
1

Νεςπο-Ασαυήρ Υπολογιστική

Neuro-Fuzzy Computing

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 19η

2

Practice on

Backpropagation with

momentum

Exercise-12

In ADALINE lecture we proved that the LMS algorithm,

(whose performance index is a quadratic function), is stable

if the learning rate is less than 2 divided by the maximum

eigenvalue of the input correlation matrix R

That result is identical to what it holds for the steepest

descent algorithm, when applied to a quadratic function;

steepest descent is stable if the learning rate is less than 2

divided by the maximum eigenvalue of the Hessian matrix

Show that if a momentum term is added to the steepest

descent algorithm there will always be a momentum

coefficient that will make the algorithm stable, regardless of

the learning rate. Solution in class

Exercise-12: background

Let’s consider a quadratic function (the performance index):

F(x) = 1/2xTAx + dTx + c

The gradient of this quadratic function is:

F(x) = Ax + d

If we now insert this expression into our expression for the

steepest descent algorithm (assuming a constant learning

rate), we obtain:

xk+1 = xk – αgk = xk – α(Axk + d)

 xk+1 = [I-αA]xk – αd

This is a linear dynamic system, which will be stable if the

eigenvalues of the matrix [I-αA] are less than one in

magnitude

Exercise-12: background

We can express the eigenvalues of this matrix in terms of

the eigenvalues of the Hessian matrix A. Let {λ1,λ2,...,λn}

and {z1,z2,...,zn} be the eigenvalues and eigenvectors of the

Hessian matrix. Then:

[I-αA]zi = zi – αAzi = zi - αλizi = (1-αλi)zi

Therefore the eigenvectors of [I-αA] are the same as the

eigenvectors of A, and the eigenvalues of [I-αA] are (1-αλi)

Our condition for the stability of the steepest descent

algorithm is then: |(1-αλi)| < 1

If we assume that the quadratic function has a strong

minimum point, then its eigenvalues must be positive

numbers. Thus, this reduces to: α < 2/λi

Since this must be true for all the eigenvalues of the

Hessian matrix, we get: α < 2/λmax

6

Practice on competitive

learning, and Kohonen’

learning

Exercise-13

The figure on the right shows

several clusters of normalized

vectors

Design the weights of the

competitive network shown at

the right, so that it classifies the

vectors according to the classes

indicated in the diagram and

with the minimum number of

neurons

Exercise-13: Background

Exercise-14

The values of the input vectors:

The initial values of the three weight vectors are:

Calculate the resulting weights found after training the

competitive layer with the Kohonen rule and a learning rate

of α=0.5, on the following series of inputs: p1, p2, p3

The figure shows three input

vectors and three initial weight

vectors for a three-neuron

competitive layer

Exercise-15

Consider the configuration of

input vectors and initial weights

shown in the figure

Train a competitive network to

cluster these vectors using the

Kohonen rule with learning rate

α=0.5

Find graphically the position of

the weights after all of the input

vectors (in the order shown, i.e.,

p1, p2, p3, p4) have been

presented once

