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Fuzzy Subset Theory

Basic set-theoretic operations
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The concept of a fuzzy subset

&7 Let E be a set denumerable or not, and let x be an element
of E. A fuzzy subset \utilde{A} of E 1s a set of ordered pairs:

(z|lpa(z))}, Ve € E
where 1\ 140041 (X) 18 @ membership characteristic function
that takes its values in a totally ordered set M, and which
indicates the degree or level of membership. M will be
called a membership set

- If M={0, 1}, the “fuzzy subset” \utilde{A} will be
understood as an “ordinary subset”

- Cardinality of a fuzzy subset: |4| = Z pa(x)
- Examples: €L

I. The fuzzy subset of numbers x approximately equal to a given real number n
II. The fuzzy subset of integers near to O

III. The fuzzy subset of integers very near to 0



- The concept of a fuzzy subset

Examples:
IV.The fuzzy subset A of real numbers close to 10

V. The fuzzy subset I3 of real numbers significantly

larger than 10

1
1+ (x —10)2

pa(z) =

it <10

0,
pp(z) = { L 2>10
1+(:c—110)2

1

0.9 -

0.8

0.7

0.6

05

04

0.3

0.2

0.1

m
[\

, -1}(1 FHx-10)*2) ——

[16°20] 1/(1+1/(x-10)**2) —— ]

AWBJ

Real numbers who are close to 10
fuzzy-and significantly larger than 10
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& - Simple operations on fuzzy subsets
B Inclusion: We say that \utilde{A} is included in \utilde{B} if
Ve € B : pg(x) < pp(xr) denotedas A C Bor ACB
We can write: ECE

« Strict inclusion: If for at least one x, 1t holds that:

p\utilde{A}(X) < ll\utﬂde{B}(X)
denoted as A CC B
- Equality:

Vi€ E:pg(x) = pp(xr) denoted as A= DB

~ ~

- Complementation (actually, it 1s pseudo-complementation):

Ve € B : pup(x) =1—py(x) denotedas B=A

—~

It holds that: (4) = A



Simple operations on fuzzy subsets

&2 Intersection: This is the fuzzy and

Ve € E: panp(r) = MIN{pa(z), pp(x)} denoted as AN DB

* Union: This 1s the fuzzy or/and
Ve € E: paup(x) = MAX{pa(x), pp(x)} denoted as AUDB

* Disjunctive sum: This is the fuzzy disjunctive or

A®B=(ANB)U(ANB)

* Difference:

A-B=ANB

—~ —~
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& - Simple operations on fuzzy subsets

&2 Generalized Hamming distance:

ZWA (%:) — pp (i)l

- Euclidean distance or Quadratlc distance:

n

4B = > (nal@) — pp()’

1=1

* Generalized relative Hamming distance:

d(A, B)
n
 Relative Euclidean distance:
e(4, B)
e(4,B) =

v



Simple operations on fuzzy subsets

H The ordinary subset nearest to a fuzzy subset:
pa(w;) =0 if pg(x;) <0.5

=1 if ,ué(:ci) > 0.5

=0or 1 if pyg(z;) =0.5

* Index of fuzziness:

 Linear index of fuzziness

/(4) = Zd(4, 4)

A~

* Quadratic index of fuzziness:

(4) = S=e(4.4)
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ﬁ Simple operations on fuzzy subsets

¥

&2 Properties concerning the nearest ordinary subset:
ANB=A4ANB

Vo, € B ‘Mé(iﬁz’) — M,A,(xz'” = Némz(mi)

* One sometimes calls the fuzzy subset whose membership
function is 2 4~%(%) the vectorial indicator of fuzziness
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& - Simple operations on fuzzy subsets

&2 Evaluation of fuzziness through entropy
* Recall the entropy of a system comprised by N states:

H(p1,p2,...,PN) = sz X In(p;)

* minimum value= 0, maximum Value— In(N)

* Thus, the above equation in [0,1] becomes a measure of
fuzziness:

%(p17p27 R apN > AT sz X ln pz

- Explanation through an example
pa(rr) =07, pa(re) =09, pa(zrs)=0.0,

pa(xe) =06, pa(zs) =05, pa(ws) =1,



* We get:

7 9
Wé(xl) — ﬁ’ Wé(ﬂ?g) : ﬁ’ Wé(ﬂ?g) — 0.0,
6 5} 10
Wé(ﬂfg}) — ﬁ’ Wé(ﬂf5) — ﬁj Wé(ﬂf(;) — ﬁ
Therefore:
6
1
H(my, 7o, ..., Tg) = () Zwé(sci) x In(my(z;)) = = 0.89
i=1

