
1 

Νεςπο-Ασαυήρ Υπολογιστική 

Neuro-Fuzzy Computing 
 

 
 

Διδάσκων – 

        Δημήτριος Κατσαρός 

 
          

 
@ Τμ. ΗΜΜΥ 

     Πανεπιστήμιο Θεσσαλίαρ 

Διάλεξη 22η 



Recall LDDNs 

• We introduced a framework for representing general dynamic 

networks, and called it Layered Digital Dynamic Networks 

(LDDN) 



Recall LDDNs 

• The general equations for the computation of the net 

input nm(t) for layer m of an LDDN are: 

 

 

where pl(t) is the l-th input vector at time t, IWm,l is the input weight 

between input l and layer m, LWm,l is the layer weight between layer l 

and layer m, bm is the bias vector for layer m, DLm,l is the set of all 

delays in the tapped delay line between Layer l and Layer m, DIm,l is 

the set of all delays in the tapped delay line between Input l and 

Layer m, Im is the set of indices of input vectors that connect to layer 

m, and Lm
f is the set of indices of layers that directly connect forward 

to layer m 

 

The output of layer m is then computed as: 

am(t) = fm(nm(t)) 

 



Principles of Dynamic Learning 

• Having made this initial investigation of  RNNs in the 

previous lecture, let’s consider the slightly more complex 

dynamic network (than a two-layer RNN): 

• It consists of a static multilayer network with a single feedback 

loop added from the output of the network to the input of the 

network through a single delay 

• The vector x represents all of the network parameters (weights 

and biases), and the vector a(t) represents the output of the 

multilayer network at time step t 



Principles of Dynamic Learning 

• As with a standard multilayer network, we want to adjust 

the weights and biases of the network to minimize the 

performance index, F(x), which is normally chosen to be the mean squared error 

• With dynamic networks, we need to modify the standard 

backpropagation algorithm 

• There are two different approaches to this problem. They 

both use the chain rule, but are implemented in different 

ways: 

 

    or 

 

 
where the superscript e indicates an explicit derivative, not accounting for 

indirect effects through time 

Equation A1 

Equation B1 



Principles of Dynamic Learning 

• The explicit derivatives can be obtained with the standard 

backpropagation algorithm  

• To find the complete derivatives that are required in the 

previous slide’s equations, we need the additional 

equations: 

 

 

and 

 

 

 

 

 

Equation A2 

Equation B2 



Principles of Dynamic Learning 

• Equations A1 and A2 make up the real-time recurrent 

learning (RTRL) algorithm 

• Note that the key term is: 

 

 

which must be propagated forward through time 

• Equations B1 and B2 make up the backpropagation-

through-time (BPTT) algorithm 

• Note that the key term is: 

 

 

which must be propagated backward through time 

 

 

 

 

 



Principles of Dynamic Learning 

• In general, the RTRL algorithm requires somewhat more 

computation than the BPTT algorithm to compute the 

gradient 

• However, the BPTT algorithm cannot be conveniently 

implemented in real time, since the outputs must be 

computed for all time steps, and then the derivatives 

must be backpropagated back to the initial time point 

• The RTRL algorithm is well suited for real time 

implementation, since the derivatives can be calculated 

at each time step 



Dynamic Backpropagation 

• Now we will develop general RTRL and BPTT algorithms 

for dynamic networks represented in the LDDN 

framework: this development will involve generalizing 

Equations A1 & A2, and B1 & B2 

• In order to simplify the description of the training 

algorithm, some layers of the LDDN will be assigned as 

network outputs, and some will be assigned as network 

inputs 

• A layer is an input layer if it has an input weight, or if it 

contains any delays with any of its weight matrices. A 

layer is an output layer if its output will be compared to a 

target during training, or if it is connected to an input 

layer through a matrix that has any delays associated 

with it 



Dynamic Backpropagation 

• For example, the LDDN shown in Slide-2’s figure has two 

output layers (1 and 3) and two input layers (1 and 2). For 

this network the simulation order is 1-2-3, and the 

backpropagation order is 3-2-1 

• As an aid in later derivations, we will define U as the set 

of all output layer numbers and X as the set of all input 

layer numbers. For the LDDN mentioned, U={1,3} and 

X={1,2} 

 

• The general equations for simulating an arbitrary LDDN 

network are given in the Slide-3 equations. At each time 

point, these equations are iterated forward through the 

layers, as m is incremented through the simulation order. 

