
1

Νευρο-Ασαφής Υπολογιστική
Neuro-Fuzzy Computing

Διδάσκων –
Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ
Πανεπιστήμιο Θεσσαλίας

Διάλεξη 24η: Transformers-II



2

Transformers

[Attention mechanisms]



A high-Level look of a transformer
• Let’s begin by looking at the model as a single black box, in 

a machine translation application, i.e., it would take a sentence 
in one language, and output its translation in another



A high-Level look of a transformer
• The encoding component is a stack of encoders (here we stack six of 

them on top of each other –one can definitely experiment with other 
arrangements). The decoding component is a stack of decoders of the 
same number



A high-Level look of a transformer
• The encoders are all identical in structure (yet they do not 

share weights). Each one is broken down into two sub-
layers:



A high-Level look of a transformer
• The encoder’s inputs first flow through a self-attention layer – a layer 

that helps the encoder look at other words in the input sentence as it 
encodes a specific word. We’ll look closer at self-attention later

• The outputs of the self-attention layer are fed to a feed-forward neural 
network. The exact same feed-forward network is independently 
applied to each position

• The decoder has both those layers, but between them is an attention 
layer that helps the decoder focus on relevant parts of the input 
sentence (similar what attention does in seq2seq models)



The tensors
• Now that we have seen the major components of the model, let’s start 

to look at the various vectors/tensors and how they flow between these 
components to turn the input of a trained model into an output

• As is the case in NLP applications in general, we begin by turning each 
input word into a vector using an embedding algorithm

• The embedding only happens in the bottom-most encoder. The 
abstraction that is common to all the encoders is that they receive a 
list of vectors each of the size 512 – In the bottom encoder that would 
be the word embeddings, but in other encoders, it would be the output 
of the encoder that’s directly below. The size of this list is 
hyperparameter we can set – basically it would be the length of the 
longest sentence in our training dataset

Each word is embedded into a vector of size 512. We'll represent those vectors with these simple boxes



The tensors
• After embedding the words in our input sequence, each of them flows 

through each of the two layers of the encoder.



The tensors
• We begin to see one key property of the Transformer, which is that the 

word in each position flows through its own path in the encoder
• There are dependencies between these paths in the self-attention 

layer. The feed-forward layer does not have those dependencies, 
however, and thus the various paths can be executed in parallel while 
flowing through the feed-forward layer

• Next, we’ll switch up the example to a shorter sentence and we’ll look 
at what happens in each sub-layer of the encoder



Encoding
• As we’ve mentioned already, an encoder receives a list of vectors as 

input. It processes this list by passing these vectors into a ‘self-
attention’ layer, then into a feed-forward neural network, then sends 
out the output upwards to the next encoder

The word at each position passes through a self-attention process. Then, they each pass through a feed-
forward neural network -- the exact same network with each vector flowing through it separately.



Self-attention at a high level
• Say the following sentence is an input sentence we want to translate: 

“The animal didn't cross the street because it was too tired”
• What does “it” in this sentence refer to? Is it referring to the street or 

to the animal? It’s a simple question to a human, but not as simple to 
an algorithm

• When the model is processing the word “it”, self-attention allows it to 
associate “it” with “animal”

• As the model processes each word (each position in the input 
sequence), self attention allows it to look at other positions in the input 
sequence for clues that can help lead to a better encoding for this word

• You’re familiar with RNNs, so think of how maintaining a hidden state 
allows an RNN to incorporate its representation of previous 
words/vectors it has processed with the current one it’s processing. 
Self-attention is the method the Transformer uses to bake the 
“understanding” of other relevant words into the one we’re currently 
processing



Self-attention at a high level

As we are encoding the word "it" in encoder #5 (the top encoder in the stack), part of the attention 
mechanism was focusing on "The Animal", and baked a part of its representation into the encoding of "it". 



