
1

Νευρο-Ασαφής Υπολογιστική
Neuro-Fuzzy Computing

Διδάσκων –
Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ
Πανεπιστήμιο Θεσσαλίας

Διάλεξη 24η: Transformers-I

2

Transformers

[Mathematical background]

What is a transformer
• The transformer is a neural network component that can

be used to learn useful representations of sequences or sets
of data-points

• The transformer has driven recent advances in natural
language processing, computer vision, and spatio-temporal
modeling

• In this lecture we aim for a mathematically precise,
intuitive, and clean description of the transformer
architecture
• We will not discuss training as this is rather standard

Preliminaries
Input data format: sets or sequences of tokens
• In order to apply a transformer, data must be converted

into a set or sequence of N tokens x(0)
n of dimension D

• The tokens can be collected into a matrix X(0) which is D×N
• To give two concrete examples:

• A passage of text can be broken up into a sequence of words or sub-
words, with each word being represented by a single unique vector

• An image can be broken up into a set of patches and each patch can
be mapped into a vector

The collection of tokens does
not need to have an order and
the transformer can handle
them as a set (where order
does not matter), rather than a
sequence

Preliminaries
• The embeddings can be fixed or they can be learned with

the rest of the parameters of the model
• e.g., the vectors representing words can be optimized or a learned

linear transform can be used to embed image patches

Encoding an image
An image is split into N patches.
Each patch is reshaped into a vector
by the vec operator
This vector is acted upon by a matrix
W which maps the patch to a D
dimensional vector x(0)

n
These vectors are collected together
into the input X(0)
The matrix W can be learned with the
rest of the transformer’s parameters

Preliminaries
• A sequence of tokens is a generic representation to use as

an input
• Many different types of data can be “tokenised” and

transformers are then immediately applicable rather than
requiring a bespoke architectures for each modality as was
previously the case
• CNNs for images
• RNNs for sequences,

• Moreover, this means that you don’t need bespoke
handcrafted architectures for mixing data of different
modalities — you can just throw them all into a big set of
tokens

Transformer’s goal
• The transformer will ingest the input data X(0) and return

a representation of the sequence in terms of another
matrix X(M) which is also of size D × N

• The slice xn = X(M)
:,n will be a vector of features

representing the sequence at the location of token n
• These representations can be used for:

• auto-regressive prediction of the next (n+1)th token
• global classification of the entire sequence (by pooling across the

whole representation)
• sequence-to-sequence or image-to-image prediction problems, etc

• M denotes the number of layers in the transformer

The transformer block
• The representation of the input sequence will be produced

by iteratively applying a transformer block
X(m) = transformer-block(X(m−1))

• The block itself comprises two stages:
• One operating across the sequence

• This first stage refines each feature independently according to
relationships between tokens across the sequence e.g., how much a
word in a sequence at position n depends on previous words at position
n′, or how much two different patches from an image are related to one
another

• This stage acts horizontally across rows of X(m−1)

• One operating across the features
• This second stage refines the features representing each token. This

stage acts vertically across a column of X(m−1). By repeatedly applying
the transformer block the representation at token n and feature d can
be shaped by information at token n′ and feature d′

Stage 1: self-attention across the seq
• The output of the first stage of the transformer block is

another D × N array Y(m)

• The output is produced by aggregating information across
the sequence independently for each feature using an
operation called attention

• Attention. Specifically, the output vector at location n,
denoted y(m)

n , is produced by a simple weighted average of
the input features at location n′ = 1 . . .N, denoted x(m−1)

n′

• The weighting is given by a so-called attention matrix
A(m)

n′,n which is of size N × N and normalises over its
columns

The need for transformers to store
and compute N×N attention arrays
can be a major computational
bottleneck, which makes processing
of long sequences challenging

Stage 1: self-attention across the seq
• Intuitively speaking A(m)

n′,n will take a high value for
locations in the sequence n′ which are of high relevance for
location n

• For irrelevant locations, it will take the value

• For example, all patches of a visual scene coming from a
single object might have high corresponding attention
values