Time is then incremented from t=1 to Q 



11 

Real-Time Recurrent 

Learning for LDDNs 



Real Time Recurrent Learning: Eq. A1 

• We will generalize the RTRL algorithm, given in 

Equations A1 and A2, for LDDN networks. This development 

will follow in many respects the development of the backpropagation 

algorithm for static multilayer networks 

• The first step in developing the RTRL algorithm is to 

generalize Equation A1. For the general LDDN network, 

we can calculate the terms of the gradient by using the 

chain rule, as in: 

 

 

• If we compare this equation with Equation A1, we notice that in 

addition to each time step, we also have a term in the sum for each 

output layer. However, if the performance index F(x) is not explicitly 

a function of a specific output au(t), then that explicit derivative will 

be zero 



Real Time Recurrent Learning: Eq. A2 

• The next step of the development of the RTRL algorithm 

is the generalization of Equation A2. Again, we use the 

chain rule: 

 

 

• In Equation A2 we only had one delay in the system. Now 

we need to account for each output and also for the 

number of times each output is delayed before it is input 

to another layer. That is the reason for the first two 

summations in the above equation. These equations must 

be updated forward in time, as t is varied from 1 to Q.  

 

• The terms                are generally set to zero for t ≤ 0 



Real Time Recurrent Learning: Eq. A2 

• To implement the previous slide’s equation, we need to 

compute the terms: 

 

 

• To find the second term on the right, we can use: 

Equation C 



Real Time Recurrent Learning: Eq. A2 

• We can now write: 

 

 

• If we define the following sensitivity term: 

 

 

which can be used to make up the following matrix: 



Real Time Recurrent Learning: Eq. A2 

• Then we can write Equation C as follows: 

 

 

 

•  or in matrix form 

 

 

 

• Therefore, Slide-13’s equation can be written: 



Real Time Recurrent Learning: Eq. A2 

• Many of the terms in the summation on the right hand 

side of the previous slide’s equation will be zero and will 

not have to be computed 

• To take advantage of these efficiencies, we introduce some 

indicator sets. They are sets that tell us for which layers 

the weights and the sensitivities are nonzero 

 

 



Real Time Recurrent Learning: Eq. A2 

• The first type of indicator set contains all of the output layers that 

connect to a specified layer x (which will always be an input layer) 

with at least some nonzero delay: 

 

• The second type of indicator set contains the input layers that have a 

nonzero sensitivity with a specified layer u: 

 

• When Su,x is nonzero, there is a static connection from layer x to output 

layer u 

• The third type of indicator set contains the layers that have a nonzero 

sensitivity with a specified layer u: 

 

 

• The difference between EX
S(u) and ES(u) is that EX

S(u) contains only input 

layers. ES(u) will not be needed in the simplification of the 1st equation of 

Slide-16, but it will be used for the calculation of sensitivities later 



Real Time Recurrent Learning: Eq. A2 

• Using the first two equations in the previous slide, we can 

rearrange the order of the summations in the last 

equation of Slide16 and sum only over nonzero terms: 

 

 

 

• The above equation makes up the generalization of 

Equation A2 for the LDDN network 

 

• It remains to compute the sensitivity matrices Su,m(t) and 

the explicit derivatives eau(t)/w, which are described 

next 



Real Time Recurrent Learning: 

Sensitivities 
• In order to compute the elements of the sensitivity 

matrix, we use a form of standard static backpropagation 

• The sensitivities at the outputs of the network can be 

computed as: 

 

 

 

 

• or, in matrix form:  

Su,m(t) = F’u(nu(t)) 



Real Time Recurrent Learning: 

Sensitivities 
where F’u(nu(t)) is defined as follows: 

 

 

 

 

• The matrices Su,m(t) can be computed by backpropagating 

through the network, from each network output, using 

 

 

where m is decremented from u through the 

backpropagation order, and Lb
m is the set of indices of 

layers that are directly connected backwards to layer m 

(or to which layer m connects forward) and that contain 

no delays in the connection 



Real Time Recurrent Learning: Explicit 

Derivatives 
• We also need to compute the explicit derivatives: 

 

 

• Using the chain rule of calculus, we can derive the 

following expansion of the previous equation for input 

weights: 

 

 

 

• In vector form, we can write: 