Self-attention in detail
• Let’s first look at how to calculate self-attention using vectors, then 

proceed to look at how it’s actually implemented – using matrices

• The first step in calculating self-attention is to create three vectors 
from each of the encoder’s input vectors (in this case, the embedding of 
each word). So for each word, we create a Query vector, a Key vector, 
and a Value vector. These vectors are created by multiplying the 
embedding by three matrices that we trained during the training 
process

• Notice that these new vectors are smaller in dimension than the 
embedding vector. Their dimensionality is 64, while the embedding 
and encoder input/output vectors have dimensionality of 512. They 
don’t HAVE to be smaller, this is an architecture choice to make the 
computation of multiheaded attention (mostly) constant.



Self-attention in detail

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word. We 
end up creating a "query", a "key", and a "value" projection of each word in the input sentence



Self-attention in detail
• What are the “query”, “key”, and “value” vectors?

• They’re abstractions that are useful for calculating and 
thinking about attention. Once you proceed with reading 
how attention is calculated below, you’ll know pretty much 
all you need to know about the role each of these vectors 
plays



Self-attention in detail
• The second step in calculating self-attention is to calculate a score. Say 

we’re calculating the self-attention for the first word in this example, 
“Thinking”. We need to score each word of the input sentence against 
this word. The score determines how much focus to place on other 
parts of the input sentence as we encode a word at a certain position

• The score is calculated by taking the dot product of the query vector with the 
key vector of the respective word we’re scoring. So if we’re processing the self-
attention for the word in position #1, the first score would be the dot product of 
q1 and k1. The second score would be the dot product of q1 and k2



Self-attention in detail
• The third and fourth steps are to divide the scores by 8 (the square root of the 

dimension of the key vectors used in the paper – 64. This leads to having more 
stable gradients. There could be other possible values here, but this is the 
default), then pass the result through a softmax operation. Softmax normalizes 
the scores so they’re all positive and add up to 1

• This softmax score determines how much each word will be expressed at this position. Clearly the 
word at this position will have the highest softmax score, but sometimes it’s useful to attend to 
another word that is relevant to the current word



Self-attention in detail
• The fifth step is to multiply 

each value vector by the 
softmax score (in preparation to 
sum them up). The intuition 
here is to keep intact the values 
of the word(s) we want to focus 
on, and drown-out irrelevant 
words (by multiplying them by 
tiny numbers like 0.001, for 
example)

• The sixth step is to sum up the 
weighted value vectors. This 
produces the output of the self-
attention layer at this position 
(for the first word)

• That concludes the self-attention 
calculation. The resulting vector is one 
we can send along to the feed-forward 
neural network. In the actual 
implementation, however, this 
calculation is done in matrix form.



Matrix calculation of self-attention
• The first step is to 

calculate the Query, 
Key, and Value 
matrices

• We do that by packing 
our embeddings into a 
matrix X, and 
multiplying it by the 
weight matrices we’ve 
trained (WQ, WK, 
WV).

Every row in the X matrix corresponds to a word in the input sentence. We again see the difference in size 
of the embedding vector (512, or 4 boxes in the figure), and the q/k/v vectors (64, or 3 boxes in the figure) 



Matrix calculation of self-attention
• Finally, since we’re dealing with matrices, we can condense 

steps two through six in one formula to calculate the 
outputs of the self-attention layer

The self-attention calculation in matrix form



Multi-headed attention
• We can refined the self-attention layer by adding a 

mechanism called “multi-headed” attention. This improves 
the performance of the attention layer in two ways:
• It expands the model’s ability to focus on different positions. Yes, in 

the example above, z1 contains a little bit of every other encoding, 
but it could be dominated by the actual word itself. If we’re 
translating a sentence like “The animal didn’t cross the street 
because it was too tired”, it would be useful to know which word “it” 
refers to.

• It gives the attention layer multiple “representation subspaces”. As 
we’ll see next, with multi-headed attention we have not only one, 
but multiple sets of Query/Key/Value weight matrices (the 
Transformer uses eight attention heads, so we end up with eight 
sets for each encoder/decoder). Each of these sets is randomly 
initialized. Then, after training, each set is used to project the input 
embeddings (or vectors from lower encoders/decoders) into a 
different representation subspace.



