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Fuzzy Subset Theory 

Basic set-theoretic operations



The concept of a fuzzy subset
• Let E be a set denumerable or not, and let x be an element 

of E. A fuzzy subset \utilde{A} of E is a set of ordered pairs:

where μ\utilde{A}(x) is a membership characteristic function
that takes its  values in a totally ordered set M, and which 
indicates the degree or level of membership. Μ will be 
called a membership set

• If M={0, 1}, the “fuzzy subset” \utilde{A} will be 
understood as an “ordinary subset”

• Cardinality of a fuzzy subset: 
• Examples:

I. The fuzzy subset of numbers x approximately equal to a given real number n
II. The fuzzy subset of integers near to 0
III. The fuzzy subset of integers very near to 0



The concept of a fuzzy subset

•Examples:
IV.The fuzzy subset of real numbers close to 10
V. The fuzzy subset of real numbers significantly 

larger than 10 

Real numbers who are close to 10
fuzzy-and significantly larger than 10



Simple operations on fuzzy subsets
• Inclusion: We say that \utilde{A} is included in \utilde{B} if

• Strict inclusion: If for at least one x, it holds that:   
μ\utilde{A}(x) < μ\utilde{B}(x)

• Equality:

• Complementation (actually, it is pseudo-complementation):



Simple operations on fuzzy subsets
• Intersection: This is the fuzzy and

• Union: This is the fuzzy or/and

• Disjunctive sum: This is the fuzzy disjunctive or

• Difference:



Simple operations on fuzzy subsets
• Generalized Hamming distance:

• Euclidean distance or Quadratic distance:

• Generalized relative Hamming distance:

• Relative Euclidean distance:



Simple operations on fuzzy subsets
• The ordinary subset nearest to a fuzzy subset:

• Index of fuzziness:
• Linear index of fuzziness

• Quadratic index of fuzziness:



Simple operations on fuzzy subsets
• Properties concerning the nearest ordinary subset:

• One sometimes calls the fuzzy subset whose membership 
function is                   the vectorial indicator of fuzziness



Simple operations on fuzzy subsets
• Evaluation of fuzziness through entropy
• Recall the entropy of a system comprised by N states:

• minimum value= 0, maximum value= ln(N)
• Thus, the above equation in [0,1] becomes a measure of 

fuzziness:

• Explanation through an example:



Simple operations on fuzzy subsets
• Putting:

• We get:

Therefore:

Entropy may be used in the theory of fuzzy subsets, but it is not a good indicator



Simple operations on fuzzy subsets
• Ordinary subset of level α:

• For α ϵ [0,1]

• Important property:

• Decomposition theorem: Any fuzzy subset \utilde{A} 
can be decomposed as products of ordinary subsets by the 
coefficients αi



Decomposition theorem proof
• Proof: The proof is immediate:

• So, the membership function of \utilde{A} may be written:



Decomposition theorem example



Set of fuzzy subsets for E and M finite
• The powerset for a fuzzy subset

• If cardinality[E]= n and cardinality[M]= m, then:

• It is well known that the structure of a power set 
\mathcal{\utilde{P}}(E) of a set is a distributive and 
complementary lattice, that is, a boolean lattice. The 
set of fuzzy subsets \mathcal{\utilde{P}}(E), however, 
has the structure of a vectorial lattice that is 
distributive but not complimentary



Set of fuzzy subsets for E and M finite



Set of fuzzy subsets for E and M finite



Properties of the powerset of ordinary set

commutativity properties

associativity properties

idempotence

distributivity of intersection with 
respect to union, and of union 
with respect to intersection

involution

De Morgan’s theorems

Law of contradiction
Law of excluded middle

absorption by 

absorption by E

identity



Properties of the set of fuzzy subsets

commutativity properties

associativity properties

idempotence

distributivity of intersection with 
respect to union, and of union 
with respect to intersection

involution

De Morgan’s theorems

where  is the ordinary set, 
such that μ(xi)=0,  xi

where E is the ordinary set, 
such that μE(xi)=1,  xi



Properties of the set of fuzzy subsets
• We see that all properties (1)-(17) are satisfied except 

from (9) and (10)
• One may define a unique complement, but the properties 

(9) and (10) hold only for ordinary subsets

• Thus, we stress: All properties of an ordinary power set 
are found again in a power set of fuzzy subsets, except (9) 
and (10). Thus, we no longer have an algebra in the sense 
of the theory of ordinary sets; the structure is that of a 
vector lattice



Algebraic product and sum of two fuzzy 
subsets

• Algebraic product: E be an ordinary set and M=[0, 1]

• Algebraic sum:

• One important remark:
• If M={0, 1}, i.e., we are in the case of ordinary subsets, then



Algebraic product and sum of two fuzzy 
subsets

commutativity properties

associativity properties

involution

De Morgan’s theorems

• Only the above properties are verified. Idempotence [(5) and (6)], 
distributivity [(7) and (8)], and of course (9) and (10) are not satisfied



