
1

Νεςπο-Ασαυήρ Υπολογιστική

Neuro-Fuzzy Computing

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 23η

2

Modern RNN:
Gated Recurrent Units (GRU)

Long-Short Term Memory (LSTM)

Gated Recurrent Units

• We have found that long products of matrices can lead to vanishing or

divergent gradients

• Let us briefly think about what such gradient anomalies mean:

• We might encounter a situation where an early observation is highly

significant for predicting all future observations

• Consider the somewhat contrived case where the first observation contains a

checksum and the goal is to discern whether the checksum is correct at the end

of the sequence

• We might encounter situations where some symbols carry no pertinent

observation

• For instance, when parsing a web page there might be auxiliary HTML code

that is irrelevant for the purpose of assessing the sentiment conveyed on the

page. We would like to have some mechanism for skipping such symbols in the

latent state representation

• We might encounter situations where there is a logical break between

parts of a sequence

• For instance, there might be a transition between chapters in a book, or a

transition between a bear and a bull market for securities. In this case it would

be nice to have a means of resetting our internal state representation.

Gating the hidden state

• The key distinction between regular RNNs and GRUs is

that the latter support gating of the hidden state

• This means that we have dedicated mechanisms for when

a hidden state should be updated and also when it should

be reset

• These mechanisms are learned and they address the

concerns listed earlier

• For instance, if the first symbol is of great importance we will

learn not to update the hidden state after the first observation

• Likewise, we will learn to skip irrelevant temporary observations

• Last, we will learn to reset the latent state whenever needed

Reset gates and Update gates

• The first thing we need to introduce are reset and update

gates

• We engineer them to be vectors with entries in (0; 1) such that we

can perform convex combinations

• For instance, a reset variable would allow us to control how much of

the previous state we might still want to remember

• Likewise, an update variable would allow us to control how much of

the new state is just a copy of the old state

• We begin by engineering gates to generate these variables

Reset gates and Update gates

The inputs for both reset

and update gates in a GRU,

given the current time step

input Xt and the hidden

state of the previous time

step Ht-1. The output is

given by a fully connected

layer with a sigmoid as its

activation function

The reset gate Rt and

update gate Zt are

computed as follows:

Reset gates in action

• We begin by integrating the reset gate with a regular latent state

updating mechanism. In a conventional RNN, we would have an

hidden state update of the form:

• This is essentially identical to the previous discussion, albeit with a

nonlinearity in the form of tanh to ensure that the values of the

hidden states remain in the interval (-1, 1). If we want to be able to

reduce the influence of the previous states we can multiply Ht-1 with

Rt elementwise. Whenever the entries in the reset gate Rt are close to

1, we recover a conventional RNN. For all entries of the reset gate Rt

that are close to 0, the hidden state is the result of an MLP with Xt as

input. Any pre-existing hidden state is thus reset to defaults. This

leads to the following candidate hidden state (it is a candidate since

we still need to incorporate the action of the update gate)

Reset gates in action

Candidate hidden state computation in a GRU. The multiplication is carried out

elementwise.

Update gates in action

• Next we need to incorporate the effect of the update gate Zt, as shown

in next slide’s figure. This determines the extent to which the new

state Ht is just the old state Ht-1 and by how much the new candidate

state \tilde{H}t is used. The gating variable Zt can be used for this

purpose, simply by taking elementwise convex combinations between

both candidates. This leads to the final update equation for the GRU

• Whenever the update gate Zt is close to 1, we simply retain the old

state. In this case the information from Xt is essentially ignored,

effectively skipping time step t in the dependency chain. In contrast,

whenever Zt is close to 0, the new latent state Ht approaches the

candidate latent state \tilde{H}t. These designs can help us cope with

the vanishing gradient problem in RNNs and better capture

dependencies for time series with large time step distances. In

summary, GRUs have the following two distinguishing features:

• Reset gates help capture short-term dependencies in time series

• Update gates help capture long-term dependencies in time series

Gated Recurrent Units

Hidden state computation in a GRU. The multiplication is carried out elementwise

Long-Short Term Memory

• LSTM shares many of the properties of the Gated

Recurrent Unit (GRU). Interestingly, LSTMʼs design is

slightly more complex than GRU, but predates GRU by

almost two decades. Arguably it is inspired by logic gates

of a computer

• To control a memory cell we need a number of gates

• One gate is needed to read out the entries from the cell (as

opposed to reading any other cell). We will refer to this as the

output gate

• A second gate is needed to decide when to read data into the cell.