Multi-headed attention

With multi-headed attention, we maintain separate Q/K/V weight matrices for each head resulting in 
different Q/K/V matrices. As we did before, we multiply X by the WQ/WK/WV matrices to produce 

Q/K/V matrices. 



Multi-headed attention
• If we do the same self-attention calculation we outlined above, just 

eight different times with different weight matrices, we end up with 
eight different Z matrices



Multi-headed attention
• This leaves us with a bit of a challenge. The feed-forward layer is not expecting 

eight matrices – it’s expecting a single matrix (a vector for each word). So we 
need a way to condense these eight down into a single matrix

• How do we do that? We concat the matrices then multiply them by an 
additional weights matrix WO



Multi-headed attention
• That’s all there is to multi-headed self-attention. Let’s put them all in 

one visual so we can look at them in one place



Multi-headed attention
• Now that we have touched upon attention heads, let’s revisit our 

example from before to see where the different attention heads are 
focusing as we encode the word “it” in our example sentence:

As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing 
on "tired" -- in a sense, the model's representation of the word "it" bakes in some of the representation of 

both "animal" and "tired". 



Multi-headed attention
• If we add all the attention heads to the picture, however, things can be 

harder to interpret:



Representing The Order of The Sequence 
Using Positional Encoding

• One thing that’s missing from the model as we have 
described it so far is a way to account for the order of the 
words in the input sequence

• To address this, the transformer adds a vector to each 
input embedding. These vectors follow a specific pattern 
that the model learns, which helps it determine the 
position of each word, or the distance between different 
words in the sequence. The intuition here is that adding 
these values to the embeddings provides meaningful 
distances between the embedding vectors once they’re 
projected into Q/K/V vectors and during dot-product 
attention



Representing The Order of The Sequence 
Using Positional Encoding



Representing The Order of The Sequence 
Using Positional Encoding

• If we assumed the embedding has a dimensionality of 4, the actual 
positional encodings would look like this:

• The formula for positional encoding is described in the NIPS’2017 
paper (section 3.5). 

• This is not the only possible method for positional encoding. It, 
however, gives the advantage of being able to scale to unseen lengths 
of sequences (e.g. if our trained model is asked to translate a sentence 
longer than any of those in our training set)



The residuals
• A detail in the architecture of the encoder that we need to mention, is 

that each sub-layer (self-attention, ffnn) in each encoder has a residual 
connection around it, and is followed by a layer-normalization step



The residuals

• If we’re to visualize 
the vectors and the 
layer-norm 
operation 
associated with self 
attention, it would 
look like this:



The residuals
• This goes for the sub-layers of the decoder as well. If we’re to think of a 

Transformer of 2 stacked encoders and decoders, it would look like this



The Decoder side
• The encoder start by processing the input sequence. The output of the top 

encoder is then transformed into a set of attention vectors K and V. These are 
to be used by each decoder in its “encoder-decoder attention” layer which helps 
the decoder focus on appropriate places in the input sequence:



The Decoder side
• The following steps repeat the process until a special symbol is reached indicating the 

transformer decoder has completed its output. The output of each step is fed to the 
bottom decoder in the next time step, and the decoders bubble up their decoding results 
just like the encoders did. And just like we did with the encoder inputs, we embed and 
add positional encoding to those decoder inputs to indicate the position of each word



The Decoder side

• The self attention layers in the decoder operate in 
a slightly different way than the one in the 
encoder:
• In the decoder, the self-attention layer is only allowed to attend to 

earlier positions in the output sequence. This is done by masking 
future positions (setting them to -inf) before the softmax step in the 
self-attention calculation.

• The “Encoder-Decoder Attention” layer works just like multiheaded
self-attention, except it creates its Queries matrix from the layer 
below it, and takes the Keys and Values matrix from the output of 
the encoder stack.