Entropy may be used in the theory of fuzzy subsets, but it is not a good indicator
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& - Simple operations on fuzzy subsets

| =] Ordinary subset of level a:

* For a € [0,1]
Ao =A{z|pa(z) = of

* Important property:
o > ] = Aa2 C Aal

* Decomposition theorem: Any fuzzy subset \utilde{A}
can be decomposed as products of ordinary subsets by the
coefficients a;

A =max|ag X Ay, a0 X Ag,y...,an X Ag, |,

87

0<a; <1, i=1,2.....n



Decomposition theorem proof

" Proof: The proof is immediate:
pa,, (r) =1, if pa(r) > q

pa, () =0, if pa(z) <o

* So, the membership function of \utilde{A} may be written:

= max |oy]
o <pa(x)



Decomposition theorem example

1021 0% 1as Y kay =MAXG),2. i ,0 ' 1 1 , l

O8yEo lo- s 12 ooy e o Tof vy
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Set of fuzzy subsets for E and M finite

&2 The powerset for a fuzzy subset

* If cardinality[E]= n and cardinality[M]= m, then:
cardinality|/P(FE)| = m"

- It 1s well known that the structure of a power set
\mathcal{\utilde{P}}(E) of a set 1s a distributive and
complementary lattice, that is, a boolean lattice. The
set of fuzzy subsets \mathcal{\utilde{P}}(E), however,
has the structure of a vectorial lattice that 1s
distributive but not complimentary



Set of fuzzy subsets for E and M finite

0.0)



Set of fuzzy subsets for E and M finite




(ANB)NC=An(BNC)
(AUB)UC =AU (BUC)

ANA=A

AUA=A
AN(BUC)=(ANB)U(ANC)
AUu(BNC)=(AUuB)N(AUC)

ANA=(0 Law of contradiction
AUA=FE Law of excluded middle

ANh=10
AUub=A
ANE=A
AUE=E
(A)=A
ANB=AUB
AUB=ANB

(1)
(2)

3
E 4§} associativity properties

1dempotence
(6)} .

distributivity of intersection with
)} respect to union, and of union

commutativity properties

8

E9) with respect to intersection
(10)
(11) absorption by &
(12)} o
(13) identity
(14) absorption by E
(15) involution
(16)
(

17) De Morgan’s theorems



(ANB)NC=AnN(BNC)
(AUB)UC =AU (BUC)

il
S=
AN(BUC) = (4nBju(4NnC)
AU(BNC) =(AUB)N(AUC)
§ﬂ®:®
Aub=4
Auls =
{VJUE:E
(#)=4
ANB=AUB
AUB=4nB

Properties of the set of fuzzy subsets

(18)

(19) } commutativity properties

@m:}_ o .
associativity properties

(21)

(22)

(23)} idempotence

(24) distributivity of intersection with

} respect to union, and of union

&) with respect to intersection

(26) where & is the ordinary set,

(27) such that p(x;)=0, V x;

(28) where E is the ordinary set,

(29) such that pg(x,)=1, V x;

(30) involution

(31)
} De Morgan’s theorems
(32)
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. Properties of the set of fuzzy subsets

&2 We see that all properties (1)-(17) are satisfied except
from (9) and (10)
* One may define a unique complement, but the properties
(9) and (10) hold only for ordinary subsets

* Thus, we stress: All properties of an ordinary power set
are found again in a power set of fuzzy subsets, except (9)
and (10). Thus, we no longer have an algebra in the sense
of the theory of ordinary sets; the structure is that of a
vector lattice



] Q‘ Algebraic product and sum of two fuzzy

= subsets
| = Algebraic product: E be an ordinary set and M=[O0, 1]

Ve € B :pugp(x) =pa(x) X pp(xr) denoted as A.B

- Algebraic sum:

Ve e E . ,uéjrg(x) = pa(z) + pp(z) — pa(z) x pp(z) denoted as A+B

* One important remark:
- If M={0, 1}, 1.e., we are 1n the case of ordinary subsets, then

ANB=A.B
AUB = A1B



2t “ Algebraic product and sum of two fuzzy
~  subsets

B in-5.

