Translation Caching: Skip, Don’t Walk (the Page Table)

Thomas W. Barr, Alan L. Cox, Scott Rixner

Rice University
Houston, TX
{twb, alc, rixner}@rice.edu

ABSTRACT Keywords

This paper explores the design space of MMU caches that accel-TLB, Memory Management, Page Walk Caching
erate virtual-to-physical address translation in processor architec-

tures, such as x86-64, that use a radix tree page table. In particular,] . INTRODUCTION

these caches accelerate the page table walk that occurs after a miss
in the Translation Lookaside Buffer. This paper shows that the most
effective MMU caches ar&ranslation cacheswhich store partial
translations and allow the page walk hardware to skip one or more
levels of the page table.

In recent years, both AMD and Intel processors have imple-
mented MMU caches. However, their implementations are quite
different and represent distinct points in the design space. This
paper introduces three new MMU cache structures that round out
the design space and directly compares the effectiveness of all five For several generations of x86 processors, from the Intel 80386

organizations. This comparison shows that two of the newly intro- 1o the Pentium. the bage table had at most two levels. Conse-
duced structures, both of which are translation cache variants, are ’ page L)
quently, whenever a TLB miss occurred, at most two memory ac-

better than existing structures in many situations. cesses were needed to complete the translation. However, as the
Finally, this paper contributes to the age-old discourse concern-) . P : '
physical and virtual address spaces supported by x86 processors

ing the relative effectiveness of different page table organizations. have arown in size. the maximum debth of the tree has increased
Generally speaking, earlier studies concluded that organizationsfirst tc? three Ievels, in the Pentium Prr)o to accommodate a 36-bit’
based on hashing, such as the inverted page table, outperformed = . L

L . . . physical address within a page table entry, and more recently to
organizations based upon radix trees for supporting large virtual

address spaces. However, these studies did not take into accounftOur levels in the AMD Opteron to support a 48-bit virtual address

the possibility of caching page table entries from the higher lev- fﬁ:;%éé%f?ﬁ; (\j/\gtr;he?fc Phgi\rsjénr?ageiif/jvenSt;ncoentehlz \'/r;terdUCtlon of
els of the radix tree. This paper shows that any of the five MMU ' P 9 Y)

cache structures will reduce radix tree page table DRAM accesses_ ;2(;16me\p;g:ﬁwgﬁ(szesrgr\:vléhf?olrrnnF)Se}itzl;f ;I;)Lerr)nnl]sizZﬁ ogizc;\:jefll_
far below an inverted page table. Y P 9 2 y P

plications, even in a non-virtualized environment [9]. As the ap-
plication’s memory footprint increases, TLB misses have a signif-
icantly larger impact on performance, approaching 50% in some

This paper explores the design space of memory-management
unit (MMU) caches for accelerating virtual-to-physical address
translation in processor architectures, like x86-64, that implement
paged virtual memory using a radix tree for their page table. In
particular, these caches accelerate the page table walk that occurs
after a miss in the Translation Lookaside Buffer (TLB). In fact, a
hit in some of these caches enables the processkipmver one

or more levels of the tree and, in the best case, access only the tree’s
lowest level.

Categories and Subject Descriptors cases [19]. Although the use of large pages can lessen this impact,
C.0 [General: Modelling of computer architecture; C.4 Wwith further increases in the memory footprint their effectiveness
[Performance of systemf Design studies; D.4.XJperating Sys- declines. Therefore, both AMD and Intel have implemented MMU
temg: Virtual Memory caches for page table entries from the higher levels of the tree [3,

9]. However, their caches have quite different structure. For exam-
ple, AMD’s Page Walk Cache stores page table entries from any

level of the tree, whereas Intel implements distinct caches for each
General Term; level of the tree. Also, AMD’s Page Walk Cache is indexed by
Performance, Design the physical address of the cached page table entry, whereas Intel's

Paging-Structure Caches are indexed by portions of the virtual ad-
dress being translated. Thus, in this respect, the Page Walk Cache
resembles the processor’s data cache, whereas the Paging-8tructur

Permission to make digital or hard copies of all or part of thizkfor Caches resemble its TLB.

personal or classroom use is granted without fee providatidbpies are This paper’s primary contribution is that it provides the first
not made or distributed for profit or commercial advantage aatidbpies comprehensive exploration of the design space occupied by these
bear this notice and the full citation on the first page. Toycotherwise, to caches. In total, it discusses five distinct points in this space, in-
republish, to pg/St on fser"ers or to redistribute to listguies prior specific o1, ding three new designs. Specifically, it presents the first head-
Fg&ﬂ!iggg:g 1;’:;3,629610, Saint-Malo, France. to-head comparison of the effectiveness of these designs. In gen-

Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00. eral, the results of this comparison show thattthaslation caches

(6348 [4739 | 38:30 | 2921 | 20:12 | 110

which store partial translations and allow the page walk hardware Fse T Taiox [Taidx [L2idx [LTidx | page offset]

to skip one or more levels of the page table, are the best. In addi-
tion, the new translation caches that are introduced by this paper are
better than the existing caches in many situations and workloads.
Finally, this paper contributes to the age-old discourse concern-
ing the relative effectiveness of different page table organizations. : o
Generally speaking, earlier studies concluded that organizations e s ZﬁMdef:Zhe
based on hashing, such as the inverted page table, outperformed
organizations based upon radix trees for supporting large virtual Rs L u =5
address spaces [23, 15]. However, these studies did not take into et ol L foe[loonisoe
account the possibility of caching page table entries from the higher ooefTppoday] " /e s :
- . . a| ppn: NUL / -
levels of the radix tree. This paper shows that radix tables cause up 0ol poni 126 | ooz o Data
to 20% fewer total memory accesses and up to 400% fewer DRAM PN Lot o]
accesses than hash-based tables because of the locality in virtual e : Large
address use. Ogb; Z‘;:.’;% " Data Page:
This paper is organized as follows. The next section provides the ' oo o
background for the rest of the paper. Specifically, it summarizes the oo I
relevant aspects of x86/x86-64 virtual-to-physical address transla- T R
tion. Section 3 describes the design space, identifying the essen-
tial differences between AMD’s Page Walk Cache, Intel's Paging-
Struc_:ture cacht_as,_and the new structures developed in this PaperFigure 2. An example page walk for virtual address b9,
Secthn 4 qgalltatlve!y compares these structgre;, and Secthn 5000, Oae, 0c2, 016). Each page table entry stores the
describes th's papers methodolqu_ for quantltatlvely comparing physical page number for either the next lower level page ta-
them. Section 6 presents quantitative simulation results of their ble page (for L4, L3, and L2) or the data page (for L1). Only

effectiveness as compared to one another, and Section 7 compares, pitsof the 40-bit physical page number are shown in these
the effectiveness of a radix tree page table with these structures tofigures for simplicity.

competing page table designs. Additionally, Section 7 examines
the interaction between the MMU caches and large pages. Sec-
tion 8 discusses the related work. Finally, Section 9 summarizes
this paper’s conclusions.

Figure 1: Decomposition of the x86-64 virtual address.

91 ppn: 829
12 ¥ 0c2[ppn:b12
/i 0c3]_ppn: 614

grows, additional index fieldse(g, L5) may be added, reducing
the size of thesefield.

An entry in the page table is 8 bytes in size regardless of its level
2. X86 ADDRESS TRANSLATION within the tree. Since a 9-bit index is used to select an entry at

All x86 processors since the Intel 80386 have used a radix tree every level of the tree, the overall size of a node is always 4KB,
to record the mapping from virtual to physical addresses. Although the same as the page size. Hence, nodes are commonly called page
the depth of this tree has increased, to accommodate larger physitable pages. The tree can be sparsely populated with nodes—if at
cal and virtual address spaces, the procedure for translating virtualany level, there are no valid virtual addresses with a particular 9-bit
addresses to physical addresses using this tree is essentially unindex, the sub-tree beneath that index is not instantiated. For exam-
changed. A virtual address is split into a page number and a pageple, if there are no valid virtual addresses with L4 indx03a,
offset. The page number is further split into a sequence of indices. that entry in the top level of the page table will indicate so, and the
The first index is used to select an entry from the root of the tree, 262,657 page table pages (1 L3 page, 512 L2 pages, and 262,144
which may contain a pointer to a node at the next lower level of the L1 pages) beneath that entry in the radix tree page table will not
tree. If the entry does contain a pointer, the next index is used to exist. This yields significant memory savings, as large portions of
select an entry from this node, which may again contain a pointer the 256 TB virtual address space are never allocated for typical ap-
to a node at the next lower level of the tree. These steps repeat untilplications.
the selected entry is either invalid (in essence, a NULL pointer in- Figure 2 illustrates the radix tree page table walk for the vir-
dicating there is no valid translation for that portion of the address tual addres®x00005¢8315cc2016. For the remainder of the
space) or the entry instead points to a data page using its physicalpaper, such 64-bit virtual addresses will be denoted_dsr{dex
address. In the latter case, the page offset from the virtual addresd.3 index L2 index L1 index page offsétfor clarity. In this case,
is added to the physical address of this data page to obtain the fullthe virtual address being translatedd®9, 00c, Oae, 0c2,
physical address. In a simple memory management unit (MMU) 016). Furthermore, for simplicity of the examples, only 3 hex-
design, this procedure requires one memory access per level in theadecimal digits (12 bits) will be used to indicate the physical page
tree. number, which is actually 40 bits in x86-64 processors.

