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Dynamic networks 



Introduction 

• Neural networks can be classified into static and dynamic 

• The multilayer network (MLP) that we have discussed is 

a static network 

• This means that the output can be calculated directly from the 

input through feedforward connections 

• In dynamic networks, the output depends not only on the 

current input to the network, but also on the current or 

previous inputs, outputs or states of the network 

• For example, the adaptive filter networks (ADALINE with delay 

elements) we discussed are dynamic networks 

• since the output is computed from a tapped delay line of previous 

inputs 

• The Hamming network we discussed is also a dynamic network 

• It has recurrent (feedback) connections, which means that the current 

output is a function of outputs at previous times 



Introduction 

• Dynamic networks are networks that contain delays and 

that operate on a sequence of inputs 

• (In other words, the ordering of the inputs is important to the 

operation of the network.)  

• These dynamic networks can have purely feedforward 

connections, or they can also have some feedback 

(recurrent) connections 

• Dynamic networks have memory. Their response at any 

given time will depend not only on the current input, but 

on the history of the input sequence 



Introduction 

• Because dynamic networks have memory, they can be 

trained to learn sequential or time-varying patterns.  

• Instead of approximating functions, like the static multilayer 

perceptron network, a dynamic network can approximate a 

dynamic system 

• This has applications in such diverse areas as control of dynamic 

systems, prediction in financial markets, channel equalization in 

communication systems, phase detection in power systems, sorting, 

fault detection, speech recognition, learning of grammars in natural 

languages, and even the prediction of protein structure in genetics 

• Dynamic networks can be trained using the standard 

optimization methods  

• However, the gradients and Jacobians that are required for these 

methods cannot be computed using the standard backpropagation  

• We will present the dynamic backpropagation algorithms that are 

required for computing the gradients for dynamic networks 



Introduction 

• There are two general approaches (with many variations) 

to gradient and Jacobian calculations in dynamic 

networks: 
• backpropagation-through time (BPTT), and  

• real-time recurrent learning (RTRL) 

• In the BPTT algorithm, the network response is computed for all time 

points, and then the gradient is computed by starting at the last time 

point and working backward in time 

• This algorithm is efficient for the gradient calculation, but it is difficult to 

implement on-line, because the algorithm works backward in time from the last 

time step 

• In the RTRL algorithm, the gradient can be computed at the same 

time as the network response, since it is computed by starting at the 

first time point, and then working forward through time 

• RTRL requires more calculations than BPTT for calculating the gradient, but 

RTRL allows a convenient framework for on-line implementation. For Jacobian 

calculations, the RTRL algorithm is generally more efficient than the BPTT 

algorithm 



Layered Digital Dynamic Networks (LDDN) 

• We will introduce a framework for representing general dynamic 

networks: we call it Layered Digital Dynamic Networks (LDDN) 

• With this new notation, we can represent networks with multiple 

recurrent (feedback) connections and tapped delay lines 

• Consider the example dynamic network given in figure below 



Layered Digital Dynamic Networks (LDDN) 

• The general equations for the computation of the net 

input nm(t) for layer m of an LDDN are: 

 

 

where pl(t) is the l-th input vector at time t, IWm,l is the input weight 

between input l and layer m, LWm,l is the layer weight between layer l 

and layer m, bm is the bias vector for layer m, DLm,l is the set of all 

delays in the tapped delay line between Layer l and Layer m, DIm,l is 

the set of all delays in the tapped delay line between Input l and 

Layer m, Im is the set of indices of input vectors that connect to layer 

m, and Lm
f is the set of indices of layers that directly connect forward 

to layer m 

 

The output of layer m is then computed as: 

am(t) = fm(nm(t)) 

 



Layered Digital Dynamic Networks (LDDN) 

• LDDN networks can have several layers connecting to 

layer m 

• Some of the connections can be recurrent through tapped 

delay lines 

• An LDDN can also have multiple input vectors, and the 

input vectors can be connected to any layer in the network 

• for static multilayer networks, we assumed that the single input 

vector connected only to Layer 1 

• With static multilayer networks, the layers were 

connected to each other in numerical order 

• In other words, Layer 1 was connected to Layer 2, which was 

connected to Layer 3, etc.  

• Within the LDDN framework, any layer can connect to 

any other layer, even to itself 



Layered Digital Dynamic Networks (LDDN) 

• However, in order to use he equation that calculates the 

net input, we need to compute the layer outputs in a 

specific order 

• The order in which the layer outputs must be computed to 

obtain the correct network output is called the simulation 

order 

• (This order need not be unique; there may be several valid 

simulation orders.)  

