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Transformers

[Mathematical background]



What is a transformer
• The transformer is a neural network component that can 

be used to learn useful representations of sequences or sets 
of data-points

• The transformer has driven recent advances in natural 
language processing, computer vision, and spatio-temporal 
modeling 

• In this lecture we aim for a mathematically precise, 
intuitive, and clean description of the transformer 
architecture
• We will not discuss training as this is rather standard



Preliminaries
Input data format: sets or sequences of tokens
• In order to apply a transformer, data must be converted 

into a set or sequence of N tokens x(0)
n of dimension D

• The tokens can be collected into a matrix X(0) which is D×N
• To give two concrete examples:

• A passage of text can be broken up into a sequence of words or sub-
words, with each word being represented by a single unique vector

• An image can be broken up into a set of patches and each patch can 
be mapped into a vector

The collection of tokens does 
not need to have an order and 
the transformer can handle 
them as a set (where order 
does not matter), rather than a 
sequence



Preliminaries
• The embeddings can be fixed or they can be learned with 

the rest of the parameters of the model 
• e.g., the vectors representing words can be optimized or a learned 

linear transform can be used to embed image patches

Encoding an image
An image is split into N patches. 
Each patch is reshaped into a vector 
by the vec operator
This vector is acted upon by a matrix 
W which maps the patch to a D 
dimensional vector x(0)

n
These vectors are collected together 
into the input X(0)
The matrix W can be learned with the 
rest of the transformer’s parameters



Preliminaries
• A sequence of tokens is a generic representation to use as 

an input
• Many different types of data can be “tokenised” and 

transformers are then immediately applicable rather than 
requiring a bespoke architectures for each modality as was 
previously the case
• CNNs for images
• RNNs for sequences,

• Moreover, this means that you don’t need bespoke 
handcrafted architectures for mixing data of different 
modalities — you can just throw them all into a big set of 
tokens



Transformer’s goal
• The transformer will ingest the input data X(0) and return 

a representation of the sequence in terms of another 
matrix X(M) which is also of size D × N

• The slice xn = X(M)
:,n will be a vector of features 

representing the sequence at the location of token n
• These representations can be used for:

• auto-regressive prediction of the next (n+1)th token
• global classification of the entire sequence (by pooling across the 

whole representation)
• sequence-to-sequence or image-to-image prediction problems, etc

• M denotes the number of layers in the transformer



The transformer block
• The representation of the input sequence will be produced 

by iteratively applying a transformer block
X(m) = transformer-block(X(m−1))

• The block itself comprises two stages:
• One operating across the sequence

• This first stage refines each feature independently according to 
relationships between tokens across the sequence e.g., how much a 
word in a sequence at position n depends on previous words at position 
n′, or how much two different patches from an image are related to one 
another

• This stage acts horizontally across rows of X(m−1)

• One operating across the features
• This second stage refines the features representing each token. This 

stage acts vertically across a column of X(m−1). By repeatedly applying 
the transformer block the representation at token n and feature d can 
be shaped by information at token n′ and feature d′



Stage 1: self-attention across the seq
• The output of the first stage of the transformer block is 

another D × N array Y(m)

• The output is produced by aggregating information across 
the sequence independently for each feature using an 
operation called attention

• Attention. Specifically, the output vector at location n, 
denoted y(m)

n , is produced by a simple weighted average of 
the input features at location n′ = 1 . . .N, denoted x(m−1)

n′

• The weighting is given by a so-called attention matrix 
A(m)

n′,n which is of size N × N and normalises over its 
columns

The need for transformers to store 
and compute N×N attention arrays 
can be a major computational 
bottleneck, which makes processing 
of long sequences challenging



Stage 1: self-attention across the seq
• Intuitively speaking A(m)

n′,n will take a high value for 
locations in the sequence n′ which are of high relevance for 
location n

• For irrelevant locations, it will take the value 

• For example, all patches of a visual scene coming from a 
single object might have high corresponding attention 
values

• Relationship to Convolutional Neural Networks (CNNs). The attention 
mechanism can recover convolutional filtering as a special case e.g. if x(0)

n is a 1D 
regularly sampled time-series and A(m)

n′,n = A(m)
n′−n then the attention mechanism in 

previous slide’s Equation becomes a convolution
• Unlike normal CNNs, these filters have full temporal support. Later we will see that the filters 

themselves dynamically depend on the input, another difference from standard CNNs
• We will also see a similarity: transformers will use multiple attention maps in each layer in the 

same way that CNNs use multiple filters (though typically transformers have fewer attention 
maps than CNNs have channels)



