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Supervised Hebbian
learning



Linear associator
• The Hebb rule was one of the first neural network 

learning laws. It was proposed by Donald Hebb in 1949 as 
a possible mechanism for synaptic modification in the 
brain and since then has been used to train artificial 
neural networks

• The most famous idea contained in The Organization of 
Behavior was the postulate that came to be known as 
Hebbian learning:

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is
increased.”



Linear associator
• Hebb’s learning law can be used in combination with a 

variety of neural network architectures. We will use a 
very simple architecture for our initial presentation of 
Hebbian learning. In this way we can concentrate on the 
learning law rather than the architecture. The network 
we will use is the linear associator, which is shown below



Linear associator
• The output vector a is determined from the input vector p 

according to: 
a = Wp

or

• The linear associator is an example of a type of neural 
network called an associative memory. The task of an 
associative memory is to learn pairs of prototype 
input/output vectors:

{p1,t1}, {p2,t2}, … , {pQ,tQ}



The Hebb rule
• How can we interpret Hebb’s postulate mathematically, 

so that we can use it to train the weight matrix of the 
linear associator?

• First, let’s rephrase the postulate: If two neurons on 
either side of a synapse are activated simultaneously, the 
strength of the synapse will increase

• Notice from previous equation that the connection 
(synapse) between input pj and output ai is the weight wij

• Therefore Hebb’s postulate would imply that if a positive 
pj produces a positive ai then wij should increase

• This suggests that one mathematical interpretation of the 
postulate could



The Hebb rule
• This suggests that one mathematical interpretation of the 

postulate could be:

where pjq is the j-th element of the input vector pq; aiq is 
i-th the element of the network output when the q-th
input vector is presented to the network; and α is a 
positive constant, called the learning rate

• This equation  says that the change in the weight is 
proportional to a product of functions of the activities on 
either side of the synapse

• We will use the simplified version:



The Hebb rule
• Note that this expression actually extends Hebb’s

postulate beyond its strict interpretation. The change in 
the weight is proportional to a product of the activity on 
either side of the synapse

• Therefore, not only do we increase the weight when both 
pj and ai are positive, but we also increase the weight 
when they are both negative. In addition, this 
implementation of the Hebb rule will decrease the weight 
whenever pj and ai have opposite sign



The Hebb rule
• The Hebb rule defined in the previous equation is an 

unsupervised learning rule. It does not require any 
information concerning the target output

• In this lecture we are interested in using the Hebb rule 
for supervised learning, in which the target output is 
known for each input vector

• For the supervised Hebb rule we substitute the target 
output for the actual output. In this way, we are telling 
the algorithm what the network should do, rather than 
what it is currently doing

• The resulting equation is



The Hebb rule
• We can write the previous equation in vector notation:

• If we assume that the weight matrix is initialized to zero 
and then each of the input/output pairs are applied once, 
we can write:

• This can be represented in matrix form:

where T=[t1,t2, …, tQ]  P=[p1,p2, …, pQ]



Performance analysis
• Let’s analyze Hebbian learning for the linear associator. 

First consider the case where the pq vectors are 
orthonormal (orthogonal and unit length). If pk is input to 
the network, then the network output can be computed:

• Since the pq are orthogonal:
(pT

qpk) = 1    q=k
(pT

qpk) = 0    q≠k
• Therefore, the first equation becomes: a = Wpk = tk

• The output of the network is equal to the target output 
• This shows that, if the input prototype vectors are 

orthonormal, the Hebb rule will produce the correct 
output for each input



Performance analysis
• But what about non-orthogonal prototype vectors? Let’s 

assume that each vector is unit length, but that they are 
not orthogonal. Then the previous equation becomes

• Because the vectors are not orthogonal, the network will 
not produce the correct output. The magnitude of the 
error will depend on the amount of correlation between 
the prototype input patterns

error



Example
• Recall the apple and orange recognition problem

• (Note that they are not orthogonal.) If we normalize these 
inputs and choose as desired outputs -1 and 1, we obtain:

• Our weight matrix becomes:



Example
• So, if we use our two prototype patterns:

• The outputs are close, but do not quite match the target 
outputs



Pseudoinverse rule
• When the prototype input patterns are not orthogonal, 

the Hebb rule produces some errors. There are several 
procedures that can be used to reduce these errors

• We will discuss one of those procedures, the 
pseudoinverse rule

• Recall that the task of the linear associator was to 
produce an output tq of for an input pq