Figure 1 shows the precise decomposition of a virtual address by ~ As shown in the figure, the translation process for this address
x86-64 processors [1]. Standard x86-64 pages are 4KB, so thereproceeds as follows. First, the page walk hardware must locate the
is a single 12-bit page offset. The remainder of the 48-bit virtual top-level page table page, which stores L4 entries. The physical
address is divided into four 9-bit indices, which are used to select address of this page is stored in the processor's CR3 register. In
entries from the four levels of the page table. The four levels of order to translate the address, the L4 index field (9 bits) is extracted
the x86-64 page table are named PML4 (Page Map Level 4), PDPfrom the virtual address and appended to the physical page number
(Page Directory Pointer), PD (Page Directory) and PT (Page Table). (40 bits) from the CR3 register. This yields a 49-bit physical ad-
In this paper, however, for clarity, we will refer to these levels as L4 dress that is used to address the appropriate 8-byte L4 entry (offset
(PML4), L3 (PDP), L2 (PD) and L1 (PT). Finally, the 48-bit virtual ~ 0b9 in the L4 page table page in the figure). The L4 entry may
address is sign extended to 64 bits. As the virtual address spacecontain the physical page number of an L3 page table page (in this

case042). The process is repeated by extracting the L3 index field Base Location| Index || Next Page

i)= . . 125 0 508
from the virtual address and appending it to this physical page num- 042 Ogi 125
ber to address the appropriate L3 entry. This process repeats until 613 0b9 042

the selected entry is invalid or specifies the physical page number
of the actual data in memory, as shown in the figure. Each page
table entry along this path is highlighted in grey in the figure. The
page offset from the virtual address is then appended to this phys- on At
ical page number to yield the data’s physical address. Note thatP29€ number of the page table page and a 9-bit index into it. Thentry
since page table pages are always aligned on page boundaries, th@en provides a 40-bit phys.|cal page number for the next lowelevel
low order bits of the physical address of the page table pages areP29¢€ table page. (Only 12 bits of the physical page numbers ashiown,
not stored in the entries of the page table. for simplicity.)
Given this structure, the current 48-bit x86-64 virtual address

Figure 3: An example of the contents of a UPTC. Each entry is tagged
with the address of a page table entry, consisting of the 40iphysical

space requires four memory references to “walk” the page table Base Location] Index || NextPage
from top to bottom to translate a virtual address (one for each level L2 entries 125 vae 508
of the radix tree page table). As the address space continues to

grow, more levels will be added to the page table, further increas- L3 enmes| 042 | 00c ” 125 |
ing the cost of address translation. A full 64-bit virtual address
space will require six levels, leading to six memory accesses per
translation.

Alternatively, an L2 entry can directly point to a contiguous and
aligned 2MB data page instead of pointing to an L1 page table page. Figure 4: An example of the contents of a SPTC. Each entry holds the
In Figure 2, virtual addres&0b9, 00d, Obd, 123f5d7) is same tag and data as in the UPTC.
within a large page. This large-page support greatly increases max-
imum TLB coverage. In addition, it lowers the number of memory
accesses to locate one of these pages from four to three. Finally, itdata cache. The page walker generates a physical address based
greatly reduces the number of total page table entries required sinceupon the page table page to be accessed and an index from the

coenses | [0] 0]

each entry maps a much larger region of memory. virtual address. This physical address is then fetched from the pro-
cessor's memory hierarchy starting with the L2 data cache.
3. CACHING PAGE WALKS Page table caches use this same indexing scheme. Elements are

While radix-tree page tables require many accesses to ’[ranslatet"’lgg(.ad with their ph_ysical address in the page t_able. These tags are
a single address, the accesses to the upper level page table entrietgIe size of the physmal page numbgr plus the size of.one page table
have significant temporal locality. Walks for two consecutive pages index. .Ll entries are not cached in any Of. the designs presented

in the virtual address space will usually use the same three upperhere (since the TLB itself caches those entries).

level entries, since the indices selecting these entries come from -

high-order bits of the virtual address, which change less frequently. 3-1.1 ~ Unified Page Table Cache (UPTC)

While the MMU does access the page table through the mem- The simplest design for a dedicated page table cache is a sin-
ory hierarchy, it only has access to the L2 data cache in at leastgle, high-speed, read-only cache for page table entries, tagged by
one major commercial x86 design [9]. Since the L2 data cache is their physical address in memory. Entries from different levels of
relatively slow on modern CPUs, accessing three upper-level pagethe page table are mixed in the same cache, all indexed by their
table entries on every page walk will incur a penalty of several tens physical address. Such a cache is analogous to a private, read-only
of cycles per TLB miss, even if all entries are presentin the L2 data L1 data cache for page table entries. However, like a TLB, coher-
cache. ence between this cache and the page table can be maintained by

Therefore, the x86 processor vendors have developed private,software with little overhead. AMD’s Page Walk Cache has this
low-latency caches for the MMU that store upper level page ta- design [9].
ble entries [9, 3]. In this section, we describe the design space and Figure 3 shows an example of the Unified Page Table Cache
provide a nomenclature for the different tagging and partitioning (UPTC) after the MMU walks the page table to translate the virtual
schemes used by these MMU caches. address@9, 00c, Oae, 0c2, 016). If the MMU subse-

MMU caches may store elements from the page table tagged quently tries to translate the virtual addre6®9, 00c, Oae,
by their physical address in memory, as a conventional data cacheOc3, 103), the page walk will begin by looking for the page table
might. We call such MMU cachegage table cachesExamples entry Ob9 in the L4 page table page (locate@538 and referenced
include AMD’s Page Walk Cachand the L2 data cache, although by the CRS3 register). Since this page table entry is present in the
it is not private to the MMU. Alternatively, MMU caches can be UPTC, it does not need to be loaded from the memory hierarchy.
indexed by parts of the virtual address, like a TLB. We call such This entry indicates that the L3 page table page has physical page
MMU cachestranslation cacheslIntel’s Paging-Structure Caches number 042. The same process is then repeated to locate the L2 and

are translation caches. L1 page table pages. Once the address of the L1 page table page is
For either of these tagging schemes, elements from different lev- found, the appropriate entry is loaded from memory to determine

els of the page table can be mixed in a single cachanffied the physical page address of the desired data.

cache), or placed into separate cachesp(i cache). Finally, each Without a page table cache, all four of these accesses to page

cache entry can store an entry from one level along the page walk,table entries would have required a memory access, each of which

or it can store an entire path gathcache). may or may not hit in the L2 data cache. In contrast, with the page

table cache, the three top entries hit in the private page table cache,
3.1 Page table caches and only one entry (the L1 entry) requires a memory access, which

The simplest example of a page table cache is the processor’s L2may or may not hit in the L2 data cache.

L4 index | L3index | L2index || Next Page
0b9 00c Oae 508

These searches can be performed in any order, and even in paral-
lel. In the above example, the cache can provide the location of the
appropriate L3 and L2 page table pages, but not the L1 page table

L3entries| OP° ooc \E page, as@b9, 00c, 0dd) is not present in the L2 entry cache.
Ultimately, the MMU would use theOp9, 00c) entry from the
. b 042 L3 entry cache because it allows the page walk to begin further
L4 entries
down the tree, at the L2 page table page.
Figure 5: An example of the contents of a STC. Each index is 9-bits, 3.2.2 Unified Translation Cache (UTC)

land lthi date: h(.)ldtsha :1(2)-b|t ?}hyS'catl pagtehnumb”etrhof th.e g_eXt mta?le Just as the page table caches can be built with either a split or a
.e\ﬁ]' Lg en nt”n teh Ctac erzutsh mLa40 on afithreeindicesan entry unified organization, a Unified Translation Cache (UTC) can also
in the L must match on two and the L4 on one. be built. Moreover, just like the UPTC, the UTC mixes elements

L2 entries

[47ndex | L3 index | L2 index || Next Page from all levels of the page table in the same cache.
0b9 00c Oae 508 Figure 6 shows the UTC after the MMU walks the page table to
0b9 00c XX 125 translate the virtual addre3{9, 00c, Oae, 0c2, 016). If
0bS XX xx 042 the MMU subsequently starts to translate the virtual addHs8,(