Stage 1: self-attention across the seq
• We can write the relationship as a matrix multiplication

Y(m) = X(m-1)A(m) (Eq(2))

When training transformers to perform autoregressive prediction, e.g. predicting the next word in a 
sequence based on the previous ones, a clever modification to the model can be used to accelerate training 
and inference. This involves applying the transformer to the whole sequence, and using masking in the 
attention mechanism (A(m) becomes an upper triangular matrix) to prevent future tokens affecting the 
representation at earlier tokens. Causal predictions can then be made for the entire sequence in one 
forward pass through the transformer

The shading in the 
attention matrix 
represent the elements 
with a high value in 
white and those with a 
low value, near to 0, in 
black



Stage 1: self-attention across the seq
• Self-attention. Where does the attention matrix come 

from? 
• The neat idea in the first stage of the transformer is that 

the attention matrix is generated from the input sequence 
itself – so-called self-attention

• A simple way of generating the attention matrix from the 
input would be to measure the similarity between two 
locations by the dot product between the features at those 
two locations and then use a softmax function to handle 
the normalisation i.e.,



Often you will see attention parameterised as 

Dividing the exponents by the square-root of 
the dimensionality of the projected vector 
helps numerical stability, but here, we absorb 
this term into U to improve clarity

Stage 1: self-attention across the seq
• However, this naïve approach entangles information about 

the similarity between locations in the sequence with the 
content of the sequence itself

• An alternative is to perform the same operation on a linear 
transformation of the sequence, Uxn, so that:

• Typically, U will project to a lower dimensional space i.e., U is K×D 
dimensional with K < D. In this way only some of the features in the input 
sequence need be used to compute the similarity, the others being projected 
out, thereby decoupling the attention computation from the content. However, 
the numerator in this construction is symmetric. This could be a disadvantage.



Stage 1: self-attention across the seq
• Fortunately, it is simple to generalize the previous 

attention mechanism to be asymmetric by applying two 
different linear transformations to the original sequence

• The two quantities that are dot-producted together here 
qn = Uqxn and kn = Ukxn are typically known as the queries
and the keys, respectively

• Together Equations 2 and 3 define the self-attention 
mechanism

• Notice that the K × D matrices Uq and Uk are the only 
parameters of this mechanism



Stage 1: self-attention across the seq
• Multi-head self-attention (MHSA). In the self-attention 

mechanisms described earlier, there is one attention 
matrix which describes the similarity of two locations 
within the sequence

• This can act as a bottleneck in the architecture – it would 
be useful for pairs of points to be similar in some 
‘dimensions’ and different in others

• If attention matrices are viewed as a data-driven version of 
filters in a CNN, then the need for more filters / channels 
is clear

• Typical choices for the number of heads H is 8 or 16, lower 
than typical numbers of channels in a CNN



Stage 1: self-attention across the seq
• In order to increase capacity of the first self-attention 

stage, the transformer block applies H sets of self-attention 
in parallel (termed H heads) and then linearly projects the 
results down to the D × N array required for further 
processing

• This slight generalization is called multi-head self-
attention

• The computational cost of multi-head self-attention is usually 
dominated by the matrix multiplication involving the attention matrix 
and is therefore O(H x D x N2)



Stage 1: self-attention across the seq

• Here the H matrices V(m)
h which are D×D project the H 

self-attention stages down to the required output 
dimensionality D



Stage 1: self-attention across the seq
• The product of the matrices V(m)

h X(m−1) is related to the so-
called values which are normally introduced in descriptions 
of self-attention along side queries and keys

• In the usual presentation, there is a redundancy between 
the linear transform used to compute the values and the 
linear projection at the end of the multi-head self-
attention, so we have not explicitly introduced them here

• The standard presentation can be recovered by setting Vh
to be a low-rank matrix Vh = UhUv,h where Uh is DxK and 
Uv,h is KxD

• Typically K is set to K = D/H so that changing the number 
of heads leads to models with similar numbers of 
parameters and computational demands