• In other words: 
Wpq = tq for q=1,2,…,Q

• If it is not possible to choose a weight matrix so that these 
equations are exactly satisfied, then we want them to be 
approximately satisfied



Pseudoinverse rule
• One approach would be to choose the weight matrix to 

minimize the following performance index:

• If the prototype input vectors pq are orthonormal and we 
use the Hebb rule to find W, then F(W) will be zero

• When the input vectors are not orthogonal and we use the 
Hebb rule, then F(W) will be not be zero, and it is not 
clear that F(W) will be minimized

• It turns out that the weight matrix that will minimize 
F(W) is obtained by using the pseudoinverse matrix, 
which we will define next



Pseudoinverse rule
• The equation two slides back can be rewritten as follows:

WP = T
where T=[t1,t2, …, tQ]  P=[p1,p2, …, pQ]

• Then, the equation in the previous slide can be written:
F(W) = ||T-WP||2 = ||E||2

where E = T-WP
and 

• Note that F(W) can be made zero if we can solve WP=T. If 
the P matrix has an inverse, the solution is: W= TP-1

• However, this is rarely possible. Normally the vectors pq (the 
columns of P) will be independent, but R (the dimension of pq) will 
be larger than Q (the number of pq vectors). Therefore, P will not 
be a square matrix, and no exact inverse will exist



Pseudoinverse rule
• It is known that the weight matrix that minimizes the 

equation 2 slides back is given by the pseudoinverse rule:
W = TP+

where P+ is the Moore-Penrose pseudoinverse
• The pseudoinverse of a real matrix is the unique matrix :

PP+P = P
P+PP+ = P+

P+P = (P+P)T

PP+ = (PP+)T

• When the number, R, of rows of P is greater than the 
number of columns, Q, of P, and the columns P of are 
independent, then the pseudoinverse can be computed by

P+ = (PTP)-1PT



Example
• Consider again the apple and orange recognition problem 

Recall that the input/output prototype vectors are:

• (Note that we do not need to normalize the input vectors 
when using the pseudoinverse rule.)

• The weight matrix is calculated from W=TP+



Example
where the pseudoinverse is computed from:

• This produces the following weight matrix:

• Let’s try this matrix on our two prototype patterns.



Application
• Now let’s see how we might use the Hebb rule on a 

practical, although greatly oversimplified, pattern 
recognition problem. For this problem we will use a 
special type of associative memory — the autoassociative
memory

• In an autoassociative memory the desired output vector is 
equal to the input vector (i.e., tq=pq). We will use an 
autoassociative memory to store a set of patterns and 
then to recall these patterns, even when corrupted 
patterns are provided as input



Application
• The patterns we want to store are:

• Since we are designing an autoassociative memory, these patterns 
represent the input vectors and the targets

• They represent the digits {0, 1, 2} displayed in a 6X5 grid. 
We need to convert these digits to vectors, which will 
become the prototype patterns for our network. Each 
white square will be represented by a “-1”, and each dark 
square will be represented by a “1”. Then, to create the 
input vectors, we will scan each 6X5 grid one column at a 
time

• For example, the first prototype pattern will be:
p1 = [-1  1  1  1  1  -1  1  -1  -1  -1  -1  1  1  -1 … 1  -1]T



Application
• The vector p1 corresponds to the digit “0”, p2 to the digit 

“1”, and p3 to the digit “2”. Using the Hebb rule, the 
weight matrix is computed:

W = p1p1
T + p2p2

T + p3p3
T

• Note that pq replaces tq in the respective equation, since this is 
autoassociative memory

• Because there are only two allowable values for the elements of the prototype 
vectors, we will modify the linear associator so that its output elements can 
only take on values of “-1” or “1”. We can do this by replacing the linear 
transfer function with a symmetrical hard limit transfer function. The 
resulting network is:



Application
• Now let’s investigate the operation of this network. We 

will provide the network with corrupted versions of the 
prototype patterns and then check the network output. In 
the first test, the network is presented with a prototype 
pattern in which the lower half of the pattern is occluded. 
In each case the correct pattern is produced by the 
network



Application
• In the next test we remove even more of the prototype 

patterns. The next figure illustrates the result of 
removing the lower two-thirds of each pattern. In this 
case only the digit “1” is recovered correctly. The other 
two patterns produce results that do not correspond to 
any of the prototype patterns

• This is a common problem in associative memories. We 
would like to design networks so that the number of such 
spurious patterns would be minimized. The solution are 
the recurrent associative memories



