they were allocated.

The size of the done-count array is the size of the data array

divided by the number of data-array elements that share a

done count. The control array is twice the size of the data

array. Array elements can be in one of five states:

1. Available: Vacant and available for reservation.

2. Reserved: Producer is filling, hidden from aggregator.

3. Ready: Visible to aggregator, set for consumption.

4. Dispatched: Consumer is processing.

5. Done: Waiting to be deallocated by aggregator.

Figure 4 illustrates two wavefronts, each four work-items

wide, operating on a single channel in system memory. For

space, the control array is the same size as the data array in

the figure, but in practice it is twice the size of the data ar-

ray. In the text that follows, producers operate on the tail

end of an array and consumers operate on the head end.

AggAggAgg CU

System Memory

t0 GPU

CPU

occupiedfree

CU

t1 GPU

CPU

System Memory

CU

t2 GPU

CPU

System Memory

Agg CU

t3 GPU

CPU

System Memory

Figure 3: Channel flow

At time 0 (t0), the data array’s head and tail pointers are

initialized to the same element. Similarly, the control array’s

head and tail pointers are initialized to the same element.

The control array maintains two tail pointers (tail and re-

serveTail) because producers cannot instantaneously re-

serve space in the control array and write the data-array off-

set. All done counts are initialized to 0.

At t1, each work-item in wavefront 0 reserves space for a

CE. Four data-array elements are transitioned to the re-

served state by updating the data array’s tail pointer via

compare-and-swap (CAS). At t2, each work-item in wave-

front 1 reserves space for a CE and at t3 those work-items

finish writing their data-array elements.

Data-array elements are made visible to the aggregator by

writing their offsets into the control array. Specifically, at t4,

wavefront 1 updates reserveTail via CAS to reserve space

in the control array for its data-array offsets. At t5, the off-

sets are written and at t6 the control array’s tail, which is

monitored by the aggregator, is updated to match reserve-

Tail. The array elements related to wavefront 1 are now in

the ready state. The design is non-blocking because wave-

front 1 can make its CEs visible to the aggregator before

wavefront 0 even though it reserved space after wavefront 0.

At t7, the data-array elements generated by wavefront 1 are

transitioned to the dispatched state when the aggregator

points consumers at their respective control-array elements.

Those control-array elements also transition to the dis-

patched state; they cannot be overwritten until their corre-

sponding data-array elements are deallocated because the

control array is twice the size of the data array.

At t8, wavefront 0 finishes writing its data-array elements

and makes its CEs visible to the aggregator. At t9, wavefront

0’s CEs are dispatched. Also at t9, the consumers of wave-

front 1’s CEs signal that they no longer need to reference the

data-array elements by updating their respective done counts

atomically; these data-array elements cannot be deallocated

before wavefront 0’s data-array elements. At t10, the con-

sumers of wavefront 0’s CEs update their respective done

counts. Finally, at t11, the aggregator deallocates space.

3.2.2 Discussion and Optimization

The array-based channel maps well to the GPU’s coalescing

hardware. The CUs are responsible for allocation and con-

sumption while the aggregator handles deallocation, which

is off the critical path of execution. The aggregator manages

the channels without inspecting their individual CEs.

Space is reserved in the data and control arrays through

conditional fetch-and-update (via CAS). By leveraging intra-

wavefront communication instructions [16][17], this opera-

tion can be amortized across a wavefront, greatly reducing

memory traffic. Figure 5 depicts pseudo-code with these

optimizations that updates a channel array’s tail pointer.

Figure 4: Lock free, non-blocking, array-based channel implementation

wavefront 0
0

GPU:
readyavailable dispatchedreserved

Data:

head, tail

t0

System Memory:

Ctrl:

head, tail, reserveTail

Done Count: 0 0 0

1 2 3
channel @ t0

wavefront 1
4 5 6 7 done

Data:

head

t4 4 5 6 7

Ctrl:

head, tail

Done Count: 0 0 0

Data:

head

t1

Ctrl:

head, tail, reserveTail

Done Count: 0 0 0

Data:

head

t2

Ctrl:

head, tail, reserveTail

Done Count: 0 0 0

Data:

head

t3 4 5 6 7

Ctrl:

head, tail, reserveTail

Done Count: 0 0 0

tail tail tail

tail

reserveTail head, tail, reserveTail

Data:

head

t5 4 5 6 7

Ctrl:

head, tail

4 5 6 7

Done Count: 0 0 0

Data:

head

t6 4 5 6 7

Ctrl:

head

4 5 6 7

Done Count: 0 0 0

Data:

head

t7 4 5 6 7

Ctrl: 4 5 6 7

Done Count: 0 0 0

tail

reserveTail

tail

tail, reserveTail

tail

Data:

head

0t9 1 2 3 4 5 6 7

Ctrl:

head, tail, reserveTail

0 1 2 3

Done Count: 0 4 0

Data:

head

0t10 1 2 3 4 5 6 7

Ctrl:

head, tail, reserveTail

Done Count: 4 4 0

Data:

head, tail

t11

Ctrl:

head, tail, reserveTail

Done Count: 0 0 0

tail tail

Data:

head

0t8 1 2 3 4 5 6 7

Ctrl: 4 5 6 7 0 1 2 3

Done Count: 0 0 0

tail

tail, reserveTailhead

 1: int gpuReserveNElements(int numEl, int *tail) {
 2: int wfTail = 0;
 3: // 1. Choose one work-item to operate on tail
 4: bool update = most_sig_work_item();
 5: // 2. Intra-wavefront prefix sum
 6: int offset = prefix_sum(numEl);
 7: int numElToRes = offset + numEl;
 8: // 3. Intra-wavefront synchronization
 9: join_wfbarrier();
10: while(update) {
11: int oldTail = *tail;
12: int nextTail = oldTail + numElToRes;
13: int curTail = CAS(tail, oldTail, nextTail);
14: if(oldTail == curTail) {
15: wfTail = oldTail;
16: update = false;
17: }
18: }
19: wait_at_wfbarrier();
20: // 4. Broadcast tail to entire wavefront
21: wfTail = reduction(wfTail);
22: return (wfTail + offset);
23: }