00c, 0dd, 0c3, 929), it will first look in the UTC for the

Figure 6: An example of the contents of a UTC. An “xx” means “don’t physical page numbers of the L1, L2 and L3 page table pages. As

care”. with the previous example that used the STC, the MMU finds two
matching entries in the UTC. Ultimately, the MMU decides to use
the UTC's second entry, which is an L3 entry that has the L4 and

3.1.2 Split Page Table Cache (SPTC) L3 indices b9, 00c) as its tag, because this tag matches the

An alternate design for the page table cache separates the IO‘fjlg)eongest prefix of the virtual address. Thus, the MMU can skip the

table entries from different levels into separate caches. Figure 4 L4 and L3 page table pages and start walking from the L2 page

illustrates a Split Page Table Cache (SPTC). In this design, eacht@ble page.

indjyidual entry contains the same tag a.nd data as it would in the 3.3 Translation-Path Cache (TPC)

unified page table cache. The primary difference is that each page . T

table level gets a private cache, and entries from different levels do Note that in the UTC example in Figure 6, the tags for the three

not compete for common slots. entries representing a single path down the page table all have the
same content. The L4 and L3 entries use less of the virtual ad-
3.2 Translation caches dress than the L2 entry does, but the fragments that they do use

As an alternative to tagging cache entries by their physical ad- are the same. Consequently, it is possible to store all three phys-

dress, they can be tagged by their indices in the virtual address. An/c@! Page numbers from this example in a single entry. In such a
L4 entry will be tagged by the 9 bit L4 index, an L3 entry with the Translation-Path Cach€TPC), a single entry represents an entire

L4 and L3 indices, and an L2 entry with the L4, L3, and L2 in- path, including all of the intermediate entries, for a given walk in-

dices. We call this device teanslation cachebecause it is storing stead of a single entry along that walk.

a partial translation of a virtual address. e T3 hdex T ndex T3 = =
With this tagging scheme, data from one entry is not needed to 0b9 00C Oae 047 T 125 1508

lookup the entry at the next lower level of the page table. All of the . = e T T

lookups can be performed independently of each other. In the end,

the MMU will select the entry that matches the longest prefix of Figure 7. An example of the contents of the TPC after the vir-

the virtual address because it allows the page walk to skip the mosttual address(0b9, 00c, Oae, 0c2, 016) iswalked. The

levels. TPC holds three 9 bit indices, as the translation caches do, but
)) all three 40-bit physical page numbers are stored for all three
3.2.1 Split Translation Cache (STC) page table levels.

Like an SPTC, the Split Translation Cache (STC) stores entries
from different levels of the page table in separate caches. However, The example in Figure 7 shows the TPC after the MMU walks
as shown in Figure 5, the STC uses a different way of tagging the the page table to translate the virtual addré&9(00c, Oae,
entries. The IntePaging-Structure Cachg8] exemplify the STC 0c2, 016). All data from that walk is stored in one entry. If the
organization. MMU subsequently starts to translate the virtual addr@&9 (

The example in Figure 5 shows the split translation cache af- 00c, Oae, 0c3, 929), the entry referencing the L1 page ta-
ter the MMU walks the page table to translate the virtual address ble page is discovered just as it would have been in the unified
(Ob9, 00c, Oae, 0c2, 016). If the MMU subsequently translation cache. Specifically, the MMU finds the entry in the
starts to translate the virtual addre§%9, 00c, 0dd, 0c3, cache with the tagDb9, 00c, Oae)and reads the physical page
929), it will attempt to locate the L1, L2 and L3 page table pages number508 of the L1 page table page from this entry.
in their corresponding caches using portions of the virtual address. If the MMU later starts to translate the virtual addre689,

The location of the L3 page table page would be stored in the L4 00c, 0de, Ofe, 829), this address shares a partial path
entry cache and tagged by the L4 indedh9). Similarly, the lo- (Ob9, 00c) with the previously inserted entry. Therefore, the
cation of the L2 page table page would be stored in the L3 entry translation-path cache will provide the physical address of the ap-
cache and tagged by the L4 and L3 indic€hq, 00c). Finally, propriate L2 page table page.

the location of the L1 page table page would be stored in the L2 en-

try cache and tagged by the L4, L3 and L2 indic€hq, 00c,

0dd).

3.4 Design space summary 4.2 Partitioning

In summary, the caches described in this section fit into the fol- MMU caches can either be unified or partitioned, or they can
lowing two-dimensional design space (annotated with the section store complete path information. The partitioning of the cache

number in which each design is described): determines how the entries of the cache are allocated to different
levels of the page table. This effectively determines how well the
Unified Split Path entries from different levels are isolated from each other.
Page Table Cach¢ 3.1.1 3.1.2][N/A The impact of the partitioning scheme largely depends on

Translation Cachg 3.2.2 3.2.1| 3.3

whether the application densely or sparsely utilizes its virtual ad-
dress space. For applications that densely use their virtual memory,

The unified page table cache (UPTC) is the design that appears in® few L4 and L3 entr_ies are heavily utilized ar_ld there is significant
modern AMD x86-64 processors. The split translation cache (STC) €use of the L2 entries. In contrast, for applications that sparsely
is the design that appears in modern Intel x86-64 processors. ThelSe their virtual memory, there will be_IlttIe _reuse_fc_)r L2 entries,
remaining three designs have been introduced in this paper. but a Iar_ger number of L4 and L3 entrles_wnl ethbI'F reuse. The

Note that there is no useful page table counterpart to the Partitioning strategy and replacement policy determine how these
translation-path cache. This is a direct result of the indexing €Ntries will compete for slots, which can have a significant impact
scheme. While a “path” of physical addresses could be stored as®n the effectiveness of the MMU cache. .
an MMU cache index, it would have to be searched sequentially For applications that_ densely use thelrwrtua! memory, there will
because the MMU cannot create a path of physical page numbers®® many more L2 entries than upper level entries in use. However,
directly from the virtual address. It must look up each physical page for a page table cache design, these upper level entries are critical

in turn. Therefore, storing complete paths would yield no benefit for translation performance. If a random replacement scheme is
over the other page table cache designs. used in conjunction with a unified cache, these important entries

can be frequently replaced, resulting in memory accesses to entries
at or near the top of the table. However, if entries from different
4. DESIGN COMPARISON levels are kept in separate caches, a random replacement policy is
All of the designs presented in the previous section are able to |ess detrimental.
accelerate page walks by caching information from the upper lev- For applications that sparsely use many gigabytes of virtual
els of the page table. However, these designs have differences inmemory, L2 entries will have very little reuse, and effective caching
their indexing, partitioning, coverage, and complexity. This sec- of L3 entries is critical. In a split entry cache, a static allocation of
tion discusses the effects of these differences. entries to each level must be made. If this allocation is optimized
. for small applications, it will have many more L2 entries than L3
4.1 Indexmg entries, harming performance in this situation. Moreover, if an ap-
The indexing scheme determines how the cache is searchedplication makes heavy use of large pages and limited use of small
Cache indices can be derived from the physical addresses of compages, the dedicated L2 entries will be of little or no use. In con-
ponents of the page table or they can be derived from the virtual trast, in a unified cache, the allocation happens dynamically, but
address and correspond to the levels of the page table. recently accessed L2 entries that will not be reused might evict L3
Page table caches use the physical addresses of the page tablentries that might otherwise be reused. A level-aware replacement
entries as indices. In fact, they operate identically to any physi- policy can help to avoid this.
cally indexed cache—a UPTC is essentially another data cache in The Greedy Dual algorithm is a popular content-aware replace-
the memory hierarchy dedicated to the page table. The MMU will ment scheme [25]. This algorithm will replace recently used entries
generate a physical address for the page table entry at each stagearly if they are easier to reload into the cache. This scheme can
of the page walk, and that address will be used as an index into thehe adapted for MMU caches by preferentially replacing lower-level
appropriate page table cache. While this leads to a simple design, itentries with upper-level entries, thus reducing conflict between en-
requires the cache lookups to occur in a top-down order. The resulttries of high and low reuse. While Greedy Dual is not an algorithm
of the L4 entry search is required before the L3 entry search can be-that can easily be implemented in hardware, it is possible to im-
gin, because the L4 entry gives the physical page number of the L3 plement a similar algorithm with minimal modification to an LRU
page table page, which is needed to generate the physical addresgache.
of the L3 page table entry. Similarly, the L2 search is dependent |n our modified LRU algorithm, entries from lower levels of the
on the result of the L3 search. In the case where the cache holdspage table are inserted into the LRU queue at a recency position
all three entries (L4, L3, and L2), the cache must be accessed thregyehind the most-recently-used position. If these lower level entries
times to generate the physical address of the L1 page table entry. are reused, they are promoted to the most recently used position.
In contrast, translation caches use components of the virtual ad-However, if they are not reused, the portion of the cache in which
dress as indices. For example, the TLB is an L1 translation cache ower level entries compete with upper level entries is small. These
that uses the virtual page number as its index. In general, for trans-positions can be fixed, for simplicity, or they can change to adapt
lation caches, the MMU uses a subset of the virtual page number asto different workloads. We proposevariable insertion-point LRU
the index. This allows the translation caches to be searched in anyreplacement policyhereby entries from lower levels of the cache
order (L4 first, L2 first, or in parallel). Thus, ona TLB miss, the L2 are inserted into a recency position below the most recently used
translation cache can immediately be searched. Upon a hit whichposition that is proportional to the current number of upper level
yields the L2 translation, the address of the L1 page table entry canentries stored. For example, if there are two L4 entries and six L3
be computed immediately. If no L2 translation is available, the L3, entries currently in the cache, a new L2 entry is inserted in the ninth
then L4, translation caches can be searched. Upon a hit, the pagenost recently used position in the cache.
walk would begin at that point in the tree. The path translation cache avoids these partitioning problems, as
each slot holds an entry from all levels. This prevents the com-
petition for slots while not requiring a static allocation of slots to