(33)
. . } commutativity properties

AYB=BfA (34)

(‘é’?)g — f‘,(?@ (35)} associativity properties
(A+B)HC = AHBHO) 3
il.@ = () (37)
f}—T—@ =rs (38)
AE=A (39)
AYE=F (40)

(t) A (41) involution

AB=A+B (42)

-~ } De Morgan’s theorems
A+B=A.B (43)

* Only the above properties are verified. Idempotence [(5) and (6)],
distributivity [(7) and (8)], and of course (9) and (10) are not satisfied



| Q‘ Algebraic product and sum of two fuzzy
. subsets

&2 Note that U is not distributive with respect to . or +, and
likewise N, but on the other hand one has:

A(BNC)=(A.B)n(AC) (44)
A.(BUC) = (A.B)U(A.C) (45)
A+(BNC) = (A+B) N (A+C) (46)
AH(BUC) = (A+B) U (A4C) (47)



Q\ Algebraic product and sum of two fuzzy

& subsets
&2 Let us prove (42):
* Suppose that p,(x)=a and pg(x)=b
* The left part gives: 1-ab
* The right part gives: (1-a)+(1-b)-(1-a)(1-b)= 1-a+1-b-1-
ab+a+b= 1-ab
* Thus, the two parts are alike
* Let us disprove that distributivity holds, 1.e., that
A.(B+C) # (A.B)HAC)
* The left part gives: a (b+c-bc)= ab +ac -abc
* The right part gives: ab + ac —abac= ab +ac —a®bc



Fuzzy relation

Example 1

/ Y1 < 2 3 3 3
E1: {Xl’ X2, X3} /" I ' i ‘ | |
E2: {Y17 Yo, Y3, Yauo y5} X | 0 ‘ 0 ' 0.1 1 0.3 | |
. M= [0, 1] x,iolo.s.olo 1
2 |
Xy | 0,4 | 0,4 | O S | 0 ‘ 0.2
- Example 2
- H oxeon: y << x 1s a fuzzy relation
( .
HR2\L,Y) = < 1
1+ y<x

(x— y)2



Projection of a fuzzy relation

' First projection of \utilde{R}
« Second projection of \utilde{R}

* The second projection of the first projection (or vice versa)
will be called the global projection

_E/_, Y2 i
(1) . ;—-ll—':wrl),: ol i_) ] |
pr (€)= Vipg(z,y) s abjie ot

o Y r‘*lbli).?ﬁ ) | 0,1} 038 |
(2) . x,| 0 ; 1 |03 l U e 5 i
pr (y) = ‘w/ﬂ,@(way) el —
~ c.| 080 FRMCD
h(R) = V'V jur(z,y) [ EIRENT ERET
~ Y ~ :ﬂ 09| 0 |03]07 | ’ 0.9 |
L . ! |
— VV/,LR(-/I;’ y) -:nd ’ " T T )
Yy T prai, | 921 1 | 1 [0 j—_ﬂ!
If h(\utilde{R}) = 1, the relation is said to be normal. giobal

If h(\utilde{R}) < 1, the relation is called subnormal. projection



Projection of a fuzzy relation: Example 2

iy (x0) = Vir(o,y)

= Ve_k('y_ivo)z
Y

— e_k(y_m0)2 fOI' Y = X

s=ty—xl



Union of two fuzzy relations

A1y (9
l .
x and y are very
different
0 (b) s=iy ~ x|
{kp,(ﬁ)

1 : . . —_

and y are very near
and/or very different

o — e — e —
— B

Q a 5=|y—'x|




=y I TE s

|y-x| 1s
very near o

_-'

0 ey 6=|y-xl

1} Fa(‘s)

: : orimai e
; |y-x| 1s
|
| very near B
I
!
|
L —

0f B Y §=|y-xl|
b

—_—

:

Intersection of two fuzzy relations

I

#l('Y) e “;(7) -----I

2
N

o g
)
iy (6)
l T
i
]
I
i
:
—
T ad "y $=|y-1x
(@



Algebraic product of two fuzzy relations

=y I TE s

|y-x| 1s
very near o

(@)

-—
8=|y-—xi

|y-x| 1s
very near B

oy N L S

o
R

6 =ly—xl



. Distributivity property

RN(QUP)=(RNQ)U(RNP)
RU(QNP) = (RUQ)N (RUP)
R.(QUP)=(RQ)U(R.P)
R(QNP)=(RQ)N(R.P)



Algebraic sum of two fuzzy relations




Disjunctive sum of two fuzzy relations

d=ly—xi
’ (@) 2 (b)

-
ol 8 P Y 0 a @ el x|
(¢)



Disjunctive sum of two fuzzy relations




Disjunctive sum of two fuzzy relations

0 (h) ay=fy — x|

§ =|y— x|
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ﬁ Composition of two fuzzy relations

L =4/ Max-min composition
preq(w,2) = VIR (@.y) A (. )