Algebraic product and sum of two fuzzy 
subsets

• Note that  is not distributive with respect to . or     , and 
likewise , but on the other hand one has:



Algebraic product and sum of two fuzzy 
subsets

• Let us prove (42):
• Suppose that μA(x)=a and μB(x)=b
• The left part gives: 1-ab
• The right part gives: (1-a)+(1-b)-(1-a)(1-b)= 1-a+1-b-1-

ab+a+b= 1-ab
• Thus, the two parts are alike

• Let us disprove that distributivity holds, i.e., that

• The left part gives: a (b+c-bc)= ab +ac -abc
• The right part gives: ab + ac –abac= ab +ac –a2bc



Fuzzy relation
• Example 1

• E1= {x1, x2, x3}
• E2= {y1, y2, y3, y4, y5}
• M= [0, 1]

• Example 2
• E1 = E2 = R
• Η σχέση: y << x is a fuzzy relation



Projection of a fuzzy relation
• First projection of \utilde{R}
• Second projection of \utilde{R}
• The second projection of the first projection (or vice versa) 

will be called the global projection

If h(\utilde{R}) = 1, the relation is said to be normal.
If h(\utilde{R}) < 1, the relation is called subnormal.



Projection of a fuzzy relation: Example 2
• x and y are very near to one another:

• For a fixed value x0:



Union of two fuzzy relations

x and y are 
very near

x and y are very 
different

x and y are very near 
and/or very different



Intersection of two fuzzy relations

|y-x| is 
very near β

|y-x| is 
very near α



Algebraic product of two fuzzy relations

|y-x| is 
very near β

|y-x| is 
very near α



Distributivity property



Algebraic sum of two fuzzy relations

• The complement of a relation:



Disjunctive sum of two fuzzy relations



Disjunctive sum of two fuzzy relations



Disjunctive sum of two fuzzy relations



Composition of two fuzzy relations

• Max-min composition

• Max-star composition: we may replace the operation  with 
another, under the restriction that one uses an operation that is 
associative and monotone nondecreasing in each argument. Then:

• Max-product composition: among the max-star compositions, 
max-product is particularly interesting, where instead of star it uses 
the usual product operation



Composition of fuzzy relations: Example
y1 y2 y3 y4 y5

x1 0.1 0.2 0 1 0.7
x2 0.3 0.5 0 0.2 1
x3 0.8 0 1 0.4 0.3

z1 z2 z3 z4

y1 0.9 0 0.3 0.4
y2 0.2 1 0.8 0
y3 0.8 0 0.7 1
y4 0.4 0.2 0.3 0
y5 0 1 0 0.8

z1 z2 z3 z4

x1 0.4 0.7 0.3 0.7
x2 0.3 1 0.5 0.8
x3 0.8 0.3 0.7 1

Εκκινώ με (x,z)=(x1,z1)



Fuzzy vector-matrix multiplication

0.3 0.4 0.8 1 0.2 0.8 0.7
0.7 0.6 0.6
0.8 0.1 0.5
0 0.2 0.3

0.8 0.4 0.5



Exercises
Recall (from your Discrete Mathematics course) the concepts of modus 
ponens and modus tollens as inference rules (κανόνες συμπεράσματος):
Modus ponens (κανών αποσπάσεως): p  (pq)  q
Modus tollens (κανών συλλογισμού αρνητικής μορφής): (pq)  !q  !p

Exercise 1. Let t : S[0,1] be a continuous or “fuzzy” truth function on the 
set S of statements. Define the implication operator as the truth function 
tL(AB)=min(1, 1-t(A)+t(B)) for statements A and B. Then prove the 
following generalized fuzzy modus ponens inference rule:

tL(AB) = c
t(A) ≥ α

Therefore t(B) ≥ max(0, α+c-1)

Hence, if t(A)= tL(AB)= 1, then t(B)=1, which generalizes classical 
bivalent modus ponens.



Exercises
Exercise 2. Use the multivalued logic operations of the previous problem 
to prove the following generalized modus tollens inference rule:

tL(AB) = c
t(B) ≤ b

Therefore t(A) ≤ min(1, 1-c+b)
Hence, if tL(AB)= 1 and t(B)=0, then t(A)=0, which generalizes classical 
bivalent modus tollens.

Exercise 3. Define the Gaines implication operator as:

Use the Gaines implication operator tG(AB) to derive fuzzy modus 
ponens and modus tollens inference rules. The conclusions of the inference 
rules should differ from the conclusions of the inference rules in the 
previous two exercises.



Exercises
Exercise 4. Prove the following properties:

a)

b)

c)

Exercise 5. Simplify the expression:



Exercises
Exercise 6. Consider the reference set E =[0, α]  R. If \utilde{A} is the 
fuzzy subset defined by:

then give the linear index of fuzziness of \utilde{A}.

Exercise 7. Define the ordinary subset of level α in a fuzzy relation exactly 
the same way we did for the fuzzy subsets. Then, for the fuzzy relation 
defined in 2 by:

calculate the (ordinary) subset of level 0.3. Provide also its geometrical 
interpretation.