Figure 5: GPU fetch-and-update (ignores wrapping/overflow)

4. Programming with Channels

This section proposes a low-level API to interface channels

and describes utilizing channels through flow graphs.

4.1 Channel API

Table 1 shows the channel API. Producers call talloc to

allocate CEs. An allocated CE is made visible to the aggre-

gator via the enq function. A CE must be enqueued to the

channel that was specified during its allocation. A consumer

obtains work with the deq function; the specific channel and

offset within that channel are managed by the aggregator.

After data is consumed, the aggregator is signaled that deal-

location can occur via the tfree API.

The talloc API enables minimum data movement between

producers and consumers because the destination channel is

written directly through the pointer that talloc returns.

Figure 6, lines 3-19, demonstrate the API in Table 1.

4.2 Channel-flow Graphs

Flow graphs comprise a set of nodes that produce and con-

sume messages through directed edges; the flow of messag-

es is managed through conditions. Several popular parallel

programming languages and runtimes support flow graphs.

For example, Intel’s TBB provides a sophisticated flow-

graph abstraction [9]. MapReduce and StreamIt provide

more constrained flow-graph frameworks [18][19].

GRAMPS, which had a strong influence on the original

proposal for channels, explores scheduling flow graphs onto

graphics pipelines [20].

Channels facilitate flow graphs with fine-grain messages. A

channel-flow graph is specified as a directed graph com-

posed of kernel nodes and channel nodes. A kernel node

resembles a GPGPU kernel that consumes and produces

data. Kernel nodes are analogous to function nodes in TBB.

A channel node is a buffer that accumulates messages pro-

duced by kernel nodes and routes them to be consumed by

other kernel nodes. Channel nodes are similar to queue

nodes in TBB, but bounded.

Figure 7 shows an example flow graph to compute the

fourth Fibonacci number. At time 0 (t0), the graph, made of

one kernel node and one channel node, is initialized on the

host; the CE is uniquely defined for that channel. At t1, an

init node (the host) puts source CEs in the channel node.

At t2, the kernel node consumes CEs from the channel node

and produces new CEs. At t3, the kernel node consumes the

remaining CEs and the computation is done.

A simple graph API was prototyped for this research. Figure

6 demonstrates how to build the channel-flow graph shown

in Figure 7. A sophisticated flow-graph framework is be-

yond the scope of this work. The remainder of this paper

focuses on other aspects of our design.

 1: #define LEN 32768
 2:
 3: typedef struct {
 4: int val;
 5: } FibObj;
 6:
 7: void FibKernel(int srcID, int srcOff,
 8: int destID, int *result) {
 9: FibObj *src = (FibObj *)deq(srcID, srcOff);
10: if(src->val <= 2) {
11: atomic_add(result, 1);
12: } else {
13: FibObj *ob = (FibObj *)talloc(destID, 2);
14: ob[0].val = src->val - 1;
15: ob[1].val = src->val - 2;
16: enq(destID, ob);
17: }
18: tfree(srcID, srcOff);
19: }

20: void main(int argc, char * argv[]) {
21: int n = atoi(argv[1]);
22: int res = 0;
23:
24: Graph g;
25: ChannelNode *ch = g.ChannelNode(sizeof(FibObj), LEN);
26: KernelNode *kern = g.KernelNode(FibKernel);
27: kern->setConstArg(2, sizeof(int), ch->chID);
28: kern->setConstArg(3, sizeof(int *), &res);
29: ch->connectToKernelNode(kern);
30:
31: FibObj *ob = (FibObj *)ch->talloc(1);
32: ob->val = n;
33: ch->enq(ob);
34:
35: g.execute();
36: g.waitForDone();
37: printf(“fib(%d) = %d\n”, n, res);
38: }

Figure 6: Fibonacci example

Table 1: Channel API

API Function Description

void *talloc(int id,int cnt) allocate cnt CEs in channel id.

void enq(int id,void *ptr) place CEs at ptr in channel id.

void *deq(int id,int off) get CE in channel id at off.

void tfree(int id,int off) free CE in channel id at off.

Figure 7: Channel-flow graph for naïve Fibonacci

fib
kernel

fib channelinit
(host)

fib
kernel

init
4

fib
kernel

init
3 2

fib
kernel

init
2 1

t0

t2 t3

t1

5. Case Study: Mapping Cilk to Channels

Channels facilitate mapping higher-level abstractions to

GPUs. As an example, we discuss translating a subset of the

Cilk programming language to a channel representation.

5.1 Cilk Background

Cilk extends C/C++ for divide-and-conquer parallelism

[21]. Cilk programs use the keyword spawn before a func-

tion to schedule it as a task. The keyword sync forces its

caller to block until all of its spawned tasks are complete.