Application
• In our final test we will present the autoassociative

network with noisy versions of the prototype pattern. To 
create the noisy patterns we will randomly change seven 
elements of each pattern. The results are shown below. 
For these examples all of the patterns were correctly 
recovered
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Hopfield network



Recall: Nobel Prize in Physics 2024

John J. Hopfield
Born: 15 July 1933, Chicago, IL, USA
Affiliation at the time of  the award: Princeton University, 
Princeton, NJ, USA 

https://www.nobelprize.org/prizes/physics/2024/summary/

“for foundational discoveries and inventions that enable 
machine learning with artificial neural networks”

Geoffrey E. Hinton
Born: 1947, London, UK. 
PhD 1978 from The University of  Edinburgh, UK. 
Affiliation at the time of  the award: Professor at 
University of  Toronto, Canada



Recall: Hamming network
• The Hamming network was designed explicitly to solve 

binary pattern recognition problems (where each element 
of the input vector has only two possible values)

• It uses both feedforward and recurrent (feedback) layers
• The number of neurons in the first layer is the same as 

the number of neurons in the second layer



Hopfield network
• This is a recurrent network that is similar to the 

recurrent layer of the Hamming network, but which can 
effectively perform the operations of both layers of the 
Hamming network. Its diagram is shown below (The figure is 
actually a slight variation of the standard Hopfield network. We use this variation 
because it is somewhat simpler to describe and yet demonstrates the basic concepts.)



Hopfield network
• The neurons in this network are initialized with the input 

vector, then the network iterates until the output 
converges

• When the network is operating correctly, the resulting 
output should be one of the prototype vectors
• Therefore, whereas in the Hamming network the nonzero neuron 

indicates which prototype pattern is chosen, the Hopfield network 
actually produces the selected prototype pattern at its output



Hopfield network
• The equations that describe the network operation are

a(0) = p
• and

a(t + 1) = satlins(Wa(t) + b)
where satlins is the transfer function that is linear in the 
range [-1, 1] and saturates at 1 for inputs greater than 1 
and at -1 for inputs less than -1

• The design of the weight matrix and the bias vector for 
the Hopfield network is a more complex procedure than it 
is for the Hamming network, where the weights in the 
feedforward layer are the prototype patterns



Hopfield network
• To illustrate the operation of the network, we have 

determined a weight matrix and a bias vector that can 
solve our orange and apple pattern recognition

• problem. They are given below:

• We want the network output to converge to either the orange pattern, 
p1, or the apple pattern, p2. In both patterns, the first element is 1, 
and the third element is -1. The difference between the patterns 
occurs in the second element. Therefore, no matter what pattern is 
input to the network, we want the first element of the output pattern 
to converge to 1, the third element to converge to -1, and the second 
element to go to either 1 or -1, whichever is closer to the second 
element of the input vector



Hopfield network
• The equations of operation of the Hopfield network, using 

the parameters W, b given in the previous slide, are:

a1(t + 1) = satlins(0.2a1(t) + 0.9)
a2(t + 1) = satlins(1.2a2(t))
a3(t + 1) = satlins(0.2a3(t) - 0.9)

• Regardless of the initial values, ai(0), the first element 
will be increased until it saturates at 1, and the third 
element will be decreased until it saturates at -1. The 
second element is multiplied by a number larger than 1. 
Therefore, if it is initially negative, it will eventually 
saturate at -1; if it is initially positive it will saturate at 1



Hopfield network
• Let’s again take our oblong orange to test the Hopfield 

network
• The outputs of the Hopfield network for the first three 

iterations would be

• The network has converged to the orange pattern, as did 
the Hamming network, although each network operated 
in a different way
• In the Hamming network the single nonzero neuron indicated 

which prototype pattern had the closest match. If the first neuron 
was nonzero, that indicated orange, and if the second neuron was 
nonzero, that indicated apple. In the Hopfield network the 
prototype pattern itself appears at the output of the network



The original Hopfield model & network
• Hopfield presented his model as an electrical circuit

Each neuron is represented by an operational 
amplifier and its associated resistor/capacitor 
network.
There are two sets of inputs to the neurons. The first 
set, represented by the currents I1,I2,…, are constant 
external inputs. The other set consists of feedback 
connections from other op-amps. For instance, the 
second output, a2, is fed to resistor RS,2, which is 
connected, in turn, to the input of amplifier S. 
Resistors are, of course, only positive, but a negative 
input to a neuron can be obtained by selecting the 
inverted output of a particular amplifier