We refer to this as the input gate

• Last, we need a mechanism to reset the contents of the cell,

governed by a forget gate. The motivation for such a design is the

same as before, namely to be able to decide when to remember and

when to ignore inputs in the latent state via a dedicated

mechanism

Long-Short Term Memory

• Three gates are introduced in LSTMs: the input gate, the

forget gate, and the output gate. In addition to that we

will introduce the memory cell that has the same shape as

the hidden state

• Strictly speaking this is just a fancy version of a hidden state,

engineered to record additional information.

LSTM: Input, forget and output gates

• Just like with GRUs, the data feeding into the LSTM gates is the

input at the current time step Xt and the hidden state of the previous

time step Ht-1. These inputs are processed by a fully connected layer

and a sigmoid activation function to compute the values of input,

forget and output gates. As a result, the three gatesʼ all output values

are in the range of [0, 1]

LSTM: Input, forget and output gates

• We assume that there are h hidden units. The input is Xt

and the hidden state of the last time step is Ht-1.

Correspondingly, the gates are defined as follows: the

input gate is It, the forget gate is Ft, and the output gate

is Ot. They are calculated as follows:

LSTM: Candidate memory cell

• Next we design the memory cell. Since we have not specified the

action of the various gates yet, we first introduce the candidate

memory cell \widetilde{C}t. Its computation is similar to the three

gates described above, but using a tanh function with a value range

for [-1, 1] as the activation function. This leads to the following

equation at time step t

LSTM: Memory cell

• In LSTMs we have two parameters to govern input and forgetting: It

which governs how much we take new data into account via

\widetilde{C}t and the forget parameter Ft which addresses how

much of the old memory cell content Ct-1 we retain. Using the same

pointwise multiplication trick as before, we arrive at the following

update equation:

• If the forget gate is always approximately 1 and the input gate is always

approximately 0, the past memory cells Ct-1 will be saved over time and passed to the

current time step. This design was introduced to alleviate the vanishing gradient

problem and to better capture dependencies for time series with long range

dependencies

LSTM: Memory cell

LSTM: Hidden states

• Last, we need to define how to compute the hidden state

Ht. This is where the output gate comes into play. In

LSTM it is simply a gated version of the tanh of the

memory cell. This ensures that the values of Ht are

always in the interval (-1, 1)
• Whenever the output gate is 1 we effectively pass all memory information

through to the predictor, whereas for output 0 we retain all the

information only within the memory cell and perform no further

processing

LSTM: Hidden states

20

Simplifying LSTM

Unrolled RNN

LSTM memory cell

• LSTMs also have

this chain like

structure, but the

repeating module

has a different

structure;

Instead of having

a single neural

network layer,

there are four.

• Terminology:

LSTM: Cell state vector

• The key to LSTMs is the cell state, the horizontal line running through the top of the

diagram. The cell state runs straight down the entire chain, with only some minor

linear interactions. It’s very easy for information to just flow along it unchanged

• The LSTM does have the ability to remove or add information to the cell state,

carefully regulated by structures called gates
• Gates are a way to optionally let information through. They are composed out of a sigmoid neural net layer

and a pointwise multiplication operation

• The sigmoid layer outputs numbers between zero and one, describing how much of each component should be let

through. A value of zero means “let nothing through,” while a value of one means “let everything through!”

LSTM: Forget gate

• The first step in LSTM is to decide what information we’re going to

throw away from the cell state. This decision is made by a sigmoid

layer called the “forget gate layer”. It looks at ht−1 and xt, and outputs

a number between 0 and 1 for each number in the cell state Ct−1. A 1

represents “completely keep this” while a 0 represents “completely get rid of

this”

LSTM: Input gate

• The next step is to decide what new information we’re going to store

in the cell state. This has two parts. First, a sigmoid layer called the

“input gate layer” decides which values we’ll update. Next, a tanh

layer creates a vector of new candidate values, \tilde{C}t, that could

be added to the state. In the next step, we’ll combine these two to

create an update to the state

LSTM: Memory update

• It’s now time to update the old cell state, Ct−1, into the new cell state

Ct. The previous steps already decided what to do, we just need to

actually do it

• We multiply the old state by ft, forgetting the things we decided to

forget earlier. Then we add it∗\tilde{C}t. This is the new candidate

values, scaled by how much we decided to update each state value

LSTM: Output gate

• Finally, we need to decide what we’re going to output. This output

will be based on our cell state, but will be a filtered version. First, we

run a sigmoid layer which decides what parts of the cell state we’re

going to output. Then, we put the cell state through tanh (to push the

values to be between −1 and 1) and multiply it by the output of the

sigmoid gate, so that we only output the parts we decided to

LSTM Memory Cell Summary

Sequence of LSTM Memory Cells