The final linear and softmax layer
• The decoder stack outputs a vector of floats. How do we turn that into 

a word? That’s the job of the final Linear layer which is followed by a 
Softmax Layer

• The Linear layer is a simple fully connected neural network that 
projects the vector produced by the stack of decoders, into a much, 
much larger vector called a logits vector

• Let’s assume that our model knows 10,000 unique English words (our 
model’s “output vocabulary”) that it’s learned from its training dataset. 
This would make the logits vector 10,000 cells wide – each cell 
corresponding to the score of a unique word. That is how we interpret 
the output of the model followed by the Linear layer

• The softmax layer then turns those scores into probabilities (all 
positive, all add up to 1.0). The cell with the highest probability is 
chosen, and the word associated with it is produced as the output for 
this time step



The final linear and softmax layer



Training
• Now that we’ve covered the entire forward-pass process through a 

trained Transformer, it would be useful to glance at the intuition of 
training the model

• During training, an untrained model would go through the exact same 
forward pass. But since we are training it on a labeled training 
dataset, we can compare its output with the actual correct output

• To visualize this, let’s assume our output vocabulary only contains six 
words(“a”, “am”, “i”, “thanks”, “student”, and “<eos>” (short for ‘end of 
sentence’))



Training
• Once we define our output vocabulary, we can use a vector of the same 

width to indicate each word in our vocabulary. This also known as one-
hot encoding. So for example, we can indicate the word “am” using the 
following vector:



The Loss function
• Say we are training our model. Say it’s our first step in the training 

phase, and we’re training it on a simple example – translating “merci” 
into “thanks”.

• What this means, is that we want the output to be a probability 
distribution indicating the word “thanks”. But since this model is not 
yet trained, that’s unlikely to happen just yet.

Since the model's 
parameters (weights) are all 
initialized randomly, the 
(untrained) model produces 
a probability distribution 
with arbitrary values for 
each cell/word. We can 
compare it with the actual 
output, then tweak all the 
model's weights using 
backpropagation to make 
the output closer to the 
desired output.



The Loss function
• How do you compare two probability distributions? We simply subtract one from the 

other. For more details, look at cross-entropy and Kullback–Leibler divergence.
• But note that this is an oversimplified example. More realistically, 

we’ll use a sentence longer than one word. For example – input: “je suis
étudiant” and expected output: “i am a student”. What this really 
means, is that we want our model to successively output probability 
distributions where:

• Each probability distribution is represented by a vector of width 
vocab_size (6 in our toy example, but more realistically a number like 
30,000 or 50,000)

• The first probability distribution has the highest probability at the cell 
associated with the word “i”

• The second probability distribution has the highest probability at the 
cell associated with the word “am”

• And so on, until the fifth output distribution indicates ‘<end of 
sentence>’ symbol, which also has a cell associated with it from the 
10,000 element vocabulary



The Loss function

The targeted probability distributions we'll train our model against in the training example for one sample 
sentence



The Loss function
• After training the model for enough time on a large enough dataset, we 

would hope the produced probability distributions would look like this:

Hopefully upon training, the model 
would output the right translation 
we expect. Of course it's no real 
indication if this phrase was part of 
the training dataset (see: cross 
validation). Notice that every 
position gets a little bit of 
probability even if it's unlikely to 
be the output of that time step --
that's a very useful property of 
softmax which helps the training 
process. 



The Loss Function
• Now, because the model produces the outputs one at a time, we can 

assume that the model is selecting the word with the highest 
probability from that probability distribution and throwing away the 
rest

• That’s one way to do it (called greedy decoding)
• Another way to do it would be to hold on to, say, the top two words 

(say, ‘I’ and ‘a’ for example), then in the next step, run the model twice: 
once assuming the first output position was the word ‘I’, and another 
time assuming the first output position was the word ‘a’, and 
whichever version produced less error considering both positions #1 
and #2 is kept

• We repeat this for positions #2 and #3…etc. This method is called “beam search”, 
where in our example, beam_size was two (meaning that at all times, two partial 
hypotheses (unfinished translations) are kept in memory), and top_beams is also 
two (meaning we’ll return two translations). These are both hyperparameters

• THE END. Read the Attention Is All You Need paper which appeared in NIPS’17