Unified Split Path

Table 1 shows the number of caches, tag bits per entry, and data

C 1 T—1) e
Page Table| T p—3 {p—3,...,p—3} N/A bits per entry that are needed for each organization. These char-
2 p—12 {r— 12l, o p— 12} acteristics are parameterized by the number of levels of address
I —1 T : L :
Translation | T || (1= 1) n {n,—1)-n} || ¢=1)n translation,/, the n_um_ber of bits in a_phy5|cal addrepsand the
D p—12 p—12,..,p—12} || 3(p —12) number of offset bits in a page table index for a particular level,

In x86-64 processors,= 4, p = 52, andn = 9, which leads to
Table 1: The number of caches (C), the number of tag bits per entry the values shown in Table 2.

(T), and the number of data bits per entry (D) for each design. It should be noted that for current architectural parameters, trans-
lation caches require significantly smaller tags. This will make a

- Unified Split Path translation cache smaller and more power efficient than an equiva-

Page Table| T 19 (49,49, 29} || A lent page table cache, as the CAM array is likely to dominate the
D 40 {40, 40, 40} cost of the structure.
C T 3 T

Translation | T 27 {9,18,27} 27
bl 40 {40,40,40} | 120 5. METHODOLOGY

The MMU cache architectures presented in Section 3 were eval-

Table 2: MMU cache parameters for x86-64 processors. We have used uated by running app”cation memory traces through amemory sys-

the architectural definition of physical address width, 52 lits [1]. Ac- tem simulator. The trace-based approach is warranted here for two

tual implementations may use fewer bits. reasons. First and foremost, the number of memory references re
quired for a page walk is effectively independent of all architec-

)]) tural parameters except for the MMU and the L2 cache organiza-
levels. However, since this cache may hold many paths with the tjon, A cycle-accurate simulation would have presented a more
same upper level entries, its effective capacity for holding upper |imited view of the differences for a single point in the processor
level entries is less than three equally sized split entry caches. design space. Second, from a practical standpoint, it would have
4.3 Coverage been nearly impossible to run the types of large memory footprint

applications that benefit most from these structures on a slow cycle-
Characterizing the coverage of an MMU cache is not straight- gccurate simulator.

forward. In particular, the exact meaning of coverage for an MMU . .
cache must first be considered. For example, suppose an addres®.1 Application Memory Traces
translation hits on an L3 entry in a page table or translation cache The AMD SimNow [8] platform simulator was used to run var-
but does not hit on an L2 entry. In this case, the translation was jous benchmarks under FreeBSD 8.0-Release for x86-64. A cus-
accelerated by the MMU cache, but nonetheless required a mem-tom analyzer plugin to SimNow records each virtual memory ac-
ory access to fetch the page table’s L2 entry. Thus, it is arguable cess made by the simulated system. This trace includes all mem-
whether or not the MMU cache provided coverage. We take the ory loads and stores made by the tested operating system and pro-
strict position that coverage means that no memory accesses wergesses, but it does not include instruction or page table loads. TLB
required to fetch L4, L3, or L2 page table entries. and MMU invalidations are included in the trace by monitoring the
In general, with the same number of entries, translation cachesvalue of the CR3 register, which must change on a context switch.
are able to cover a larger portion of the address space than pagerinally, the plugin counts the total number of instructions executed
table caches. The reason is that a translation cache can make morguring the trace.
efficient use of its entries than a page table cache. For a page ta- Virtual memory access traces were captured from these appli-
ble cache to provide coverage it must simultaneously hold an L4, cations, including the SPEC CPU2006 floating-point suite [14],
L3, and L2 entry, whereas a translation cache can provide coverageSPECjbb2005 [21], ASCI Sweep3d [2] and HPCC RandomAc-
with only an L2 entry. In other words, the translation cache may cess [11]. However, not all of the benchmarks in the SPEC
be able store additional L2 entries in place of the L4 and L3 entries CFP2006 suite could be compiled with the standard tool chain in
that are required to provide coverage in the page table cache. FreeBSD 8.0, so soplex, calculix and wrf are not included in this
When the application is simply too large for the MMU cache to study. SPECjbb2005 was run on one warehouse, and Sweep3d was
provide full coverage, the unified caches with intelligent replace- run on a 150x150x150 grid.
ment policies, the split caches, and the TPC are able to accelerate . .
translations for more of the address space than the unified cache®.2 Memory System Simulation
with conventional replacement policies. This is due to the factthat A custom memory system simulator was built to simulate the
the former caches upper level entries, which provide partial transla- various MMU cache designs. The simulator includes an MMU that
tion for larger regions, are less likely to be evicted in favor of lower closely resembles the L1 and L2 TLBs in the AMD Opteron [9].
level entries. Since these effects are highly dependent on workload,it consists of a 64-entry, fully-associative L1 TLB with random
the relative hit rates of the cache designs are studied experimentallyreplacement, and a 512-entry, 4-way set associative L2 TLB with

in Section 6. LRU replacement. Furthermore, the simulator is able to model all
. five cache designs described in Section 3. The simulator stores tags
4.4 CompIeX|ty (virtual addresses), but not data (physical addresses), to eliminate

All of the organizations are effectively fully associative caches, any operating system dependent behavior from the simulation. This
which can be implemented by a CAM array to match the tags and simplifies the design of the simulator and generalizes the results.
a RAM array to store the data entries. However, the different cache Unless otherwise specified, the simulator divides all memory into
organizations have different tag and data widths, and will poten- 4KB pages.
tially require differing numbers of entries to achieve similar hit A 1MB L2 cache was included in the model, simulated using the
rates. These factors will lead to different implementation complex- Dinero IV cache simulator [12]. Both application data accesses and
ities for the different organizations. MMU page table accesses are simulated using a shared L2 cache

DRAM accesses/Walk

model. In general, instruction loads are not instrumented are not Workload | 1nsiwalk | Memwalk | 2MB 1MB B12KB

included in this study. The cache parameters were based on the bwaves 36377 18381 1026 1044 1062
same AMD Opteron processor that was the basis for the TLB pa- gamess| 37927.8 16905.0| 1.1 1.1 11
rameters. The L1 cache was not simulated, since the page walk milc 202.3 83.1 3.9 3.9 4.0
hardware does not use it on the Opteron. zeusmp| 3105.2 562.0| 770 77.8 79.0

While our simulation environment did not permit us to directly gromacs| 25399.1| 12025.0| 422 554 69.5

cactus| 3916.9 2919.4| 28.7 30.2 31.9
leslie3d 4185.2 1679.8| 67.5 70.5 72.0
namd | 49024.9 18498.7 9.0 12.3 16.2

measure power and system performance, the reduction in mem-
ory accesses we directly measure here should translate directly into

reduced interconnect power consumption and latency. Recall that deal | 29235.3 10046.7| 123 145 16.9
previous work has shown the uncached system performance impact povray | 38328.8 19498.9 1.9 1.9 1.9
of unvirtualized TLB misses to be up to 14% for nominally sized Gems| 50817.5 19447.8| 1.4 1.4 1.4
applications [9] and up to 50% for large applications [19]. tonto | 30414.8| 137116 45 7.2 28.8
lbm 1844.5 908.1| 975 1017 106.7

5.3 Synthetic Application Memory Traces sphinx3 | 1858.2 5744| 263 286 302
) L . (avg) [19992.7 8503.2| 340 365 40.4

To study the behavior o_f an application that uses more virtual specjbb 351.0 162.0 >4 37 ;]
memory than we can practically trace on our real machines, a trace Sweep3d| 6098.6 3161.3| 819 839 85.4

synthesizer was developed that simulates the memory access pat-

tern of an in-memory database, performing a hash join. Such joins Table 3: The frequency of TLB misses for each workload,

are common, and the performance of large joins is representativeshown as the number of instructions, memory accesses and

of overall database performance [6]. DRAM accesses between TLB misses. These results are shown
The simulated join is an inner join on two equally sized tables, A for three different L2 data cache sizes and the TLB configura-

and B. The hash join process starts by creating a hash table containtion described in Section 5.2.

ing the entries of B, using an open addressing collision resolution

scheme. The database then iterates through A, checking to see if

each entry is present in the hash table. The result is then placed iNtor each of the SPEC CEP2006 benchmarks, the SPEC JBB2005

an qutput tablg [13]'. Java server benchmark and the ASCI Sweep3d benchmark. Specif-

Since the simulation is designed to scale to arbitrary sizes, the: . .