Figure 8 demonstrates how these keywords are used to cal-

culate the nth Fibonacci number. These two Cilk primitives

form the basis of the language and are what we explore

mapping to channels. Other primitives are left for future

work.

5.2 Cilk as a Channel-flow Graph

One strategy to implement Cilk on channels is to divide

kernels into sub-kernels that are scheduled respecting de-

pendencies. Specifically, a sub-kernel is created whenever

sync is encountered. Each spawn is translated into a tal-

loc/enq sequence that reserves space in the correct channel,

writes the task parameters, and schedules the work. Each

sync is translated into a talloc/enq sequence that sched-

ules work to a channel connected to the “post-sync” sub-

kernel. It may be possible to automate these translations, but

they are done manually for this research.

Figure 9 shows the Cilk tree to calculate the fifth Fibonacci

number. Shaded circles are “pre-spawn” tasks (lines 2-5 in

Figure 8). White circles are “post-spawn” tasks (line 7 in

Figure 8). Solid lines depict task spawns and dotted lines are

dependencies. Each circle is labeled with a letter specifying

the order in which it can be scheduled.

Shaded circles, or pre-spawn tasks, have no dependencies.

They are labeled “A” and are scheduled first. White circles,

or post-spawn tasks, depend on shaded circles and other

white circles. Dependencies on shaded circles are respected

by scheduling white circles after all shaded circles are com-

plete. White circles are labeled “B” or lexicographically

larger. Dependencies among white circles are inferred con-

servatively from the level of recursion from which they de-

rive. For example, the white circle representing the continu-

ation for the fourth Fibonacci number and labeled “C” de-

rives from the second level of the Cilk tree and depends on a

continuation that derives from the third level.

Continuations that derive from deeper levels of the Cilk tree

can be scheduled first. This is achieved by maintaining

“stacks of channels” for continuations and scheduling each

continuation at the correct offset within the stack. Virtual

memory is allocated up front for channel stacks, similar to

how CPU threads are allocated private stacks. Tasks deter-

mine the correct offset within the stack by accepting their

recursion depth as a parameter. The scheduler drains the

channel at the top of the stack before scheduling channels

below it. This strategy is called levelization [22].

Figure 10 shows the tasks from Figure 9 organized into a

main channel for pre-spawn tasks and a stack of channels

for post-spawn tasks.

Figure 11 shows the channel-flow graph for the Cilk version

of Fibonacci. Channel stack nodes (e.g., the dashed box in

Figure 11) are added to the channel-flow-graph framework.

Instead of atomically updating a global result, as is done by

the flow graph in Figure 7, each thread updates a private

result in the channel stack. Intermediate results are merged

into a final result by a second continuation kernel node.

Finally, it should be noted that the translations described for

the Cilk version of Fibonacci generalize to other Cilk pro-

grams because they all have one logical recursion tree.

1: int fib(int n) {
2: if(n <= 2) return 1;
3: else {
4: int x = spawn fib(n - 1);
5: int y = spawn fib(n - 2);
6: sync;
7: return (x + y);
8: }
9: }

Figure 8: Fibonacci in Cilk

Figure 9: Cilk tree for Fibonacci

3B

3A 3C4C4A

5D
“pre-spawn” task

“post-spawn” task

5A

2A 2A 1A

2A 1A

3A

Figure 10: Managing dependencies with channels

channel stack:5A

4A 3A

3A 2A 2A 1A

2A 1A

3C4C

5D

top of
stack3B

Figure 11: Channel-flow graph for Cilk version of Fibonacci

fib
kernel

fib channel
init

fib.cont stack:

fib.cont
kernel

5.3 Bounding Cilk’s Memory Footprint

For CPUs, Cilk runtimes use a work-first scheduling policy

to bound the memory footprint to the depth of the Cilk tree.

In work-first scheduling, threads traverse the Cilk tree in a

depth-first manner by scheduling the continuation for a task

that calls spawn and executing the spawned task [21]. This

does not generate work fast enough for GPUs.

The scheduling policy described in Section 5.2 is called

help-first. It generates work quickly by doing a breadth-first

traversal of the Cilk tree, but consumes exponential memory

relative to a workload’s input size [10]. To make this policy

feasible, the memory footprint must be bounded. This is

possible if hardware supports yielding a CTX.

If a hardware context yields its execution resources when it

is unable to obtain space in a channel, the scheduler can

drain the channels by prioritizing work deeper in the recur-

sion. When a base-case task is scheduled, it executes with-

out spawning new tasks, freeing space in its channel. When

a task near the base case executes, it spawns work deeper in

the recursion. Because base-case tasks are guaranteed to free

space, forward progress is guaranteed for the recursion prior

to the base case. Inductively, forward progress is guaranteed

for all channels.

The scheduler can differentiate work from different recur-

sion levels if both pre- and post-spawn tasks are organized

into channel stacks, as shown in Figure 12.

An alternative approach is a hybrid scheduler that uses help-

first scheduling to generate work and then switches to work-

first scheduling to bound memory [23]. Future work will

compare a help-first only scheduler to a hybrid scheduler.

6. Wavefront Yield

To facilitate Cilk and similar recursive models, we propose

that future GPUs provide a “wavefront yield” instruction.

Our yield implementation, depicted in Figure 13, relies on

the aggregator to manage yielded wavefronts. After a wave-

front executes yield (), the GPU saves all of its state to

memory () including registers, program counters, execu-

tion masks, and NDRange identifiers. LDS is not saved be-

cause it is associated with the work-group and explicitly

managed by the programmer; a restarting wavefront must be

assigned to the same CU on which it was previously execut-

ing. Memory space for yield is allocated for each CTX be-

fore dispatch and deallocated as wavefronts complete. This

is the same strategy used for spill memory in HSA.