• Relationship to Convolutional Neural Networks (CNNs). The attention
mechanism can recover convolutional filtering as a special case e.g. if x(0)

n is a 1D
regularly sampled time-series and A(m)

n′,n = A(m)
n′−n then the attention mechanism in

previous slide’s Equation becomes a convolution
• Unlike normal CNNs, these filters have full temporal support. Later we will see that the filters

themselves dynamically depend on the input, another difference from standard CNNs
• We will also see a similarity: transformers will use multiple attention maps in each layer in the

same way that CNNs use multiple filters (though typically transformers have fewer attention
maps than CNNs have channels)

Stage 1: self-attention across the seq
• We can write the relationship as a matrix multiplication

Y(m) = X(m-1)A(m) (Eq(2))

When training transformers to perform autoregressive prediction, e.g. predicting the next word in a
sequence based on the previous ones, a clever modification to the model can be used to accelerate training
and inference. This involves applying the transformer to the whole sequence, and using masking in the
attention mechanism (A(m) becomes an upper triangular matrix) to prevent future tokens affecting the
representation at earlier tokens. Causal predictions can then be made for the entire sequence in one
forward pass through the transformer

The shading in the
attention matrix
represent the elements
with a high value in
white and those with a
low value, near to 0, in
black

Stage 1: self-attention across the seq
• Self-attention. Where does the attention matrix come

from?
• The neat idea in the first stage of the transformer is that

the attention matrix is generated from the input sequence
itself – so-called self-attention

• A simple way of generating the attention matrix from the
input would be to measure the similarity between two
locations by the dot product between the features at those
two locations and then use a softmax function to handle
the normalisation i.e.,

Often you will see attention parameterised as

Dividing the exponents by the square-root of
the dimensionality of the projected vector
helps numerical stability, but here, we absorb
this term into U to improve clarity

Stage 1: self-attention across the seq
• However, this naïve approach entangles information about

the similarity between locations in the sequence with the
content of the sequence itself

• An alternative is to perform the same operation on a linear
transformation of the sequence, Uxn, so that:

• Typically, U will project to a lower dimensional space i.e., U is K×D
dimensional with K < D. In this way only some of the features in the input
sequence need be used to compute the similarity, the others being projected
out, thereby decoupling the attention computation from the content. However,
the numerator in this construction is symmetric. This could be a disadvantage.

Stage 1: self-attention across the seq
• Fortunately, it is simple to generalize the previous

attention mechanism to be asymmetric by applying two
different linear transformations to the original sequence

• The two quantities that are dot-producted together here
qn = Uqxn and kn = Ukxn are typically known as the queries
and the keys, respectively

• Together Equations 2 and 3 define the self-attention
mechanism

• Notice that the K × D matrices Uq and Uk are the only
parameters of this mechanism

Stage 1: self-attention across the seq
• Multi-head self-attention (MHSA). In the self-attention

mechanisms described earlier, there is one attention
matrix which describes the similarity of two locations
within the sequence

• This can act as a bottleneck in the architecture – it would
be useful for pairs of points to be similar in some
‘dimensions’ and different in others

• If attention matrices are viewed as a data-driven version of
filters in a CNN, then the need for more filters / channels
is clear

• Typical choices for the number of heads H is 8 or 16, lower
than typical numbers of channels in a CNN

Stage 1: self-attention across the seq
• In order to increase capacity of the first self-attention

stage, the transformer block applies H sets of self-attention
in parallel (termed H heads) and then linearly projects the
results down to the D × N array required for further
processing

• This slight generalization is called multi-head self-
attention

• The computational cost of multi-head self-attention is usually
dominated by the matrix multiplication involving the attention matrix
and is therefore O(H x D x N2)

Stage 1: self-attention across the seq

• Here the H matrices V(m)
h which are D×D project the H

self-attention stages down to the required output
dimensionality D

Stage 1: self-attention across the seq
• The product of the matrices V(m)

h X(m−1) is related to the so-
called values which are normally introduced in descriptions
of self-attention along side queries and keys

• In the usual presentation, there is a redundancy between
the linear transform used to compute the values and the
linear projection at the end of the multi-head self-
attention, so we have not explicitly introduced them here

• The standard presentation can be recovered by setting Vh
to be a low-rank matrix Vh = UhUv,h where Uh is DxK and
Uv,h is KxD

• Typically K is set to K = D/H so that changing the number
of heads leads to models with similar numbers of
parameters and computational demands

