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Modern RNN: 
Gated Recurrent Units (GRU) 

Long-Short Term Memory (LSTM) 



Gated Recurrent Units 

• We have found that long products of matrices can lead to vanishing or 

divergent gradients 

• Let us briefly think about what such gradient anomalies mean: 

• We might encounter a situation where an early observation is highly 

significant for predicting all future observations 

• Consider the somewhat contrived case where the first observation contains a 

checksum and the goal is to discern whether the checksum is correct at the end 

of the sequence 

• We might encounter situations where some symbols carry no pertinent 

observation 

• For instance, when parsing a web page there might be auxiliary HTML code 

that is irrelevant for the purpose of assessing the sentiment conveyed on the 

page. We would like to have some mechanism for skipping such symbols in the 

latent state representation 

• We might encounter situations where there is a logical break between 

parts of a sequence 

• For instance, there might be a transition between chapters in a book, or a 

transition between a bear and a bull market for securities. In this case it would 

be nice to have a means of resetting our internal state representation. 



Gating the hidden state 

• The key distinction between regular RNNs and GRUs is 

that the latter support gating of the hidden state 

• This means that we have dedicated mechanisms for when 

a hidden state should be updated and also when it should 

be reset 

• These mechanisms are learned and they address the 

concerns listed earlier 

• For instance, if the first symbol is of great importance we will 

learn not to update the hidden state after the first observation 

• Likewise, we will learn to skip irrelevant temporary observations 

• Last, we will learn to reset the latent state whenever needed 



Reset gates and Update gates 

• The first thing we need to introduce are reset and update 

gates 

• We engineer them to be vectors with entries in (0; 1) such that we 

can perform convex combinations 

• For instance, a reset variable would allow us to control how much of 

the previous state we might still want to remember 

• Likewise, an update variable would allow us to control how much of 

the new state is just a copy of the old state 

 

• We begin by engineering gates to generate these variables 



Reset gates and Update gates 

The inputs for both reset 

and update gates in a GRU, 

given the current time step 

input Xt and the hidden 

state of the previous time 

step Ht-1. The output is 

given by a fully connected 

layer with a sigmoid as its 

activation function 

 

 

 

 

The reset gate Rt and 

update gate Zt are 

computed as follows: 



Reset gates in action 

• We begin by integrating the reset gate with a regular latent state 

updating mechanism. In a conventional RNN, we would have an 

hidden state update of the form: 

 

 

• This is essentially identical to the previous discussion, albeit with a 

nonlinearity in the form of tanh to ensure that the values of the 

hidden states remain in the interval (-1, 1). If we want to be able to 

reduce the influence of the previous states we can multiply Ht-1 with 

Rt elementwise. Whenever the entries in the reset gate Rt are close to 

1, we recover a conventional RNN. For all entries of the reset gate Rt 

that are close to 0, the hidden state is the result of an MLP with Xt as 

input. Any pre-existing hidden state is thus reset to defaults. This 

leads to the following candidate hidden state (it is a candidate since 

we still need to incorporate the action of the update gate) 



Reset gates in action 

Candidate hidden state computation in a GRU. The multiplication is carried out 

elementwise. 



Update gates in action 

• Next we need to incorporate the effect of the update gate Zt, as shown 

in next slide’s figure. This determines the extent to which the new 

state Ht is just the old state Ht-1 and by how much the new candidate 

state \tilde{H}t is used. The gating variable Zt can be used for this 

purpose, simply by taking elementwise convex combinations between 

both candidates. This leads to the final update equation for the GRU 

 

• Whenever the update gate Zt is close to 1, we simply retain the old 

state. In this case the information from Xt is essentially ignored, 

effectively skipping time step t in the dependency chain. In contrast, 

whenever Zt is close to 0, the new latent state Ht approaches the 

candidate latent state \tilde{H}t. These designs can help us cope with 

the vanishing gradient problem in RNNs and better capture 

dependencies for time series with large time step distances. In 

summary, GRUs have the following two distinguishing features: 

• Reset gates help capture short-term dependencies in time series 

• Update gates help capture long-term dependencies in time series 



Gated Recurrent Units 

Hidden state computation in a GRU. The multiplication is carried out elementwise 



Long-Short Term Memory 

• LSTM shares many of the properties of the Gated 

Recurrent Unit (GRU). Interestingly, LSTMʼs design is 

slightly more complex than GRU, but predates GRU by 

almost two decades. Arguably it is inspired by logic gates 

of a computer 

• To control a memory cell we need a number of gates 

• One gate is needed to read out the entries from the cell (as 

opposed to reading any other cell). We will refer to this as the 

output gate 

• A second gate is needed to decide when to read data into the cell. 