Real Time Recurrent Learning: Explicit 

Derivatives 
• In matrix form, we have: 

 

 

• and in a similar way we can derive the derivatives for 

layer weights and biases: 

 

 

 

 
 

where the vec operator transforms a matrix into a vector 

by stacking the columns of the matrix one underneath the 

other, and A  B is the Kronecker product of A and B 

 



24 

Backpropagation Through 

Time for LDDNs 



Recall: Principles of Dynamic Learning 

• As with a standard multilayer network, we want to adjust 

the weights and biases of the network to minimize the 

performance index, F(x), which is normally chosen to be the mean squared error 

• With dynamic networks, we need to modify the standard 

backpropagation algorithm 

• There are two different approaches to this problem. They 

both use the chain rule, but are implemented in different 

ways: 

 

    or 

 

 
where the superscript e indicates an explicit derivative, not accounting for 

indirect effects through time 

Equation A1 

Equation B1 



Recall: Principles of Dynamic Learning 

• The explicit derivatives can be obtained with the standard 

backpropagation algorithm  

• To find the complete derivatives that are required in the 

previous slide’s equations, we need the additional 

equations: 

 

 

and 

 

 

 

 

 

Equation A2 

Equation B2 



Recall: Principles of Dynamic Learning 

• Equations A1 and A2 make up the real-time recurrent 

learning (RTRL) algorithm 

• Note that the key term is: 

 

 

which must be propagated forward through time 

• Equations B1 and B2 make up the backpropagation-

through-time (BPTT) algorithm 

• Note that the key term is: 

 

 

which must be propagated backward through time 

 

 

 

 

 



Backpropagation-Through-Time: Eq.B1 

• Now, we will generalize the Backpropagation-Through-

Time (BPTT) algorithm, given in Eq. B1 and B2, for 

LDDN networks 

• The first step is to generalize Eq. B1. For the general 

LDDN network, we can calculate the terms of the 

gradient by using the chain rule, as in: 

 

 

 

(for the layer weights), where u is an output layer, U is 

the set of all output layers, and Su is the number of 

neurons in layer u 



Backpropagation-Through-Time: Eq.B1 

• From equation in Slide14 

 
 

• we can write: 

 

• We will also define: 

 

• The terms of the gradient for the layer weights can then 

be written: 

 

• If we use the sensitivity term defined in previous lecture: 



Backpropagation-Through-Time: Eq.B1 

• then the elements dm
i(t) can be written: 

 

 
 

• In matrix form this becomes: 

 

 

where 



Backpropagation-Through-Time: Eq.B1 

• Now the gradient can be written in matrix form: 

 

 

and by similar steps we can find the derivatives for the 

biases and input weights: 

 

 

 

 

 

• This Slide’s equations make up the generalization of 

Equation B1 for the LDDN network. 



Backpropagation-Through-Time: Eq.B2 

• The next step in the development of the BPTT algorithm 

is the generalization of Equation B2. Again, we use the 

chain rule: 

 

 

 

• (Many of the terms in these summations will be zero. We will provide 

a more efficient representation later in this lecture.)  

• In Equation B2 we only had one delay in the system. Now we need to 

account for each network output, how that network output is 

connected back through a network input, and also for the number of 

times each network output is delayed before it is applied to a network 

input. That is the reason for the three summations in this slide’s 

equation. This equation must be updated backward in time, as t is 

varied from Q to 1 

 



Backpropagation-Through-Time: Eq.B2 

• The terms              are generally set to zero for t > Q 
 

• If we consider the matrix in the brackets on the right side 

of last slide’s equation, from equation in Slide-16   

 

• we can write: 

 

 

• This allows us to write last slide’s equation as follows: 

 

 

• Many of the terms in the summation on the right hand side of the 

above equation will be zero and will not have to be computed 

 



Backpropagation-Through-Time: Eq.B2 

• In order to provide a more efficient implementation of 

previous slide’s last equation, we define the following 

indicator sets: 

 

 
 

• The first set contains all of the input layers that have a 

connection from output layer u with at least some nonzero 

delay 

• The second set contains output layers that have a nonzero 

sensitivity with input layer x. When the sensitivity Su,x is 

nonzero, there is a static connection from input layer x to 

output layer u 

 



Backpropagation-Through-Time: Eq.B2 

• We can now rearrange the order of the summation in 

Slide-33’s equation and sum only over the existing terms: 