In addition to the wavefront’s state, a restart context, used to

restart the wavefront, is saved to a data structure in memory

(). This data structure can be a finite size because the ag-

gregator will consume whatever is inserted into it; in our

implementation, we use a channel. The restart context com-

prises a pointer to the wavefront’s saved state and the re-

source that the wavefront blocked on. The aggregator re-

trieves the restart context and inserts it into a software-

defined data structure that tracks blocked wavefronts ().

The aggregator then schedules a new wavefront to occupy

the yielded context (). The aggregator monitors resources

and restarts wavefronts as appropriate.

7. Methodology and Workloads

We prototyped our channel implementation in the simulated

system depicted in Figure 14. We used gem5 [24] enhanced

with a proprietary GPU model. The GPU’s control processor

is implemented as a programmable core that serves as the

aggregator. It is enhanced with private L1 caches that feed

into the GPU’s unified L2 cache. Each CU has a private L1

data cache that also feeds into the GPU’s L2 cache. All CUs

are serviced by a single L1 instruction cache connected to

the GPU’s L2 cache. More details can be found in Table 2.

Figure 12: Bounding memory for the Cilk version of Fibonacci

fib
kernel

init

fib.cont stack:

fib.cont
kernel

fib stack:

Figure 13: Wavefront yield sequence

registers, PCs, masks,
NDRange identifiers, etc.

Channel for Restart Context

System Memory

GPU

Agg

SIMD

Compute Unit

RegistersCTX

CTX

CTX

CTX



State
(pre-allocated at dispatch)





Restart Context 



ptr
res

map<resource, vector<context *> >

LDSSIMD

Figure 14: Simulated system

Compute
Units

GPU

L1D

Aggregator

L1I

L1I

L2 / GPU directory

CPU

Core

L1DL1I

L2

APU directory

Memory Controller/DRAM

L1D

To isolate the features required for channels, all caches are

kept coherent through a read-for-ownership MOESI directo-

ry protocol [25] similar to the GPU coherence protocol pro-

posed by Hechtman et al. [26]. Future work will evaluate

channels with write-combining caches [27].

We implemented wavefront yield as described in Section 6.

CTXs require, at a minimum, 856 bytes for program coun-

ters, execution masks, NDRange identifiers, etc. Additional

bytes are required for registers. There are three kinds of reg-

isters: 64 x 4 byte (s), 64 x 8 byte (d), and 64 x 1-bit (c). The

number of registers varies across kernels. We save all regis-

ters (live and dead). A more sophisticated implementation

would avoid saving dead registers. The numbers of registers

for our workloads are shown in Table 3. In the worst case

(Queens), 9,072 bytes are saved/restored.

7.1 Workloads

We wrote four Cilk workloads derived manually from Cilk

source according to the transformations discussed in Section

5. They are characterized in Table 3.

1. Fibonacci: Compute the nth Fibonacci number. Partial

results are stored in continuation channels and merged

by a continuation kernel.

2. Queens: Count the number of solutions to the NxN

queens puzzle. In our implementation, derived from

code distributed with the MIT Cilk runtime [21], the

base case is a 4x4 sub-section of the chessboard.

3. Sort: Recursively split an array into four smaller sub-

arrays until reaching a base case (64 elements), sort all

of the base-case sub-arrays, and merge them. This

workload also was derived from a version distributed

with the MIT Cilk runtime [21].

4. Strassen: Repeatedly divide a matrix into four sub-

matrices down to a base case (16x16 elements), multi-

ply each pair of base-case matrices, and combine the re-

sults through atomic addition [28].

7.2 Scheduler

A scheduling algorithm, which executes on the aggregator,

was written for the Cilk workloads. It respects Cilk’s de-

pendencies by tracking the current level in the recursion, as

described in Section 5.2. It also checks for wavefronts that

have yielded and restarts them as resources (i.e., channels

deeper in the recursion) become available. Because leveliza-

tion enforces dependencies, the GPU can block on the

scheduler. We explore workload sensitivity to the aggregator

in Section 8.3.

8. Results

We find that three of our four Cilk workloads scale with the

GPU architecture, and show details in Figure 15. The aver-

age task size (average cycles/wavefront) for each workload,

shown in Table 3, and cache behavior, depicted in Figure 16,

help explain the trends.

First, we examine the workload that does not scale up to

eight CUs: Fibonacci. Given the small amount of work in its

kernel nodes, we would not expect Fibonacci to scale. Even

so, it is useful for measuring the overheads of the channel

APIs because it almost exclusively moves CEs through

channels. A consequence of Fibonacci’s small task size is

that it incurs more GPU stalls waiting on the aggregator

than workloads with larger task sizes. Larger task sizes al-

low the aggregator to make progress while the GPU is doing

compute. At eight CUs, Fibonacci’s cache-to-cache transfers

degrade performance; these occur because consumer threads

execute on different CUs than their respective producer.