. i e . ically, the table shows the average number of instructions, program
simulation works probabilistically rather than operating on a real

. > ; memory accesses and program DRAM accesses (L2 data cache
data set. First, an element is read from the region of memory hold- _ . . .
) . g misses) that occur between TLB misses. The number of instruc-
ing table A. Then, a random element is read from the region of

. tions issued between TLB misses varies from tens of thousands for
memory storing the hash table, since the hash function will uni- . . -)
T . compute-intensive workloads to hundreds, for data-intensive work-
formly distribute accesses throughout the table. After the first el-

) ; . loads. For SPECjbb2005, less than five DRAM accesses are made
ement is read, a second element is sometimes also read, based on

. - - - etween TLB misses. For data-intensive workloads that may be
the probability of a hash collision. The collision probability was
. g . . memory bottlenecked, the DRAM accesses related to page walks
derived from the expected collision chain length [17]. Finally, an

. . . re significant.
elgment is written to the result table, and the process repeats itself® Table 4 compares the behavior of the different MMU caches.
with the next consecutive element of table A.

For each kind of MMU cache the table shows how many times the
MMU cache, the L2 data cache and DRAM are accessed per TLB
6. CACHE DESIGN SIMULATIONS miss under each of the benchmarks. All caches are using a least-
This section evaluates the five different MMU cache organiza- recently-used replacement policy. In these simulations, the unified
tions using a wide variety of applications. The TLB miss penalty, and path caches have 24 entries and the split caches3havat
structure sizing, and replacement policies are explored. The re-entries. While there are some outliers, most of the applications
sults show that the unified translation cache with a modified LRU exhibit similar behavior.
replacement scheme is the best design for the entire range of appli- As a baseline, Table 4 also presents results with no MMU cache.
cations. For the small benchmarks, this cache design is able to re-As expected, with no cache there are four memory accesses per
duce the number of memory accesses required per TLB miss fromwalk. Interestingly, there are only 0.15 DRAM accesses per walk
4 without a dedicated cache to 1.13. It also adapts dynamically to for SPEC CFP2006, meaning that there is a 96% hit rate for page
large applications, avoiding the conflicts present in traditional uni- table entries in the L2 data cache. This number varies from appli-
fied caches without the static partitioning required in split caches. cation to application, but it never drops below 90%. This demon-
6.1 TLB miss penalty féf\st:s that page table access for these applications has very high
The purpose of any MMU cache is to lessen the penalty of a Adding any MMU cache drops the average number of mem-
TLB miss and the cost of walking the page table. This penalty can ory hierarchy accesses per walk from 4.00 to no more than 1.13
be broken down into the number of accesses to the private MMU (0.99+0.14) for SPEC CFP2006. Note that DRAM accesses only
cache and the number of memory hierarchy accesses required pedecrease approximately 7%, from 0.15 to 0.14. This means that
TLB miss. Without a private cache, there will be four memory most of the avoided memory accesses come out of L2 hits, not
hierarchy accesses per walk, one per level. These memory aecesseDRAM accesses. The decrease in TLB miss latency from a MMU
can be further broken down into L2 data cache hits and DRAM cache with these applications comes from the decreased access la-

accesses, which are far more costly. tency of an MMU cache as compared to the L2 data cache, not an
L improved hit rate. For Sweep3d, there is so much locality in virtual
6.1.1 Small Memory Applications address use that memory accesses per TLB miss is further reduced

Even applications that use a modest amount of memory can haveto 1.07.
frequent TLB misses. Table 3 shows the frequency of TLB misses Since these caches do not store L1 page table entries, this result

No Cache UPTC (24 entry) SPTC (3x24 entry) UTC (24 entry) STC (3x24 entry) TPC (24 path)
S L2 DRAM S L2 DRAM S L2 DRAM S L2 DRAM S L2 DRAM S L2 DRAM
bwaves | - 3.72 0.28 | 298 0.82 025 | 299 0.80 024 [1.06 0381 0.26 | 1.03 0.80 0.24 | 1.03 0.80 0.23
gamess| - 3.95 0.05 | 294 1.13 0.05 | 294 1.13 0.05 | 1.15 1.3 0.05 | 1.15 1.13 0.05 | 1.15 1.13 0.05
milc | - 3.90 0.10 | 3.00 0.91 0.10 | 3.00 091 0.09 | 1.01 091 0.09 | 1.00 0.91 0.09 | 1.00 091 0.09
zeusmp| - 3.81 0.19 | 299 0.85 0.17 | 299 0.85 0.17 | 1.02 0.85 0.17 | 1.02 0.85 0.17 | 1.02 0.85 0.17
gromacs| - 3.80 020 | 296 091 0.20 | 296 091 0.20 | 1.08 0.90 0.20 | 1.08 0.91 0.20 | 1.08 091 0.20
cactus| - 3.84 0.16 | 296 1.12 0.16 | 299 0.98 0.15 | 1.23 1.10 0.15 | 1.13 0.98 0.15 | 1.13 0.99 0.15
leslie3d | - 3.79 021 | 298 0.88 0.20 | 299 0.85 0.19 | 1.06 0.88 0.20 | 1.04 0.85 0.19 | 1.04 0.86 0.19
namd | - 3.86 0.14 | 288 1.15 0.13 | 288 1.14 0.13 | 1.23 1.15 0.13 | 1.23 1.14 0.13 | 1.23 1.14 0.13
deal | - 3.89 0.11 | 293 1.07 0.11 | 293 1.07 0.11 | 1.15 1.07 0.11 | 1.15 1.07 0.11 | 1.15 1.07 0.11
povray | - 3.92 0.08 | 292 1.10 0.08 | 292 1.10 0.08 | 1.15 1.10 0.08 | 1.14 1.10 0.08 | 1.14 1.10 0.08
Gems| - 3.93 0.07 | 289 1.18 0.07 | 2.89 1.18 0.07 | 1.20 1.18 0.07 | 1.20 1.18 0.07 | 1.20 1.8 0.07
tonto | - 3.93 0.07 | 294 1.07 0.08 | 294 1.07 0.08 | 1.12 1.07 0.08 | 1.12 1.07 0.08 | 1.12 1.07 0.08
lbm | - 3.79 0.21 | 299 0.83 0.19 | 299 0.83 0.18 | 1.02 0.83 0.19 | 1.01 0.83 0.18 | 1.01 0.83 0.18
sphinx3 | - 3.76 0.24 | 299 0.80 0.23 | 299 0.79 0.23 | 1.02 0.80 0.23 | 1.02 0.79 0.23 | 1.02 0.79 0.23
(avg) [- 3.85 0.15 [295 0.99 0.14 | 296 0.97 0.14 | 1.11 0.98 0.14 | 1.09 0.97 0.14 | 1.09 0.97 0.14
specjbb [- 3.83 0.17 | 298 0.97 0.17 | 3.00 0.93 0.17 | 1.14 0.97 0.17 [1.11 0.93 0.17 | 1.11 0.95 0.17
Sweep3d| - 3.77 0.23 [295 1.01 0.22 | 298 0.87 0.20 | 1.13 0.94 0.21 | 1.07 0.87 0.20 | 1.07 0.88 0.20

Table 4: The number of caching structure accesses (S), L2 datache hits (L2), and DRAM accesses (DRAM) per TLB miss for the
various LRU cache designs over the SPEC CFP2006, SPECjbb2008daSweep3d benchmarks.

is very close to the minimum number of memory accesses per TLB

miss of 1.00. On these applications, all the caches have similar hit - gg::i O eneies)
rates. In nearly all TLB misses, all the MMU caches can provide 1.0t -- Unified (n entries)

the physical page number of the L1 page table page without having
to do any memory accesses. From here, the L2 cache still provides
most of the L1 entries at a hit rate of 88% (only 0.14 of the 1.13
memory accesses are DRAM accesses). These hits come from the
fact that the L2 cache is much larger than the MMU caches and can
store eight entries in a single cache line.