Stage 1: self-attention across the seq

• The addition of the matrices V(m)
h , and the fact that

retaining just the diagonal elements of the attention
matrix A(m) will interact the signal instantaneously with
itself, does mean there is some cross-feature processing in
multi-head self-attention, as opposed to it containing
purely cross-sequence processing
• However, the stage has limited capacity for this type of processing

and it is the job of the second stage to address this

Stage 1: self-attention across the seq

• MHSA schematically. Multi-head attention comprises
the following parameters θ = {Uq,h, Uk,h, Vh}H

h=1 i.e., 3H
matrices of size K × D, K × D, and D × D respectively

Stage-2: MLP across features
• The second stage of processing in the transformer block

operates across features, refining the representation using
a non-linear transform

• To do this, we simply apply a multi-layer perceptron (MLP)
to the vector of features at each location n in the sequence,

• Notice that the parameters of the MLP, θ, are the same for
each location n

• The MLPs used typically have one or two hidden-layers with dimension equal
to the number of features D (or larger)

• The computational cost of this step is therefore roughly N×D×D
• If the feature embedding size approaches the length of the sequence D ≈ N, the

MLPs can start to dominate the computational complexity (e.g., this can be the
case for vision transformers which embed large patches)

The transformer block
• We can now stack MHSA and MLP layers to produce the

transformer block
• Rather than doing this directly, we make use of two ubiquitous

transformations to produce a more stable model that trains easier:
• residual connections, and
• normalization

• Residual connections. The use of residual connections is
widespread across machine learning as they make
initialization simple, have a sensible inductive bias
towards simple functions, and stabilize learning

• Instead of directly specifying a function x(m) = fθ(x(m−1)), the
idea is to parameterize it in terms of an identity mapping
and a residual term

x(m)= x(m-1) + resθ(x(m-1))

The transformer block

• Equivalently, this can be viewed as modeling the
differences between the representation x(m) − x(m−1) =
resθ(x(m−1)) and will work well when the function that is
being modeled is close to identity

• This type of parameterization is used for both the MHSA
and MLP stages in the transformer, with the idea that
each applies a mild non-linear transformation to the
representation

• Over many layers, these mild non-linear transformations
compose to form large transformations

The transformer block
• Token normalization. Normalization, such as

LayerNorm and BatchNorm, is a means to stabilize
learning

• There are many potential choices for how to compute
normalization statistics (see figure below), but the
standard approach is use LayerNorm which normalizes
each token separately, removing the mean and dividing by
the standard deviation Transformers perform layer normalization

which normalizes the mean and standard
deviation of each individual token in each
sequence in the batch. Batch
normalization, which normalizes over the
feature and batch dimension together, is
found to be far less stable. Other flavors
of normalization are possible and
potentially under-explored e.g., instance
normalization would normalize across the
sequence dimension instead.

The transformer block

mean(xn)= 1/D Σd=1
D xd,n and var(xn)= 1/D Σd=1

D (xd,n – mean(xn))2

• The two parameters γd and βd are a learned scale and shift
• As this transform normalizes each token individually and as LayerNorm is

applied differently in CNNs (figure below), let us call it as TokenNorm
• This transform stops feature representations blowing up in magnitude as

nonlinearities are repeatedly applied through neural networks. In
transformers, LayerNorm is usually applied in the residual terms of both the
MHSA and MLP stages In CNNs LayerNorm is conventionally applied to

both the features and across the feature maps (i.e.
across the height and width of the images). As the
height and width dimension in CNNs corresponds to
the sequence dimension, 1 . . .N of transformers, the
term ‘LayerNorm’ is arguably used inconsistently
(compare to previous’ slide figure). I would prefer to
call the normalisation used in transformers ’token
normalisation’ instead to avoid confusion. Batch
normalisation is consistently defined

The transformer block
• Putting this all together, we have the standard

transformer block shown schematically below

The transformer block.
Residual connections are added to the
multihead self-attention (MHSA) stage
and the multi-layer perceptron (MLP)
stage
Layer normalization is also applied to the
inputs of both the MHSA and the
MLP. They are then stacked.
This block can then be repeated M times

Positional encoding
• The transformer treats the data as a set — if you permute

the columns of X(0) (i.e. re-order the tokens in the input
sequence) you permute all the representations throughout
the network X(m) in the same way