The other three Cilk workloads scale well from one CU to

eight CUs, with speedups ranging from 2.6x for Sort to 4.3x

for Strassen. This is because the workloads perform non-

trivial amounts of processing on each CE, which is reflected

in the average task size. Strassen’s wavefronts are approxi-

mately 37 times larger than Fibonacci’s. In contrast, Sort’s

Table 2: Simulation configuration †See Section 8.3

Compute Unit

Clock 1GHz, 4 SIMD units

Wavefronts (#/scheduler) 40 (each 64 lanes)/round-robin

Data cache
16kB, 64B line, 16-way, 4 cycles,

delivers one line every cycle

Instr. cache (1 for all CUs) 32kB, 64B line, 8-way, 2 cycles

Aggregator

Clock 2GHz, 2-way out-of-order core†

Data cache 16kB, 64B line, 16-way, 4 cycles

Instr. cache 32kB, 64B line, 8-way, 2 cycles

Memory Hierarchy

GPU L2/directory 1MB, 64B line, 16-way, 16 cycles

DRAM 1GB, 30ns, 20GB/s

Coherence protocol MOESI directory

Host CPU (not active in region of interest)

Clock 1GHz, gem5 TimingSimpleCPU

L1D, L1I, L2
(size/assoc/latency)

64B lines across all caches

(64kB/2/2), (32kB/2/2), (2MB/2/2)

Channel

Done count 64 (Section 8.2.1)

Table 3: Workloads †Section 8.2.2 ††Measured from a one-wavefront execution (channel width=64, input=largest with no yields)

Workload Data set Kernel nodes Registers/kernel Channel width† # of wavefronts Average cycles/wavefront††

Fibonacci 24 2 16s/8d/2c, 3s/4d/1c 32,768 2,192 7,046

Queens 13x13 2 16s/8d/3c, 5s/5d/1c 16,384 1,114 35,407

Sort 1,000,000 4 16s/8d/2c (all 4 kernels) 32,768 4,238 30,673

Strassen 512x512 1 16s/6d/8c 8,192 587 259,299

wavefronts are a little more than four times larger than Fib-

onacci’s, indicating that relatively small tasks can be coor-

dinated through channels to take advantage of the GPU.

While few memory accesses hit in the L1 cache, many hit in

the shared L2, facilitating efficient communication between

producers and consumers. L2 cache misses degrade scalabil-

ity because main memory bandwidth is much lower than

cache bandwidth. As illustrated in Figure 15, the aggregator

overhead is constant with respect to the number of CUs, so

we would not expect it to be a bottleneck for larger inputs.

To help put these results in context, we compare channel

workloads to non-channel workloads when possible. Specif-

ically, we compare Strassen to matrix multiply from the

AMD SDK [29] and Queens to a version of the algorithm

distributed with GPGPU-Sim [30]. We would expect chan-

nels to be slower than conventional GPGPU code because

their fine-grain nature leads to more tasks, which imposes

extra coordination overhead; both channel codes trigger

more than 10 times the number of dispatches than their non-

channel counterparts. Surprisingly, we find that channels are

on par with conventional GPGPU code because they facili-

tate more efficient algorithms. Specifically, Strassen has a

lower theoretical complexity than AMD SDK’s matrix mul-

tiply. Meanwhile, for Queens the GPGPU-Sim version pays

large overheads to flatten a recursive algorithm that is ex-

pressed naturally through channels. Both Strassen and

Queens have fewer lines of code (LOC) than the non-

channel versions. These results are summarized in Table 4.

8.1 Array-based Design

Figure 17, which compares the baseline channel to a “GPU-

efficient channel” that has the intra-wavefront optimizations

suggested in Section 3.2.2, shows the effectiveness of amor-

tizing synchronization across the wavefront. By reducing

the number of CAS operations (where talloc and enq spend

most of their time) by up to 64x, this optimization reduces

the run-time drastically for all workloads.

We compared the GPU-efficient channel to a version that is

padded such that no two CEs share a cache line. Padding

emulates a linked list, which is not likely to organize CEs

consumed by adjacent work-items in the same cache line. In

all cases, the padded channel performs worse, but the degra-

dation is less than expected because the CEs are organized

as an array of structures instead of a structure of arrays. We

plan to address this in future work.

Figure 15: Scalability of Cilk workloads

Figure 16: CU cache behavior

Figure 17: GPU-efficient array quantified

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1CU 2CUs 4CUs 8CUs 1CU 2CUs 4CUs 8CUs 1CU 2CUs 4CUs 8CUs 1CU 2CUs 4CUs 8CUs

Fibonacci Queens Sort Strassen

Ex
e

cu
ti

o
n

 t
im

e
 n

o
rm

al
iz

e
d

 t
o

 1
 C

U

GPU stalled GPU active

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1
C

U

2
C

U
s

4
C

U
s

8
C

U
s

1
C

U

2
C

U
s

4
C

U
s

8
C

U
s

1
C

U

2
C

U
s

4
C

U
s

8
C

U
s

1
C

U

2
C

U
s

4
C

U
s

8
C

U
s

Fibonacci Queens Sort Strassen

N
o

rm
al

iz
e

d
 m

e
m

o
ry

 a
cc

e
ss

 c
o

u
n

t

misses L2 hits L1-L1 transfers L1 hits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fibonacci Queens Sort Strassen

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

baseline channel GPU-efficient channel padded GPU-efficient channel

Table 4: GPU Cilk vs. conventional GPGPU workloads

 LOC reduction Dispatch rate Speedup

Strassen 42% 13x 1.06

Queens 36% 12.5x 0.98

8.2 Channel Granularity

8.2.1 Done Count

Channel space is deallocated in order at the granularity of

the done count. A done count of 64 limits deallocation to

less than 3% of total stall time on average.

8.2.2 Channel Width

Figure 18 shows how channel width can affect performance.