One benchmark{ ont o, has more DRAM accesses when an
MMU cache is used. However, the rounding in Table 4 exaggerates | o -

o
©

o
>
\
\
\
\

L3 page table hit rate
o
(o))

this effect. The actual increase in DRAM accesses is only 0.001 02 A

per TLB miss. The MMU cache changes the access pattern to the T

L2 data cache, so page table entries may be replaced sooner than % 5 10 15 20 25
they would be without an MMU cache, slightly increasing DRAM Cache size (n entries)

accesses.

SPECjbb has low address locality at a page and cache line granu-rigure 8: Hit rate compared for the caches with the database join

larity compared to other small memory applications leading to high gimyjation using a 16GB hash table. The different split and uified
TLB and cache miss rates. However, there is still enough locality designs have equivalent coverages.

in upper level bits of the address to allow reasonably high MMU

cache hitrates. On this workload, 2.87 of the three upper level page

table entries are still served by the MMU cache, leaving 0.99 and

0.14 accesses for the L2 data cache and DRAM respectively. Theseout caching L2 entries is of little or no benefit. For a unified cache,

g.14D%RA?AMaigggzzzsbgfvzgle_r?ﬁ;sn?irs(aszl'sgtr]tlg(t:igtrﬁ:?:gr?]re?otor:]r?\ a TLB miss that hits on an L3 entry but not an L2 entry will load a
: prog new L2 entry into the cache. With LRU replacement, the cache will

exg(i:#éf?f:(tas'sﬂf.caches all provide high hit rates, their primary dif- have about the same number of L2 and L3 entries. The TPC aI;o
ference is in the number of accesses to the cach,e required per walkkeeps track of an L.2 entry for each L3 entry stored, b.Ut |tldoes soin
Since the translation and path cache search for L2 entries first theythe same a_ssomatlve ent(y. Therefore, for such appl!catlons, aTpPC
are typically only accessed one time per TLB miss. This redL,Jces of n paths is roughly equwalen.t toa UPT(.:Z.D.f " entrlgs. When
both latency and power consumption. The page téble caches arethe TPC_ becom(_es large, there is the possmll_lty that different ston_ed
accessed an average of three times pér walk, since they must wallpathS will contain the same L3 entry, reducing hit rate. The split

; . ' . caches do not exhibit this effect, so once the cache is large enough
down the page table. If the size of the virtual address space is ex-

panded by adding an additional level, this penalty will increase to hold all L3 entries i_n use, th(_are Is a 100% hit rate._ .
! ' A database hash join running over a 16GB region (Figure 8)

. demonstrates this scaling. Here, to have a 50% hit rate on the L3

6.1.2 Large Memory Applications page table, a 22 entry unified cache is required, while only an 11
In contrast to the results for small memory applications, the dif- path TPC, or 8 x 11 entry STC is required.

ferent MMU caches have substantially different hit rates for ap- An application using many terabytes of virtual memory would
plications with random access patterns over gigabytes of virtual only have high reuse on L4 page table entries, causing 2/3 of uni-
memory, such as an in-memory database hash join or HPCC Ran-ied cache entries to be wasted, instead of just 1/2 for the 16GB
domAccess. For these applications, the reuse of lower level pageapplication. This is because for every L4 entry stored, an L3 and an
table entries is low, and there are many upper level page table en-L2 entry are also stored, which are effectively wasted. This causes
tries in use. Consequently, caching as many L3 entries as possiblethe TPC to be equivalent to a unified cache of three times the size
each of which covers a 1GB region of virtual memory, is critical, for such workloads.

1.0 : — 1.0 :
— split/Path [— split/Path
-- uTC -- uTC ——=
0.8 UPTC 0.8 UPTC /,
[0} Q ’
< e ’
Zo0.6 Zo.6 o
o @ .
Q Q
© 8 .
%0.4 Lo0.4r -
g g
~ ~ R
— 1 P
0.2 0.2f
0.9 5 15 20 00— 3 10 15 20
Cache size (entries) Cache size (entries)
Figure 9: Hit rate for the L2 table for ASCI Sweep3d. This application Figure 10: Hit rate for the L2 table alone for the Cact us ADMcompo-
is very sensitive to sizing. Note that size represents peevel size (all nent of SPEC CPU2006.
three levels holdn entries) for the split cache included in Figures 9-11.
Cache| LRU | Random]|| Increase
- : . UPTC | 0.61 1.00 63%
6.2 Sizing considerations ute | os3| o079 49%
Appropriate sizing of caches is critical for hit rate in many ap- TPC | 051 | 0.65 28%
plications. The ability to not store levels that are skipped in the SF_’rTC 0-51 0.64 553’
translation cache allows them to be smaller for a given hit rate. Ad- STC | 05 0.63 3%

ditionally, the fixed allocation of entries for each level in the split
cache designs demands that all levels be large to properly adap
to differing workloads. The TPC and unified caches dynamically
allocate entries and adapt well.

ASCI Sweep3d operates on a set of different memory regions.
When the first is processed, it moves to the next, and so on. After
processing the last region, the program wraps around to the first,
and the cycle repeats. If the cache is not large enough to hold all Table 6.3 shows the impact of using a random replacement
the regions, entries corresponding to earlier regions are pushed ouscheme on the number of MMU cache misses (measured by the
before they are used again, and hit rate is very poor (Figure 9). number of required memory accesses to locate upper level page
Since upper levels of the page table are skipped in the translationtable entries). While all structures have a lower hit rate using a
cache, the UTC can be slightly smaller than the UPTC. random replacement scheme, the unified designs are much more

For the small memory applications, there are relatively few upper reliant on an LRU replacement scheme.
level page table entries that are in use. As aresult, the hit rate of the The primary problem with the unified cache designs for the large
unified caches holding entries only slightly trails that of the split applications is that entries with high reuse are evicted to make room
caches, which hold a total 8fx n entries. In this example (Figure for entries of low reuse. For example, in the database join the LRU
10), a unified page table cache holding 23 entries is equivalent to aunified caches hold a relatively useless L2 entry for every useful
split cache holding x 19 = 57 entries. Only four entries fromthe L3 entry in the cache. If a content-aware replacement scheme is
unified cache are stored in upper levels of the split caches. Theseused, this problem can be significantly reduced. If the Greedy Dual
entries are combined with lower level entries in the TPC, allowing algorithm is implemented in the UTC instead of using LRU, the
a 19 path TPC to be equivalent to the 23 entry unified cache. size required for 90% L3 entry hit rate in the 16GB database join is

While these applications use more lower level entries than upper reduced from 52 to 30 entries.
level entries, having small upper-level caches in a split cache dra- Using our modified LRU replacement scheme (described in Sec-
matically reduces hit rate for large applications. If the split cache tion 4.2) with fixed insertion points, this algorithm actually has a
is reduced in size t@ x 8 entries to match the total size of the higher hit rate than Greedy Dual for the database benchmark. Only
unified cache, the L3 table hit rate in the database benchmark is re-23 entries are required for 90% hit rate. However, the fixed inser-
duced from 99% to 44%. Skewing the distribution of entries from tion point for L2 entries reduces hit rate significantly for some other
higher levels to lower levels will further impact hit rate. Therefore, applications, such as Sweep3d. The L2 entries used by Sweep3d, if
it is imperative that all levels of a split cache be large, resulting in they are inserted near the least recently used position, are replaced

tTable 5: The average number of misses per walk for random and
LRU replacement, normalized to Random UPTC (lower is bette), and
the relative increase in misses using random replacement evLRU re-
placement.

considerable area overhead. before they are reused resulting in a near zero hit rate.
. Using the variable insertion-point LRU scheme solves this. For
6.3 Replacement policy SPEC CFP2006, SPECjbb2005 and Sweep3d, VI-LRU has a hit

In the unified caches, entries of high reuse (upper level entries) rate that is equal to or slightly greater than standard LRU. For the
are mixed with entries of lower reuse (lower level entries). This database join, where there are many L2 entries to cache, VI-LRU
causes the cache to be relatively sensitive to the LRU replacementadapts far better than other replacement schemes. Only 16 entries
policy which ensures that frequently accessed components (L4 andare required for 90% hit rate in the join benchmark, as opposed
L3 entries) are not evicted. In the path and translation caches, thesdo 52 for standard LRU (Figure 11). The VI-LRU cache nearly
upper level entries are skipped, so they do not need to be protectedeliminates the conflict between levels seen in the unified cache, and

‘ ‘ Uncached TPC
Unified (VI-LRU) Page Size| 4KB 2MB 4KB 2MB
Split L2 Hits 290 292 | 1.11| 1.15
1.0r Unified (LRU) DRAM 1.10| 0.06| 1.09| 0.06

o Unified (Greedy)
c 0.8 IPT (1) IPT (2) IPT (16)
= Page Size| 4KB | 2MB | 4KB | 2MB | 4KB | 2MB
o L2 Hits 0.01| 000| 1.16| 1.16| 0.55| 0.54
§ 0.6 DRAM 1.29| 129 1.14| 1.14| 1.48| 1.49
&
3
2

0.4f 3 Table 6: L2 hits and DRAM accesses to the page table per walk
for a radix tree page table for the 16GB database join bench-
02f . LT 1 mark. Results are shown for an uncached radix tree, a cached
/o - radix tree, and a half-full inverted page table with various num-
0.0 L ‘ ‘ ‘ ‘ ‘ bers of clustered translations per tag.
0 5 10 15 20 25 30

Cache size (n entries)

Compounding this issue is the fact that references into the hash
table show no spatial locality. Whereas consecutive pages in virtual
memory are usually mapped by consecutive entries in the radix ta-
ble, they are not usually mapped by consecutive entries in a hash
table. Since there is usually locality in the access pattern of L1
page table entries in a radix table, these entries are much more ef-
fectively cached by the L2 data cache than the entries of the hashed
table are. For the SPEC CFP2006 applications examined earlier,
7. ALTERNATE PAGE TABLE FORMATS only 44% of the 1.2 accesses/walk are served by the L2 data cache.