• In order to backpropagate the derivatives for the gradient 

calculations, we must proceed in the opposite order, which 

is called the backpropagation order 



Layered Digital Dynamic Networks (LDDN) 

• As with the multilayer network, the fundamental unit of 

the LDDN is the layer. Each layer in the LDDN is made 

up of five components: 

1. a set of weight matrices that come into that layer 

• which may connect from other layers or from external inputs 

2. any tapped delay lines (represented by DLm,l or DIm,l) 

that appear at the input of a set of weight matrices 

• Any set of weight matrices can be preceded by a TDL 

• For example, Layer 1 of the figure contains the weights LW1,3(d) 

and the corresponding TDL 

3. a bias vector 

4. a summing function 

5. a transfer function 



Layered Digital Dynamic Networks (LDDN) 

• The output of the LDDN is a function not only of the 

weights, biases, and current network inputs, but also of 

some layer outputs at previous points in time 

• For this reason, it is not a simple matter to calculate the 

gradient of the network output with respect to the 

weights and biases 

• The weights and biases have two different effects on the 

network output 

• The first is the direct effect, which can be calculated using the 

standard backpropagation algorithm 

• The second is an indirect effect, since some of the inputs to the 

network are previous outputs, which are also functions of the 

weights and biases 



Dynamic networks: Example-1 

• Consider the feedforward dynamic network shown below 

 

 

 

 

 

 

 

 

 
 

• This is an ADALINE filter and we are representing it in 

the LDDN framework 



Dynamic networks: Example-1 

• The network has a TDL on the input, with DI1,1={0,1,2} 

• To  demonstrate the operation of this network, we will 

apply a square wave as input, and we will set all of the 

weight values equal to 1/3: 

iw1,1(0)=1/3,    iw1,1(1)=1/3,    iw1,1(2)=1/3 

• The network response is calculated from: 
 

    a(t) = n(t) =  
            

           = n1(t) = iw1,1(0)p(t) + iw1,1(1)p(t-1) + iw1,1(2)p(t-2) 

where we have left off the superscripts on the weight and 

the input, since there is only one input and only one layer 

 

 



Dynamic networks: Example-1 

• The response of the 

network is shown in figure  

• The open circles represent 

the square-wave input 

signal p(t). The dots 

represent the network 

response a(t) 

• For this dynamic network, 

the response at any time 

point depends on the 

previous three input values 

• If the input is constant, 

the output will become 

constant after 3 time steps 

• This type of linear network 

is called a Finite Impulse 

Response (FIR) filter 

This dynamic network has memory. Its response at any 

given time will depend not only on the current input, but 

on the history of the input sequence. If the network does 

not have any feedback connections, then only a finite 

amount of history will affect the response 



Dynamic networks: Example-2 

• Now consider another simple linear dynamic network, but 

one that has a recurrent connection. The network in 

figure is a recurrent dynamic network. 

 

 

 

 

 

 



Dynamic networks: Example-2 

• The equation of operation of the network is: 
 

    a1(t) = n1(t) = LW1,1(1) a1(t-1) + IW1,1(0)p1(t) 

            = lw1,1(1)a(t-1) + iw1,1p(t) 
 

where, in the last line, we have left off the superscripts,  

since there is only one neuron and one layer in the 

network 

• To demonstrate the operation of this network, we will set 

the weight values to: 

lw1,1(1)=1/2  and  iw1,1(1)=1/2 



Dynamic networks: Example-2 

• The response of this 

network to the square wave 

input is shown in figure 

• The network responds 

exponentially to a change 

in the input sequence 

• Unlike the FIR filter 

network shown before, the 

exact response of the 

network at any given time 

is a function of the infinite 

history of inputs to the 

network 



Dynamic networks: Some facts 

• Static networks can be trained to approximate static 

functions, like sin(p), where the output can be computed 

directly from the current input 

• Dynamic networks, on the other hand, can be trained to 

approximate dynamic systems, such as robot arms, 

aircraft, biological processes and economic systems, where 

the current system output depends on a history of 

previous inputs and outputs 

• Because dynamic systems are more complex than static 

functions, we expect that the training process for dynamic 

networks will be more challenging than static network 

training 



Principles of Dynamic Learning 

• Before we get into the details of training dynamic 

networks, let’s first investigate a simple example.  

• Consider again the recurrent network of Example-2 

• Suppose that we want to train the network using steepest 

descent 

• The first step is to compute the gradient of the  

performance function 

• For this example we will use sum squared error: 

 

 

 



Principles of Dynamic Learning 

• The two elements of the gradient will be: 

 

 

 

 

 

• The key terms in these equations are the derivatives of 

the network output with respect to the weights: 



Principles of Dynamic Learning 

• If we had a static network, then these terms would be 

very easy to compute 

• They would correspond to a(t-1) and p(t), respectively 

• However, for recurrent networks, the weights have two 

effects on the network output 

• The first is the direct effect, which is also seen in the 

corresponding static network. 