Narrow channels are unable to supply enough CEs to utilize

the GPU adequately. Meanwhile, larger channels degrade

the performance of Strassen because wavefronts are not able

to use the L2 cache as effectively. We configured each

workload with the channel width that resulted in peak per-

formance (shown in Table 3). Better cache-management

policies, like cache-conscious thread scheduling [31], may

eliminate the cache thrashing caused by wider channels.

8.2.3 Wavefront Yield

Figure 18 also shows the frequency and impact of yields.

Saving and restoring CTXs generally has little impact on

GPU active time because yields are relatively infrequent.

However, at smaller channel widths, frequent yields in-

crease GPU stall time because the aggregator manages

yields instead of dispatching new work.

8.3 Aggregator Sensitivity Study

We performed a sensitivity study to determine how complex

the aggregator needs to be. The first design that we consid-

ered is a primitive core, called simple, which is not pipe-

lined and executes one instruction at a time; this extremely

slow design increases pressure on the aggregator. We also

considered a complex out-of-order (OoO) core, called 4-way

OoO, to capture the other extreme. Finally, we looked at two

intermediate designs: 2-way OoO and 2-way light OoO. 2-

way OoO resembles a low-power CPU on the market today.

2-way light OoO is derived by drastically slimming 2-way

OoO and provides insight into how an even simpler core

might perform. Table 5 summarizes our findings. 4-way

OoO provides little benefit relative to 2-way OoO. 2-way

light OoO reduces the performance gap between simple and

2-way OoO, but the aggregator overhead can still be as high

as 35%. Hence, 2-way OoO strikes a good balance between

performance and core complexity and was used to generate

the results reported in previous sections.

8.4 Divergence and Channels

Figure 19 depicts branch divergence. Fibonacci and Queens

have many wavefronts with base-case and non-base-case

threads, leading to high divergence. Strassen has little diver-

gence because it distributes work very evenly. Sort, which

spends most of its time in the base case, suffers severe di-

vergence. This is because the base-case code was obtained

from a CPU version that uses branches liberally.

Figure 18: Channel width (CEs)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1

0
2

4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Fibonacci Queens Sort Strassen

yi
el

d
s

/
ki

lo
-i

n
st

ru
ct

io
n

Ex
e

cu
ti

o
n

 t
im

e
 (

n
o

rm
al

iz
e

d
 t

o
 1

0
2

4
 C

Es
)

GPU stalled on aggregator GPU active >= 1 wavefront stalled on yield yields/kilo-instruction

Table 5: % of time GPU (8 CUs) is blocked on aggregator

 Description Fibonacci Queens Sort Strassen

Simple
no pipelining,

one instruction at a time
41.5 2.9 8.9 3.4

2-way

light OoO

physical registers: 64,

IQ size: 2, ROB size: 8,

ld/st queue size: 8/8
35.1 2.0 7.2 2.5

2-way

OoO

physical registers: 64,

IQ size: 32, ROB size: 64,

ld/st queue size: 32/32
30.1 1.6 5.8 1.8

4-way

OoO

physical registers: 128,

IQ size: 64 ROB size: 128,

ld/st queue size: 64/64
29.8 1.5 5.6 1.9

Figure 19: Branch divergence

0

10

20

30

40

50

60

70

80

90

100

Fibonacci Queens Sort Strassen

P
e

rc
e

n
t

o
f

w
av

ef
ro

n
ts

1-16 17-32 33-48 49-64 lanes active

9. Related Work

We survey three categories of related work: multi-producer/

multi-consumer queues, dynamic aggregation of fine-grain

work on data-parallel hardware, and GPU task runtimes and

synchronization.

9.1 Multi-producer/Multi-consumer Queues

Prior work on lock-free, multi-producer/multi-consumer

queues is skewed towards CPUs; it includes linked list- and

array-based designs. Linked lists often are preferred because

they are not fixed-length and are easier to manage [14][15].

Unfortunately, linked lists are a poor fit for the GPU’s

memory-coalescing hardware.

Array-based queues often require special atomic operations,

limit the size of an element to a machine word, and usually

are not as scalable [11][12]. Gottlieb et al. described an ar-

ray-based algorithm without these limitations, but their de-

sign is blocking [13]. Channels use conventional CAS, en-

capsulate user-defined data (of any size), are non-blocking,

and scale well on GPUs.

9.2 Dynamic Aggregation for Data-parallel Hardware

GRAMPS, which inspired channels, maps flow graphs to

graphics pipelines and provides packet queues to aggregate

fine-grain work into data-parallel tasks [20]. Channels apply

these concepts to more general computation. Our work gives

a fresh perspective on how to implement aggregation queues

and use them to realize higher-level languages on GPUs.

Dynamic micro-kernels allow programmers to regroup

threads using the keyword spawn [32]. To support this se-

mantic, a fully associative look-up table (LUT), indexed on

the program counter of the branch destination, is proposed.

While micro-kernels target mitigating branch divergence,

they could be used for dynamic work aggregation. Com-

pared to channels, one limitation is that the number of tasks

is limited to the number of entries in the LUT.

Stream compaction uses global scan and scatter operations

to regroup pixels by their consumption kernels [33]. Chan-

nels avoid regrouping by limiting each channel to one con-

sumption function.

The Softshell GPU task runtime uses persistent GPU work-

groups to schedule and aggregate work from a monolithic

task queue [34]. Channels instantiate a separate queue for

each consumption function and leverage the GPU’s control

processor to manage those queues.