We compared the memory access behavior of the cached pageOverall, the inverted page table increases the number of DRAM
table with its biggest rivals, hash-table based Inverted Page Tablesaccesses per walk lmver 400%
and direct-mapped Translation Storage Buffers. These structures Spatial locality can be increased by storing multiple adjacent
are attractive since they contain only one level, and are thereforetranslations with a single tag, as usediustered page tablg23].
insensitive to address space size. However, the unavoidable presThis technique also reduces the overhead (virtual address tag and
ence of hash and structural collisions, low access locality and their chain pointer) for the hash table. However, for this technique to
inability to handle multiple page sizes efficiently cause them to re- be effective each virtual tag must be associated with many transla-
quire far more memory accesses than a cached radix table. tions. This means that some translations will need to load multiple

cache lines. Additionally, the frequency of hash collisions is not
7.1 Hashed page tables reduced over a standard inverted page table.

We have shown that MMU caches can significantly reduce the Even if the virtual address space is used without locality, as in the
overhead of using a radix tree page table, however the possibility database join, the radix tree page table still requires fewer DRAM
remains that the radix tree page table itself should be replaced. Theaccesses than a hashed page table. Table 6 shows the memory use
traditional competitor to the radix tree page table is the inverted per TLB miss for a join using a 16GB hash table. With 4KB pages,
page table, which uses a hash table to store a large and sparselyhe radix tree page table requires fewer DRAM accesses/walk than
used address space efficiently [15]. These designs are usually seethe inverted page table until a 48GB inverted page table is used.
as superior to a multi-level table, because they only need to be ref- For this application, clustering does improve L2 cache hit rate
erenced once, whereas the radix table requires one access per levesince the page table is smaller. However, the tag and data often lie
However, hash collisions are unavoidable, so many accesses mayn different cache lines, which requires an increase in the total over-
require more than one reference to follow a collision chain. all memory references required to perform a translation. Matching

Additionally, we have shown in this paper that MMU caches can the total cluster size to the size of a cache line improves this. How-
reduce the number of memory accesses per walk to nearly one asver since cache line size may change from implementation to im-
well. To compare the cached radix table against an inverted pageplementation, the appropriate cluster size may change as well.
table, a simulator was constructed that maintains and references a For larger applications such as this, large page support becomes
hash table storing all the memory locations used during a process’important. When it comes to supporting the simultaneous use of
lifetime. The hash table used closely models that used by the Intel multiple page sizes, radix trees have an advantage over inverted
Itanium [4]. The number of accesses to this table were counted, aspage tables. With the radix tree, if 2MB pages are used for map-
well as the number of such accesses that hit in the L2 data cache. ping most of the virtual address space, the entire page table can

When the hash table contains twice as many buckets as there arde cached in the L2 data cache, because the 2MB page mapping
pages to store, the hash table walker references approximately 1.2akes the place of an L2 entry in the page table and eliminates the
locations per TLB missregardless of benchmark or access pat- need for an entire L1 page table page (see Figure 2). This reduces
tern. This number comes from the average length of a collision the number of DRAM accesses per walk dramatically for the radix
chain, which is a function only of the fullness of the hash table if a table designs and also the number of overall memory hierarchy ac-
sufficiently uniform hash function is used [17]. This number com- cesses to below that seen in the inverted page table, as shown in
pares poorly to the average number of L2 and memory accessesTable 6.
required per walk of the SPEC CFP2006 applications using page In contrast, the simultaneous use of large and small pages does
table caching of 1.13. While the hashed page table is insensitive not reduce the size of an inverted page table, and so its memory
to address space size, it is unable to take advantage of the greahccesses do not change. In essence, the hash function must take into
locality seen in virtual address space usage like MMU caches can. account the size of the virtual page, but it cannot know the page’s

Figure 11: An n entry unified translation-cache with VI-LRU has
nearly the same hit rate as & x n split cache.

ann entry VI-LRU UTC has nearly the same hit rate &an entry
split translation cache.

sizea priori if multiple page sizes are in use. Consequently, for a own page table. In effect, the virtual machine monitor’s page ta-
large page, the inverted page table must still have a page table entnble is used to create a private guest physical address space for the
corresponding to each of the small pages that make up the largevirtual machine. Thus, the guest’'s page table is used to translate
page. Each of these page table entries will, however, designate therom virtual addresses to guest physical addresses, and the virtual
mapping as part of a large page, and the TLB will be loaded with a machine monitor’s page table is used to translate from guest physi-

single large page mapping. cal addresses to host physical addresses. Nested paging with radix
. tree-based page tables leads to a two-dimensional page table walk
7.2 Translation Storage Buffers because every access to the guest’s page table during a page walk

The SPARC architecture has traditionally handled TLB misses may result in a page walk on the virtual machine monitor's page
in software. To accelerate TLB misses, the processor supports atable.
software-managed, direct-mapped cache of translations called the Bhargaveet al. showed that an extended version of AMD’s Page
Translation Storage Buffgb]. On a TLB miss, the CPU derivesan Walk Cache could effectively cache most of the upper level page
index from the lower entry bits in the virtual address and checks to table entries in both the guest’s page table and the virtual machine
see if a corresponding entry is present in the TSB. Although earlier monitor’s page table [9]. In addition, they proposed the introduc-
processors performed this TSB lookup in software, some current tion of a Nested TLBINTLB) that caches guest physical to host
processors implement it in hardware. Like the inverted page table, physical translations. In effect, a hit in the NTLB allows the two-
a TSB entry stores a tag (a virtual page number) and a translationdimensional page walk tkipthe page walk on the virtual machine
(a physical page number). Unlike the inverted-page table, there is monitor’s page table. Thus, if every access to the guest’s page table
no chaining. If a translation is not present in the TSB, a software hits in the NTLB, then the number of accesses to the Page Walk
fault occurs. Cache and the memory hierarchy is the same as it would be for
To compare this design to the radix-tree design, a TSB simulator native execution.
was also developed. Like the inverted page table simulator, the The translation and path caches presented in this paper could
TSB simulator counts L2 and DRAM accesses per TLB miss. In also be extended to support nested paging. Moreover, the NTLB is
addition, the TSB simulator also counts software faults that occur not inextricably tied to the Page Walk Cache or page table caches
when a translation is not present in the cache. Traces are simulatedn general. A NTLB could be beneficially combined with transla-
in a two-pass manner. The first pass populates the cache with thetion and path caches. A NTLB hit allows the two-dimensional page
translations present in the trace. The second pass actually simulatesvalk to skip the entire page walk on the virtual machine monitor’s
accesses to the cache, counting hits and misses. This ensures thgiage table for a single guest page table access, but not the accesses
only conflict misses are counted, providing a lower-bound for cache to the upper levels of the guest’s page table. This requires a trans-
misses. lation or path cache. Moreover, a translation or path cache could
Our results show that the TSB uses the L2 data cache poorly asaccelerate page walks on the virtual machine monitor's page table
compared to the radix-tree. For example, #leaisnp component when a NTLB miss occurs.
of the SPEC CFP benchmark generates 0.058 DRAM accesses per Talluri and Hill recognized the importance of efficient use of spa-
TLB miss using the radix-tree with an MMU cache whereas the tial locality in the page table and developed their clustered and sub-
TSB required 0.078 DRAM accesses per TLB miss. This increase block page tables to increase the spatial locality found in inverted
is due solely to the larger size of a TSB entry as compared to a page tables [22, 23]. We simulate a similar system in Section 7.1
radix tree page table entry. The TSB entry contains a tag and data,and compare it to both traditional inverted page tables and cached
whereas the radix-tree only needs to hold data. This increased sizeadix tree tables.
reduces the number of entries that will fit in a single L2 cache line McCurdyet al. previously investigated the importance of the L2
from eight to four. data cache in storing page table entries [19]. They show that appli-
In addition, the TSB also generates 0.024 software faults per cations that use large pages can show improved performance even
TLB miss using the current architectural maximum size of 1 inthe face of decreased TLB hit rates. This is due to the shallower,
megabyte. These are likely to be extremely expensive, generat-and therefore smaller, page table when using large pages.
ing not only data cache misses, but also instruction cache misses. Jacob and Mudge [15] show that MMU related memory accesses
While increasing the size of the L2 data cache would reduce the can cause higher than expected cost due to user program and data
number of L2 cache misses, it would not reduce the number of being evicted by page table entries. This effect further emphasizes