Y

 Max-star composition: we may replace the operation A with
another, under the restriction that one uses an operation that is
associative and monotone nondecreasing in each argument. Then:

— max [min {NE(% Y), M,Qv(y’ Z)H

° Max-product composition: among the max-star compositions,

max-product is particularly interesting, where instead of star it uses
the usual product operation

Hr. (@, 2) = Viug(w,y)-ug(y, 2)]
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2 v

R Y1
XT 0.1
X, 0.3
X 0.8

Exrive pe (x,2)=(x1,2,)

min(pr(z1,91), ko (Y1, 21))
=0.1
min(#f(iﬂby?):#Q(y%Zl))
= min(0.2,0.2)
=il
min(,uR(:Lj,ys),,LLQ(y.'Sazl))
= min(0, 0.8)
=0
min(pg (1, Y4), 1o (Ya, 21))
= min(1,0.4)
=04
min(,uﬁ(:z?l, ys), pQ(ys, 1))

= min(0.7,0)
=0

Yo ys3 Y4 Y5
0.2 0 1 0.7

05 0 0.2 1
0 1 04 0.3

max[min(,ug(:vh Yi), Ng(yia z1))]

Q

~

Y1
Y2
Ys
Y4
Ys

ax(0.1,0.2,0,0.4,0)
Ro Zq
T 04
X2
X3

Zq
0.9
0.2
0.8
0.4

0.7

0.3

- Composition of fuzzy relations: Example

Zs  Zy
0.3 04
0.8 O
0.7 1
0.3 O

0 0.8

Zg Z,

0.3 0.7

0.5 0.8

0.7 1
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Ao B max [min(a;, b; ;)]

1<i<n

{A o B}; = max[min(0.3,0.2), min(0.4,0.7), min(0.8, 0.8), min(1, 0)]

= min(0.2,0.4,0.8,0) Ao B

{40 B}y = max(0.3,0.4,0.1,0.2)

{Ao B}; =max(0.3,0.4,0.5,0.3)

1 Fuzzy vector-matrix multiplication

0.8
0.6
0.1
0.2

0.7
0.6
0.5
0.3

0.4



) -
& ~ Exercises

ﬂcall (from your Discrete Mathematics course) the concepts of modus
ponens and modus tollens as inference rules (kavoveg cupnepaopatog):

Modus ponens (kavev amoondoeng): P A (p=>q) = q

Modus tollens (xavév culdoyiopou apvnTikng popene): (p=q) A lq = !p

Exercise 1. Let ¢t : S—[0,1] be a continuous or “fuzzy” truth function on the
set S of statements. Define the implication operator as the truth function
t; (A—>B)=min(1, 1-t(A)+t(B)) for statements A and B. Then prove the
following generalized fuzzy modus ponens inference rule:

t; (A—>B)
t(A)
Therefore t(B)

C
a
max(0, atc-1)

vV 1V

Hence, if t(A)= t;(A—>B)= 1, then ¢{(B)=1, which generalizes classical
bivalent modus ponens.
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E(ercise 2. Use the multivalued logic operations of the previous problem
to prove the following generalized modus tollens inference rule:

Exercises

t;(A—>B) = C
t(B) < b
Therefore t(A) < min(1, 1-ctb)

Hence, if t; (A—>B)= 1 and ¢(B)=0, then #(A)=0, which generalizes classical
bivalent modus tollens.

Exercise 3. Define the Gaines implication operator as:

ta(A— B) = {min(lvt(B)/t(A)) E: igji i 8

Use the Gaines implication operator t;(A—B) to derive fuzzy modus
ponens and modus tollens inference rules. The conclusions of the inference
rules should differ from the conclusions of the inference rules in the
previous two exercises.
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Exercises

B(ercise 4. Prove the following properties:

9 AN(AUB)=A and AU(ANB)=A=A4A

hCcANACAUACE
0 (ANB)U(BNC)U(CNA)=(AuB)n(BUC)N(CUA4)

Exercise 5. Simplify the expression:

ANn[(BNnC)uAnQ)juc




ﬁ - Exercises

¥

n(ercise 6. Consider the reference set E =[0, a] < R. If \utilde{A} is the
fuzzy subset defined by:

2172

M,A,(fﬂ) — ?7 T < [Oaa]

then give the linear index of fuzziness of \utilde{A}.

Exercise 7. Define the ordinary subset of level a in a fuzzy relation exactly
the same way we did for the fuzzy subsets. Then, for the fuzzy relation

defined in N2 by:
URA\L, | |

calculate the (ordinary) subset of level 0.3. Provide also its geometrical
Interpretation.