• This is key for many applications since there may not be a
natural way to order the original data into a sequence of
tokens
• For example, there is no single ‘correct’ order to map image patches

into a one dimensional sequence
• This presents a problem since positional information is key

in many problems and the transformer has thrown it out
• The sequence ‘herbivores eat plants’ should not have the same

representation (up to permutation) as ‘plants eat herbivores’
• Nor should an image have the same representation as one

comprising the same patches randomly permuted

Positional encoding
• There is a simple fix for this: the location of each token

within the original dataset should be included in the token
itself, or through the way it is processed

• There are several options how to do this
• one is to include this information directly into the embedding X(0).

E.g. by simply adding the position embedding (surprisingly this
works) or concatenating

• The position information
• can be fixed e.g. adding a vector of sinusoids of different frequencies

and phases to encode position of a word in a sentence, OR
• it can be a free parameter which is learned, as it often done in

image transformers
• There are also approaches to include relative distance

information between pairs of tokens by modifying the self-
attention mechanism

Auto-regressive language modeling
• In auto-regressive language modeling the goal is

to predict the next word wn in the sequence given
the previous words w1:n−1, that is to return

p(wn=w | w1:n−1)
• Two modifications are required to use the

transformer for this task
• a change to the body to make the architecture efficient

and
• the addition of a head to make the predictions for the

next word

Auto-regressive language modeling
• Modifications to the body: Auto-regressive masking.

Applying the version of the transformer we have covered so
far to auto-regressive prediction is computationally
expensive, both during training and testing
• To see this, note that AR prediction requires making a sequence of

predictions: you start by predicting the first word p(w1 = w), then
you predict the second given the first p(w2 = w|w1), then the third
word given the first two p(w3 = w|w1,w2), and so on until you
predict the last item in the sequence p(wN = w|w1:N−1)

• This requires applying the transformer N−1 times with input
sequences that grow by one word each time: w1,w1:2, . . . ,w1:N−1.
This is very costly at both training-time and test-time

Auto-regressive language modeling
• Fortunately, there is a neat way around this by enabling

the transformer to support incremental updates whereby if
you add a new token to an existing sequence, you do not
change the representation for the old tokens

• To make this property clear, we will define it
mathematically:

Let the output of the incremental transformer applied
to the first n words be denoted

X(n) = transformer-incremental(w1:n)
Then, the output of the incremental transformer when
applied to n+1 words is

X(n+1) = transformer-incremental(w1:n+1)

Auto-regressive language modeling
• In the incremental transformer X(n) = X(n+1)

1:D,1:n i.e., the
representation of the old tokens has not changed by adding
the new one

• If we have this property then:
1. At test-time auto-regressive generation can use incremental

updates to compute the new representation efficiently
2. At training time we can make the N auto-regressive predictions

for the whole sequence p(w1 = w)p(w2 = w|w1)p(w3 = w|w1,w2) . . .
p(wN = w|w1:N−1) in a single forwards pass

Auto-regressive language modeling
• Unfortunately, the standard transformer introduced above

does not have this property due to the form of the attention
used
• Every token attends to every other token, so if we add a new token

to the sequence then the representation for every token changes
throughout the transformer

• However, if we mask the attention matrix so that it is
upper-triangular An,n′ = 0 when n > n′ then the
representation of each word only depends on the previous
words

• This then gives us the incremental property as none of the
other operations in the transformer operate across the
sequence

Auto-regressive language modeling
• Adding a head. We’re now almost set to perform auto-

regressive language modeling:
• We apply the masked transformer block M times to the

input sequence of words
• We then take the representation at token n−1, that is

x(M)
n−1 which captures causal information in the sequence

at this point, and generate the probability of the next word
through a softmax operation

• Here, W is the vocabulary size, the wth word is w and {gw}W
w=1 are

softmax weights that will be learned

Concluding remarks

• We have not talked about loss functions or training in any
detail, but this is because rather standard deep learning
approaches are used for these

• Briefly transformers are typically trained using the Adam
optimizer

• They are often slow to train compared to other
architectures and typically get more unstable as training
progresses
• Gradient clipping,
• Decaying learning rate schedules, and
• Increasing batch sizes through training
help to mitigate these instabilities, but often they still
persist.