software faults. the importance of efficient storage of page table entries.
Saulsburyet. al. propose a prefetching scheme for TLBs that
8. RELATED WORK preload pages based recently accessed pages [20]. Unlike the tech-

niques presented in this paper, their techniques require page table

modification. More recent work [16, 10] has proposed architec-

was targeted at accelerating software TLB miss handling. Bala trally mdc_ependent prefectch_lng techniques b.aSEd on access pat-
terns and inter-core cooperation. These techniques all focus on re-

al. introduced a software cache for page table entries [7]. This ducing the freauency of TLB misses while our work focuses on
cache is read by the software page fault handler and manages en- 9 d Y

tries in physical memory to avoid cascading TLB misses that come redt_Jcmg the cost of servicing a TLB miss. Both techniques could
? L easily be combined.
from reading page table entries in virtual memory space. Wu and

Zuanepoel xpanded it ardwarelSoitare desin 23] They 1 175 O SACe, 5 ol es-base e fabi ca e o
propose a single level translation cache to handle only L2 entries. P g€, sp y-pop

If a translation hits in their structure, the MMU loads the L1 entry dr_ess space. Liedtke |ntrqducémarded Page Table address

. - S > _this problem [18]. In particular, Guarded Page Tables allow for
directly, as in the caches presented in this paper. If the translation . X - .
misses, a software fault is triggered path compression. If there is only one valid path through multiple

In a virtualized system using nested paging, both the guest vir- levels of the tree, then the_entry prior to this path can be configured
. . - . . . such that the page walk will skip these levels.
tual machine and the underlying virtual machine monitor have their

Some early work on caching page table entries was done be-
fore the introduction of AMD and Intel's MMU caches. This work

9. CONCLUSION programming languages and operating systepagjes

Since the x86 architecture began using a radix tree page table 359-370, New York, NY, USA, 2010. ACM.
for address translation in the 80386, the depth of the page table had11] J. J. Dongarra and P. Luszczek. Introduction to the

increased by one level with each passing decade. Unfortunately, HPCChallenge Benchmark Suite. Technical Report 05-544,
without an MMU cache, the page table walk for address translation University of Tennessee - Knoxville,
requires a memory reference for each level of the radix tree. There http://icl.cs.utk.edu/hpcc/, 2005.

fore, MMU caches have become critical components of current and [12] J. Edler and M. D. Hill. Dinero IV Trace-Driven
future x86 processors. This paper has presented a quantitative and Uniprocessor Cache Simulator, 1998.
qualitative comparison of the design space of such MMU caches, [13] H. Garcia-Molina, J. Ullman, and J. Widormatabase

including three new designs. While this paper has focused on x86 System ImplementatioRrentice Hall, 2000.
processors, the results should apply generally to any architecture[14] J. L. Henning. SPEC CPU2006 benchmark descriptions.
that uses a radix tree page table. SIGARCH Comput. Archit. Newd4(4):1-17, 2006.

While AMD and Intel have both developed MMU caches for [15] B. L. Jacob and T. N. Mudge. A look at several memory
their microprocessors, this paper has introduced a unified transla- management units, TLB-refill mechanisms, and page table
tion cache with a modified LRU replacement scheme that is supe- organizations. IRSPLOS-VIII: Proceedings of the eighth
rior to both existing devices. It adapts well to varying workloads, international conference on Architectural support for
unlike a split translation cache, as implemented in Intel's Paging programming languages and operating systepasjes

Structure Cache. It also prevents conflict between entries of low 295-306, New York, NY, USA, 1998. ACM.
and high reuse, unlike the LRU unified page table cache, as imple- [16]

X G. B. Kandiraju and A. Sivasubramaniam. Going the
mented in AMD’s Page Walk Cache.

) . distance for tlb prefetching: an application-driven study. In
This paper has also shown that MMU caches dramatically ISCA '02: Proceedings of the 29th annual international

change the trade-offs in page table design for large address spaces. symposium on Computer architectupages 195-206
Radix tree page tables make more effective use of the processor’s Washington, DC, USA, 2002. IEEE Computer Sociéty.
L2 cache than either inverted page tables or translation storager; 71 b E. Knuth lThe ’Art of’Computer Programming 3. Sorting

Euffers. Rt?dtlr): t_ree p;age table;s E?Ve a sdmtaller lp?_ge tatble entrt))/ ?;ze, and Searching: The Classic Work Newly Updated and
ecause both inverled page lables and transiation storage butlers RevisedAddison-Wesley Longman, Amsterdam, 2. a.

must include a tag in the page table entry. Thus, the L2 cache is edition, 1998,

able to hold more page table entries from the radix tree, increasing . . ' .
: . : '[18] J. Liedtke. Address space sparsity and fine granularitgVh
its coverage and reducing DRAM accesses. So, while these alter 6: Proceedings of the 6th workshop on ACM SIGOPS

nate structures are superior to the radix tree page table on its own
for large address spaces, a well designed MMU cache renders the European workshagpages 78-81, New York, NY, USA,

. > >r . 1994. ACM.
radix tree organization far superior. [19] C. McCurdy, A. L. Cox, and J. Vetter. Investigating the TLB
Behavior of High-end Scientific Applications on Commodit
10. REFERENCES Microprocessogrs. INSPASS '08: PFr)c[))ceedings of the ISPAS%
[1] AMD x86-64 Architecture Programmer’s Manual, Volume 2 2008 - IEEE International Symposium on Performance
[2] The ASCI sweep3d Benchmark Code Analysis of Systems and softwgpages 95-104,
[3] Intel 64 and IA-32 Architectures Software Developer’s Washington, DC, USA, 2008. IEEE Computer Society.
Manual Volume 3A: System Programming Guide Part 1 [20] A. Saulsbury, F. Dahlgren, and P. Stenstrém. Recency-based
[4] Intel Itanium Architecture Software Developer’s Manual - tlb preloading. INSCA '00: Proceedings of the 27th annual
Volume 2: System Architecture, Revision 2.2 international symposium on Computer architectyrages
[5] UltraSPARC Ill Cu User’s Manual 117-127, New York, NY, USA, 2000. ACM.
[6] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. [21] Standard Performance Evaluation Corporation. The SPEC
DBMSs on a Modern Processor: Where Does Time Go? In JBB2005 Benchmark, 2005.
VLDB '99: Proceedings of the 25th International Conference [22] M. Talluri and M. D. Hill. Surpassing the tlb performance of
on Very Large Data Basepages 266—277, San Francisco, superpages with less operating system support. In
CA, USA, 1999. Morgan Kaufmann Publishers Inc. Proceedings of the Sixth International Conference on
[7] K. Bala, M. F. Kaashoek, and W. E. Weihl. Software Architectural Support for Programming Languages and
prefetching and caching for translation lookaside buffers. In Operating System4994.
OSDI '94: Proceedings of the 1st USENIX conference on [23] M. Talluri, M. D. Hill, and Y. A. Khalidi. A new page table
Operating Systems Design and Implementatage 18, for 64-bit address spaces. 8OSP '95: Proceedings of the
Berkeley, CA, USA, 1994. USENIX Association. fifteenth ACM symposium on Operating systems principles
[8] R. Bedicheck. SimNow: Fast platform simulation purely in pages 184-200, New York, NY, USA, 1995. ACM.
software. InHot Chips 16 2004. [24] M. Wu and W. Zwaenepoel. Improving tlb miss handling
[9] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. with page table pointer caches. Technical Report TR97-296,
Accelerating two-dimensional page walks for virtualized Rice University, 1996.
systems. IPASPLOS XIII: Proceedings of the 13th [25] N. Young. On-line caching as cache size variesSODA
international conference on Architectural support for '91: Proceedings of the second annual ACM-SIAM
programming languages and operating systepages symposium on Discrete algorithpsages 241-250,
26-35, New York, NY, USA, 2008. ACM. Philadelphia, PA, USA, 1991. Society for Industrial and
[10] A. Bhattacharjee and M. Martonosi. Inter-core cooperative Applied Mathematics.

tlb for chip multiprocessors. IASPLOS '10: Proceedings of
the fifteenth edition of ASPLOS on Architectural support for

