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Practice on 

Backpropagation with 

momentum 



Exercise-12 

In ADALINE lecture we proved that the LMS algorithm, 

(whose performance index is a quadratic function), is stable 

if the learning rate is less than 2 divided by the maximum 

eigenvalue of the input correlation matrix R 

That result is identical to what it holds for the steepest 

descent algorithm, when applied to a quadratic function; 

steepest descent is stable if the learning rate is less than 2 

divided by the maximum eigenvalue of the Hessian matrix 

 

Show that if a momentum term is added to the steepest 

descent algorithm there will always be a momentum 

coefficient that will make the algorithm stable, regardless of 

the learning rate. Solution in class 



Exercise-12: background 

Let’s consider a quadratic function (the performance index): 

F(x) = 1/2xTAx + dTx + c 

The gradient of this quadratic function is: 

F(x) = Ax + d 

If we now insert this expression into our expression for the 

steepest descent algorithm (assuming a constant learning 

rate), we obtain: 

xk+1 = xk – αgk = xk – α(Axk + d) 

 xk+1 = [I-αA]xk – αd 

This is a linear dynamic system, which will be stable if the 

eigenvalues of the matrix [I-αA] are less than one in 

magnitude 

 

 



Exercise-12: background 

We can express the eigenvalues of this matrix in terms of 

the eigenvalues of the Hessian matrix A. Let {λ1,λ2,...,λn} 

and {z1,z2,...,zn} be the eigenvalues and eigenvectors of the 

Hessian matrix. Then: 

[I-αA]zi = zi – αAzi = zi -  αλizi = (1-αλi)zi 

Therefore the eigenvectors of [I-αA] are the same as the 

eigenvectors of A, and the eigenvalues of [I-αA] are (1-αλi) 

Our condition for the stability of the steepest descent 

algorithm is then: |(1-αλi)| < 1 

If we assume that the quadratic function has a strong 

minimum point, then its eigenvalues must be positive 

numbers. Thus, this reduces to: α < 2/λi 

Since this must be true for all the eigenvalues of the 

Hessian matrix, we get: α < 2/λmax 
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Practice on competitive 

learning, and Kohonen’ 

learning 



Exercise-13 

 

The figure on the right shows 

several clusters of normalized 

vectors 

Design the weights of the 

competitive network shown at 

the right, so that it classifies the 

vectors according to the classes 

indicated in the diagram and 

with the minimum number of 

neurons 



Exercise-13: Background 



Exercise-14 

The values of the input vectors: 

 

 

The initial values of the three weight vectors are: 

 

 

Calculate the resulting weights found after training the 

competitive layer with the Kohonen rule and a learning rate 

of α=0.5, on the following series of inputs: p1, p2, p3 

The figure shows three input 

vectors and three initial weight 

vectors for a three-neuron 

competitive layer 



Exercise-15 

Consider the configuration of 

input vectors and initial weights 

shown in the figure 

Train a competitive network to 

cluster these vectors using the 

Kohonen rule with learning rate 

α=0.5 

Find graphically the position of 

the weights after all of the input 

vectors (in the order shown, i.e., 

p1, p2, p3, p4) have been 

presented once 