9.3 GPU Tasks and Synchronization

Aila and Laine proposed a scheme that they call persistent

threads, which bypasses the GPU scheduler and places the

scheduling burden directly on the programmer [35]. Exactly

enough threads are launched to fill the machine and poll a

global work queue. In contrast, channels fill the machine in

a data-flow manner and only launch consumers that will

dequeue the same work, which encourages higher SIMT

utilization.

Tzeng et al. also explored task queues within the confines of

today’s GPUs [36]. Their approach was to operate on a

queue at wavefront granularity. They allocated a queue per

SIMD unit and achieved load-balance through work steal-

ing/sharing. Channels use dynamic aggregation to provide a

more conventional task abstraction.

Heterogeneous System Architecture (HSA) supports de-

pendencies among kernels [5]. Similarly, dynamic parallel-

ism in CUDA enables coarse-grain work coordination [6].

These approaches require programmers to reason about par-

allelism at a coarse granularity. We found that specifying

dependencies at a coarse granularity, while scheduling work

at a fine granularity, worked well for Cilk.

Fung et al. proposed that a wavefront’s state be checkpoint-

ed to global memory for the purposes of recovering from a

failed transaction [37]. We propose a wavefront yield in-

struction to facilitate Cilk on GPUs. While similar, we go a

step further by allowing the wavefront to relinquish its exe-

cution resources. In contrast, CUDA and HSA only support

context switches at kernel granularity.

10. Conclusion

Channels aggregate fine-grain work into coarser-grain tasks

that run efficiently on GPUs. This section summarizes our

work on channels, discusses its implications, and anticipates

future work.

We proposed the first channel implementation. While our

design scales to eight compute units, there are several im-

provements that future work should consider. Our imple-

mentation is a flat queue, but a hierarchical design may

scale even better. We also used a read-for-ownership coher-

ence protocol in our evaluation, but future work should

quantify the effects of write-combining caches. Finally, fu-

ture designs should optimize the layout of CEs in memory

for SIMT hardware.

We described a set of transformations to map Cilk to a

channel-flow graph. Future work should investigate map-

ping other high-level languages to GPUs through channels.

Our implementation of Cilk on top of channels hard-codes

both Cilk’s dependencies and the subset of channels from

which to schedule in the aggregator’s firmware. Future work

should explore general abstractions for managing the chan-

nels and their dependencies. For example, it may be possible

to apply the concept of guarded actions to channels [38].

We used the GPU’s control processor, which we called the

aggregator, to manage channels and restart yielded wave-

fronts. We found that its architecture had a crucial impact on

the performance of channels. While the out-of-order design

that we used worked well for our workloads, a more effi-

cient design might achieve similar results. Future work

should explore control processor architectures that enable

other novel GPGPU programming models and abstractions.

Acknowledgements

We thank Benedict Gaster and Michael Mantor for their critical input early

on, Rex McCrary for explaining the control processor, and Yasuko Eckert

for helping to define the aggregator configurations. We also thank Michael
Boyer, Shuai Che, Mark Hill, Lee Howes, Mark Nutter, Jason Power, Da-

vid Schlosser, Michael Schulte, and the anonymous reviewers for improv-

ing the presentation of the final paper. This work was performed while
Marc Orr was a graduate student intern at AMD Research. Prof. Wood

serves as a consultant for and has a significant financial interest in AMD.

References

[1] G. E. Moore, “Cramming More Components onto Integrated Cir-

cuits,” Proc. IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.

[2] S. R. Gutta, D. Foley, A. Naini, R. Wasmuth, and D. Cherepacha, “A
Low-Power Integrated x86-64 and Graphics Processor for Mobile

Computing Devices,” in Solid-State Circuits Conference Digest of

Technical Papers (ISSCC), 2011, pp. 270–272.
[3] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A Fully Inte-

grated Multi-CPU, GPU and Memory Controller 32nm Processor,” in

Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2011, pp. 264–266.

[4] “Bringing High-End Graphics to Handheld Devices,” NVIDIA, 2011.

[5] G. Kyriazis, “Heterogeneous System Architecture: A Technical Re-
view,” AMD, Aug. 2012.

[6] “CUDA C Programming Guide.” [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/.
[7] “OpenCL 2.0 Reference Pages.” [Online]. Available:

http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/.
[8] B. R. Gaster and L. Howes, “Can GPGPU Programming Be Liberat-

ed from the Data-Parallel Bottleneck?” Computer, vol. 45, no. 8, pp.

42–52, Aug. 2012.
[9] “Intel Threading Building Blocks.” [Online]. Available:

http://www.threadingbuildingblocks.org/.

[10] S. Min, C. Iancu, and K. Yelick, “Hierarchical work stealing on
manycore clusters,” in Fifth Conference on Partitioned Global Ad-

dress Space Programming Models, 2011.

[11] J. Valois, “Implementing Lock-Free Queues,” in Proceedings of the
Seventh International Conference on Parallel and Distributed Com-

puting Systems, 1994, pp. 64–69.

[12] C. Gong and J. M. Wing, “A Library of Concurrent Objects and Their
Proofs of Correctness,” Carnegie Mellon University, Technical Re-

port, 1990.

[13] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph, “Basic Techniques
for the Efficient Coordination of Very Large Numbers of Cooperating

Sequential Processors,” ACM Trans Program Lang Syst, vol. 5, no. 2,

pp. 164–189, Apr. 1983.
[14] M. M. Michael and M. L. Scott, “Nonblocking Algorithms and

Preemption-safe Locking on Multiprogrammed Shared Memory Mul-

tiprocessors,” J Parallel Distrib Comput, vol. 51, no. 1, pp. 1–26,
May 1998.