• The second is an indirect effect, caused by the fact that one of the 

network inputs is a previous network output 

• Let’s compute the derivatives of the network output, in 

order to demonstrate these two effects 



Principles of Dynamic Learning 

• The equation of operation of the network is: 

a(t) = lw1,1(1)a(t–1) + iw1,1p(t) 

• We can compute the terms in the equations at the botton of 

Slide 21 by taking the derivatives of the previous equation: 

 

 

 

 

• The first term in each of these equations represents the direct effect 

that each weight has on the network output 

• The second term represents the indirect effect 

• Note that unlike the gradient computation for static networks, the derivative 

at each time point depends on the derivative at previous time points (or at 

future time points) 

 



Principles of Dynamic Learning 

• The following figures illustrate the dynamic derivatives 

• In the left figure we see the total derivatives a(t)/iw1,1 and also the static portions of 

the derivatives. Note that if we consider only the static portion, we will underestimate 

the effect of a change in the weight. In the right figure we see the original response of 

the network and a new response, in which iw1,1 is increased from 0.5 to 0.6. By 

comparing the above two figures, we can see how the derivative indicates the effect on 

the network response of a change in the weight iw1,1. 



Principles of Dynamic Learning 

• In the figures below we see similar results for lw1,1(1) 

• The key ideas to get from this example are: 1) the 

derivatives have static and dynamic components, and 2) 

the dynamic component depends on other time points 
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Derivation of BackProp 

equations for a two-layer 

Recurrent Neural Network 



BackProp equations for a two-layer RNN 

• The first step is to define our performance index. As with the 

multilayer networks, we will use squared error: 



BackProp equations for a two-layer RNN 

• For our weight updates we will use the steepest descent algorithm: 

 

 

 

• These derivatives can be computed as follows: 

 

 

 

• Therefore, the key terms we need to compute are: 

 

 
 

• To compute these terms we first need to write out the network 

equation:  

a(k+1) = purelin(w1p(k) + w2a(k)) = w1p(k) + w2a(k) 



BackProp equations for a two-layer RNN 

• Next we take the derivative of both sides of this equation with 

respect to the network weights: 

 

 

 

 

 

 

• (Note that we had to take account of the fact that a(k) is itself a 

function of w1 and w2.) These two recursive equations are then used 

to compute the derivatives needed for the steepest descent weight 

update. The equations are initialized with (since the initial 

condition is not a function of the weight): 



BackProp equations for a two-layer RNN 

• To illustrate the process, let’s say that a(0)=0. The first network 

update would be 

a(1) = w1p(0) + w2a(0) = w1p(0) 

• The first derivatives would be computed: 

 

 

 

• The first weight updates would be: 
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Derivation of BackProp 

equations for a three-layer 

Recurrent Neural Network: 

The generic case 



BPTT in a three-layer RNN: General idea 

ht depends on both ht-1 and wh, where the computation of ht-1 depends 

on wh 



BPTT in a three-layer RNN: General idea 

BACKGROUND: Assume three sequences {at}, {bt}, {ct} with a0=0, and 

at= bt + ctat-1 for t=1,2,... Then, for t  1, it can be shown that: 

If we substitute: 



BPTT in a three-layer RNN: General idea 

Then, we get: 
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Derivation of BackProp 

equations for a three-layer 

Recurrent Neural Network: 

The detailed case 



Detailed BPTT in a three-layer RNN 

Now, we show how to compute the gradients of the objective function 

with respect to all the decomposed model parameters.  

We consider an RNN without bias parameters, whose activation function 

in the hidden and output layers uses the identity mapping (f(x)=x). 

Therefore, the model parameters are: Whx, Whh, Wqh, and the 

derivative of the loss function L with respect to the model output at 

any time step t is given by: 



Detailed BPTT in a three-layer RNN 



Detailed BPTT in a three-layer RNN 

We will calculate the gradient of the loss function with respect to the 

parameter Wqh in the output layer: 

Denotes the 

transpose 

At the final time step T, the loss function L depends on the hidden 

state ht only via oT. We can easily compute the following gradient: 

Can be calculated 

via (RNN-1) 



Detailed BPTT in a three-layer RNN 

For time steps t < T, the loss function L depends on ht via ht+1 and ot. 

We compute the gradient recurrently as follows: 

Expanding this recurrence for any time step 1  t  T, we get: 

If eigenvalues < 1  vanish   

If eigenvalues > 1  explode 

The green arrows 



Detailed BPTT in a three-layer RNN 

Finally, the loss function L depends on Whx and Whh in the hidden 

layer via hidden states h1, h2,…, hT. We compute the respective  

gradients applying the chain rule and we get: 

Can be calculated via  

(RNN-3) and (RNN-5) 