We refer to this as the input gate 

• Last, we need a mechanism to reset the contents of the cell, 

governed by a forget gate. The motivation for such a design is the 

same as before, namely to be able to decide when to remember and 

when to ignore inputs in the latent state via a dedicated 

mechanism 



Long-Short Term Memory 

• Three gates are introduced in LSTMs: the input gate, the 

forget gate, and the output gate. In addition to that we 

will introduce the memory cell that has the same shape as 

the hidden state 

• Strictly speaking this is just a fancy version of a hidden state, 

engineered to record additional information. 

 



LSTM: Input, forget and output gates 

• Just like with GRUs, the data feeding into the LSTM gates is the 

input at the current time step Xt and the hidden state of the previous 

time step Ht-1. These inputs are processed by a fully connected layer 

and a sigmoid activation function to compute the values of input, 

forget and output gates. As a result, the three gatesʼ all output values 

are in the range of [0, 1] 



LSTM: Input, forget and output gates 

• We assume that there are h hidden units. The input is Xt 

and the hidden state of the last time step is Ht-1. 

Correspondingly, the gates are defined as follows: the 

input gate is It, the forget gate is Ft, and the output gate 

is Ot. They are calculated as follows: 



LSTM: Candidate memory cell 

• Next we design the memory cell. Since we have not specified the 

action of the various gates yet, we first introduce the candidate 

memory cell \widetilde{C}t. Its computation is similar to the three 

gates described above, but using a tanh function with a value range 

for [-1, 1] as the activation function. This leads to the following 

equation at time step t 



LSTM: Memory cell 

• In LSTMs we have two parameters to govern input and forgetting: It 

which governs how much we take new data into account via 

\widetilde{C}t and the forget parameter Ft which addresses how 

much of the old memory cell content Ct-1 we retain. Using the same 

pointwise multiplication trick as before, we arrive at the following 

update equation: 

 

 

 

• If the forget gate is always approximately 1 and the input gate is always 

approximately 0, the past memory cells Ct-1 will be saved over time and passed to the 

current time step. This design was introduced to alleviate the vanishing gradient 

problem and to better capture dependencies for time series with long range 

dependencies 



LSTM: Memory cell 



LSTM: Hidden states 

• Last, we need to define how to compute the hidden state 

Ht. This is where the output gate comes into play. In 

LSTM it is simply a gated version of the tanh of the 

memory cell. This ensures that the values of Ht are 

always in the interval (-1, 1) 
• Whenever the output gate is 1 we effectively pass all memory information 

through to the predictor, whereas for output 0 we retain all the 

information only within the memory cell and perform no further 

processing 



LSTM: Hidden states 



20 

Simplifying LSTM 



Unrolled RNN 



LSTM memory cell 

• LSTMs also have 

this chain like 

structure, but the 

repeating module 

has a different 

structure; 

Instead of having 

a single neural 

network layer, 

there are four. 

• Terminology: 



LSTM: Cell state vector 

• The key to LSTMs is the cell state, the horizontal line running through the top of the 

diagram. The cell state runs straight down the entire chain, with only some minor 

linear interactions. It’s very easy for information to just flow along it unchanged 

• The LSTM does have the ability to remove or add information to the cell state, 

carefully regulated by structures called gates 
• Gates are a way to optionally let information through. They are composed out of a sigmoid neural net layer 

and a pointwise multiplication operation 

• The sigmoid layer outputs numbers between zero and one, describing how much of each component should be let 

through. A value of zero means “let nothing through,” while a value of one means “let everything through!” 



LSTM: Forget gate 

• The first step in LSTM is to decide what information we’re going to 

throw away from the cell state. This decision is made by a sigmoid 

layer called the “forget gate layer”. It looks at ht−1 and xt, and outputs 

a number between 0 and 1 for each number in the cell state Ct−1. A 1 

represents “completely keep this” while a 0 represents “completely get rid of 

this” 



LSTM: Input gate 

• The next step is to decide what new information we’re going to store 

in the cell state. This has two parts. First, a sigmoid layer called the 

“input gate layer” decides which values we’ll update. Next, a tanh 

layer creates a vector of new candidate values, \tilde{C}t, that could 

be added to the state. In the next step, we’ll combine these two to 

create an update to the state 



LSTM: Memory update 

• It’s now time to update the old cell state, Ct−1, into the new cell state 

Ct. The previous steps already decided what to do, we just need to 

actually do it 

• We multiply the old state by ft, forgetting the things we decided to 

forget earlier. Then we add it∗\tilde{C}t. This is the new candidate 

values, scaled by how much we decided to update each state value 



LSTM: Output gate 

• Finally, we need to decide what we’re going to output. This output 

will be based on our cell state, but will be a filtered version. First, we 

run a sigmoid layer which decides what parts of the cell state we’re 

going to output. Then, we put the cell state through tanh (to push the 

values to be between −1 and 1) and multiply it by the output of the 

sigmoid gate, so that we only output the parts we decided to 



LSTM Memory Cell Summary 



Sequence of LSTM Memory Cells 