[15] E. Ladan-mozes and N. Shavit, “An Optimistic Approach to Lock-

Free FIFO queues,” in Proceedings of the 18th International Sympo-
sium on Distributed Computing, 2004, pp. 117–131.

[16] “HSA Programmer’s Reference Manual: HSAIL Virtual ISA and

Programming Model, Compiler Writer’s Guide, and Object Format
(BRIG),” HSA Foundation, Spring 2013.

[17] M. Harris, “Optimizing Parallel Reduction in CUDA,” NVIDIA.

[Online]. Available: http://developer.download.nvidia.com/assets/
cuda/files/reduction.pdf.

[18] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” Commun ACM, vol. 51, no. 1, pp. 107–113, Jan.
2008.

[19] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A Lan-

guage for Streaming Applications,” in Proceedings of the 11th Inter-
national Conference on Compiler Construction, London, UK, 2002,

pp. 179–196.

[20] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan,
“GRAMPS: A Programming Model for Graphics Pipelines,” ACM

Trans Graph, vol. 28, no. 1, pp. 4:1–4:11, Feb. 2009.

[21] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Implementation

of the Cilk-5 Multithreaded Language,” in Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and

Implementation, New York, N.Y., USA, 1998, pp. 212–223.

[22] G. Diamos and S. Yalamanchili, “Speculative Execution on Multi-
GPU Systems,” in 2010 IEEE International Symposium on Parallel

Distributed Processing (IPDPS), 2010, pp. 1–12.

[23] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-First and Help-
First Scheduling Policies for Async-Finish Task Parallelism,” in

IEEE International Symposium on Parallel Distributed Processing,

2009. IPDPS 2009, 2009, pp. 1–12.
[24] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A.

Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K.

Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
Simulator,” SIGARCH Comput Arch. News, vol. 39, no. 2, pp. 1–7,

Aug. 2011.

[25] P. Conway and B. Hughes, “The AMD Opteron Northbridge Archi-
tecture,” IEEE Micro, vol. 27, no. 2, pp. 10–21, Mar. 2007.

[26] B. A. Hechtman and D. J. Sorin, “Exploring Memory Consistency for

Massively-Threaded Throughput-Oriented Processors,” in Proceed-

ings of the 40th Annual International Symposium on Computer Archi-

tecture, New York, N.Y., USA, 2013, pp. 201–212.

[27] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M. Beckmann, M.
D. Hill, S. K. Reinhardt, and D. A. Wood, “QuickRelease: A

Throughput-oriented Approach to Release Consistency on GPUs,”

presented at the 20th IEEE International Symposium On High Per-
formance Computer Architecture (HPCA-2014).

[28] V. Strassen, “The Asymptotic Spectrum of Tensors and the Exponent
of Matrix Multiplication,” in Proceedings of the 27th Annual Sympo-

sium on Foundations of Computer Science, Washington, D.C., USA,

1986, pp. 49–54.
[29] AMD Corporation, “AMD Accelerated Parallel Processing SDK.”

[Online]. Available: http://developer.amd.com/tools-and-sdks/.

[30] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA Workloads Using a Detailed GPU Simu-

lator,” in IEEE International Symposium on Performance Analysis of

Systems and Software, 2009. ISPASS 2009, 2009, pp. 163–174.
[31] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious

Thread Scheduling for Massively Multithreaded Processors,” IEEE

Micro, vol. 33, no. 3, pp. 78–85, May 2013.
[32] M. Steffen and J. Zambreno, “Improving SIMT Efficiency of Global

Rendering Algorithms with Architectural Support for Dynamic Mi-

cro-Kernels,” in Proceedings of the 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, Washington, D.C., USA,

2010, pp. 237–248.

[33] J. Hoberock, V. Lu, Y. Jia, and J. C. Hart, “Stream Compaction for
Deferred Shading,” in Proceedings of the Conference on High Per-

formance Graphics 2009, New York, N.Y., USA, 2009, pp. 173–180.

[34] M. Steinberger, B. Kainz, B. Kerbl, S. Hauswiesner, M. Kenzel, and
D. Schmalstieg, “Softshell: Dynamic Scheduling on GPUs,” ACM

Trans Graph, vol. 31, no. 6, pp. 161:1–161:11, Nov. 2012.

[35] T. Aila and S. Laine, “Understanding the Efficiency of Ray Traversal
on GPUs,” in Proceedings of the Conference on High Performance

Graphics 2009, New York, N.Y., USA, 2009, pp. 145–149.

[36] S. Tzeng, A. Patney, and J. D. Owens, “Task Management for Irregu-
lar-Parallel Workloads on the GPU,” in Proceedings of the Confer-

ence on High Performance Graphics, Aire-la-Ville, Switzerland,

2010, pp. 29–37.

[37] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt, “Hard-

ware Transactional Memory for GPU Architectures,” in Proceedings

of the 44th Annual IEEE/ACM International Symposium on Microar-
chitecture, New York, N.Y., USA, 2011, pp. 296–307.

[38] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig, V.

Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess, S.
Maresh, and J. Emer, “Triggered Instructions: A Control Paradigm for

Spatially-Programmed Architectures,” in Proceedings of the 40th An-

nual International Symposium on Computer Architecture, New York,
N.Y., USA, 2013, pp. 142–153.