Stage 1: self-attention across the seq

• The addition of the matrices V(m)
h , and the fact that 

retaining just the diagonal elements of the attention 
matrix A(m) will interact the signal instantaneously with 
itself, does mean there is some cross-feature processing in 
multi-head self-attention, as opposed to it containing 
purely cross-sequence processing
• However, the stage has limited capacity for this type of processing 

and it is the job of the second stage to address this



Stage 1: self-attention across the seq

• MHSA schematically. Multi-head attention comprises 
the following parameters θ = {Uq,h, Uk,h, Vh}H

h=1 i.e., 3H 
matrices of size K × D, K × D, and D × D respectively



Stage-2: MLP across features
• The second stage of processing in the transformer block 

operates across features, refining the representation using 
a non-linear transform

• To do this, we simply apply a multi-layer perceptron (MLP) 
to the vector of features at each location n in the sequence,

• Notice that the parameters of the MLP, θ, are the same for 
each location n

• The MLPs used typically have one or two hidden-layers with dimension equal 
to the number of features D (or larger)

• The computational cost of this step is therefore roughly N×D×D
• If the feature embedding size approaches the length of the sequence D ≈ N, the 

MLPs can start to dominate the computational complexity (e.g., this can be the 
case for vision transformers which embed large patches)



The transformer block
• We can now stack MHSA and MLP layers to produce the 

transformer block
• Rather than doing this directly, we make use of two ubiquitous 

transformations to produce a more stable model that trains easier: 
• residual connections, and 
• normalization

• Residual connections. The use of residual connections is 
widespread across machine learning as they make 
initialization simple, have a sensible inductive bias 
towards simple functions, and stabilize learning

• Instead of directly specifying a function x(m) = fθ(x(m−1)), the 
idea is to parameterize it in terms of an identity mapping 
and a residual term

x(m)= x(m-1) + resθ(x(m-1))



The transformer block

• Equivalently, this can be viewed as modeling the 
differences between the representation x(m) − x(m−1) = 
resθ(x(m−1)) and will work well when the function that is 
being modeled is close to identity

• This type of parameterization is used for both the MHSA 
and MLP stages in the transformer, with the idea that 
each applies a mild non-linear transformation to the 
representation

• Over many layers, these mild non-linear transformations 
compose to form large transformations



The transformer block
• Token normalization. Normalization, such as 

LayerNorm and BatchNorm, is a means to stabilize 
learning

• There are many potential choices for how to compute 
normalization statistics (see figure below), but the 
standard approach is use LayerNorm which normalizes 
each token separately, removing the mean and dividing by 
the standard deviation Transformers perform layer normalization

which normalizes the mean and standard 
deviation of each individual token in each 
sequence in the batch. Batch 
normalization, which normalizes over the 
feature and batch dimension together, is
found to be far less stable. Other flavors 
of normalization are possible and 
potentially under-explored e.g., instance 
normalization would normalize across the 
sequence dimension instead.



The transformer block

mean(xn)= 1/D Σd=1
D xd,n and var(xn)= 1/D Σd=1

D (xd,n – mean(xn))2

• The two parameters γd and βd are a learned scale and shift
• As this transform normalizes each token individually and as LayerNorm is 

applied differently in CNNs (figure below), let us call it as TokenNorm
• This transform stops feature representations blowing up in magnitude as 

nonlinearities are repeatedly applied through neural networks. In 
transformers, LayerNorm is usually applied in the residual terms of both the 
MHSA and MLP stages In CNNs LayerNorm is conventionally applied to 

both the features and across the feature maps (i.e. 
across the height and width of the images). As the 
height and width dimension in CNNs corresponds to 
the sequence dimension, 1 . . .N of transformers, the 
term ‘LayerNorm’ is arguably used inconsistently 
(compare to previous’ slide figure). I would prefer to 
call the normalisation used in transformers ’token 
normalisation’ instead to avoid confusion. Batch 
normalisation is consistently defined



The transformer block
• Putting this all together, we have the standard 

transformer block shown schematically below

The transformer block. 
Residual connections are added to the 
multihead self-attention (MHSA) stage 
and the multi-layer perceptron (MLP) 
stage
Layer normalization is also applied to the 
inputs of both the MHSA and the
MLP. They are then stacked.
This block can then be repeated M times



Positional encoding
• The transformer treats the data as a set — if you permute 

the columns of X(0) (i.e. re-order the tokens in the input 
sequence) you permute all the representations throughout 
the network X(m) in the same way

• This is key for many applications since there may not be a 
natural way to order the original data into a sequence of 
tokens
• For example, there is no single ‘correct’ order to map image patches 

into a one dimensional sequence
• This presents a problem since positional information is key 

in many problems and the transformer has thrown it out
• The sequence ‘herbivores eat plants’ should not have the same 

representation (up to permutation) as ‘plants eat herbivores’
• Nor should an image have the same representation as one 

comprising the same patches randomly permuted



Positional encoding
• There is a simple fix for this: the location of each token 

within the original dataset should be included in the token 
itself, or through the way it is processed

• There are several options how to do this
• one is to include this information directly into the embedding X(0). 

E.g. by simply adding the position embedding (surprisingly this 
works) or concatenating

• The position information 
• can be fixed e.g. adding a vector of sinusoids of different frequencies 

and phases to encode position of a word in a sentence, OR 
• it can be a free parameter which is learned, as it often done in 

image transformers
• There are also approaches to include relative distance 

information between pairs of tokens by modifying the self-
attention mechanism



Auto-regressive language modeling
• In auto-regressive language modeling the goal is 

to predict the next word wn in the sequence given 
the previous words w1:n−1, that is to return 

p(wn=w | w1:n−1)
• Two modifications are required to use the 

transformer for this task 
• a change to the body to make the architecture efficient 

and 
• the addition of a head to make the predictions for the 

next word



Auto-regressive language modeling
• Modifications to the body: Auto-regressive masking. 

Applying the version of the transformer we have covered so 
far to auto-regressive prediction is computationally 
expensive, both during training and testing
• To see this, note that AR prediction requires making a sequence of 

predictions: you start by predicting the first word p(w1 = w), then 
you predict the second given the first p(w2 = w|w1), then the third 
word given the first two p(w3 = w|w1,w2), and so on until you 
predict the last item in the sequence p(wN = w|w1:N−1)

• This requires applying the transformer N−1 times with input 
sequences that grow by one word each time: w1,w1:2, . . . ,w1:N−1. 
This is very costly at both training-time and test-time



Auto-regressive language modeling
• Fortunately, there is a neat way around this by enabling 

the transformer to support incremental updates whereby if 
you add a new token to an existing sequence, you do not 
change the representation for the old tokens

• To make this property clear, we will define it 
mathematically: 

Let the output of the incremental transformer applied 
to the first n words be denoted 

X(n) = transformer-incremental(w1:n)
Then, the output of the incremental transformer when 
applied to n+1 words is 

X(n+1) = transformer-incremental(w1:n+1)



Auto-regressive language modeling
• In the incremental transformer X(n) = X(n+1)

1:D,1:n i.e., the 
representation of the old tokens has not changed by adding 
the new one

• If we have this property then:
1. At test-time auto-regressive generation can use incremental 

updates to compute the new representation efficiently
2. At training time we can make the N auto-regressive predictions 

for the whole sequence p(w1 = w)p(w2 = w|w1)p(w3 = w|w1,w2) . . . 
p(wN = w|w1:N−1) in a single forwards pass



Auto-regressive language modeling
• Unfortunately, the standard transformer introduced above 

does not have this property due to the form of the attention 
used
• Every token attends to every other token, so if we add a new token 

to the sequence then the representation for every token changes 
throughout the transformer

• However, if we mask the attention matrix so that it is 
upper-triangular An,n′ = 0 when n > n′ then the 
representation of each word only depends on the previous 
words

• This then gives us the incremental property as none of the 
other operations in the transformer operate across the 
sequence



Auto-regressive language modeling
• Adding a head. We’re now almost set to perform auto-

regressive language modeling:
• We apply the masked transformer block M times to the 

input sequence of words
• We then take the representation at token n−1, that is 

x(M)
n−1 which captures causal information in the sequence 

at this point, and generate the probability of the next word 
through a softmax operation

• Here, W is the vocabulary size, the wth word is w and {gw}W
w=1 are 

softmax weights that will be learned



Concluding remarks

• We have not talked about loss functions or training in any 
detail, but this is because rather standard deep learning 
approaches are used for these

• Briefly transformers are typically trained using the Adam
optimizer

• They are often slow to train compared to other 
architectures and typically get more unstable as training 
progresses
• Gradient clipping, 
• Decaying learning rate schedules, and 
• Increasing batch sizes through training 
help to mitigate these instabilities, but often they still 
persist.


