

Νευρο-Ασαφής Υπολογιστική Neuro-Fuzzy Computing

Διδάσκων – Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥΠανεπιστήμιο Θεσσαλίας

Διάλεξη 19η

Practice on Backpropagation with momentum

In ADALINE lecture we proved that the LMS algorithm, (whose performance index is a quadratic function), is stable if the learning rate is less than 2 divided by the maximum eigenvalue of the input correlation matrix **R** That result is identical to what it holds for the steepest

descent algorithm, when applied to a quadratic function; steepest descent is stable if the learning rate is less than 2 divided by the maximum eigenvalue of the Hessian matrix

Show that if a momentum term is added to the steepest descent algorithm there will always be a momentum coefficient that will make the algorithm stable, regardless of the learning rate. Solution in class

Exercise-12: background

Let's consider a quadratic function (the performance index): $F(\mathbf{x}) = 1/2\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{d}^{T}\mathbf{x} + c$

The gradient of this quadratic function is:

 $\nabla F(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{d}$

If we now insert this expression into our expression for the steepest descent algorithm (assuming a constant learning rate), we obtain:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{g}_k = \mathbf{x}_k - \alpha (\mathbf{A}\mathbf{x}_k + \mathbf{d}) \rightarrow$$
$$\rightarrow \mathbf{x}_{k+1} = [\mathbf{I} \cdot \alpha \mathbf{A}]\mathbf{x}_k - \alpha \mathbf{d}$$

This is a linear dynamic system, which will be stable if the eigenvalues of the matrix $[I-\alpha A]$ are less than one in magnitude

Exercise-12: background

We can express the eigenvalues of this matrix in terms of the eigenvalues of the Hessian matrix **A**. Let $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ and $\{\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_n\}$ be the eigenvalues and eigenvectors of the Hessian matrix. Then:

$$[\mathbf{I} - \alpha \mathbf{A}]\mathbf{z}_{i} = \mathbf{z}_{i} - \alpha \mathbf{A}\mathbf{z}_{i} = \mathbf{z}_{i} - \alpha \lambda_{i}\mathbf{z}_{i} = (1 - \alpha \lambda_{i})\mathbf{z}_{i}$$

Therefore the eigenvectors of $[I \cdot \alpha A]$ are the same as the eigenvectors of A, and the eigenvalues of $[I \cdot \alpha A]$ are $(1 \cdot \alpha \lambda_i)$ Our condition for the stability of the steepest descent algorithm is then: $|(1 \cdot \alpha \lambda_i)| < 1$

If we assume that the quadratic function has a strong minimum point, then its eigenvalues must be positive numbers. Thus, this reduces to: $\alpha < 2/\lambda_i$

Since this must be true for all the eigenvalues of the Hessian matrix, we get: $\alpha < 2/\lambda_{max}$

Practice on competitive learning, and Kohonen' learning

The figure on the right shows several clusters of normalized vectors

Design the weights of the competitive network shown at the right, so that it classifies the vectors according to the classes indicated in the diagram and with the minimum number of neurons

a = compet(Wp)

ΠΙΝΑΚΑΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΑΡΙΘΜΩΝ

	H	Exe	erc	i	se-	13	: B	a
R.	1							
5								
23°	0,391	0,921	0,424		68°	0,927	0,375	2,475
24°	0,407	0,914	0,445		69°	0,934	0,358	2,605
25°	0,423	0,906	0,466		70°	0,940	0,342	2,748
28°	0,438	0,899	0,488		71°	0,946	0,326	2,904
27°	0,454	0,891	0,510		72°	0,951	0,309	3,078
28°	0,469	0,883	0,532		73°	0,956	0,292	3,271
29°	0.485	0,875	0,554		74°	0,961	0,276	3,487
30°	0,500	0,866	0,577		75°	0,966	0,259	3,732
31°	0,515	0,857	0,601		76°	0,970	0,242	4,011
32°	0,530	0,848	0,625		77°	0,974	0.225	4,333
33°	0,545	0,839	0.649		78°	0,978	0,203	4,705
34°	0,559	0,829	0,675		79°	0,982	0,191	5,145
35°	0,574	0,819	0,700		80°	0,985	0,174	5,671
38°	0,588	0,809	0,727		81°	0,988	0.156	6,314
37°	0,602	0,799	0,754		82°	0,990	0,139	7,115
38°	0,616	0,788	0,781		83°	0,993	0,122	8,144
39°	0,629	0,777	0,810		84°	0,995	0.105	9,514
40°	0,643	0,766	0,839		85°	0,996	0,087	11,430
41°	0,656	0,755	0,869		86°	0,998	0,070	14,301
42°	0,669	0,743	0,900		87°	0,999	0,052	19,081
43°	0,682	0,731	0,933		88°	0,999	0,035	28,636
44°	0,695	0,719	0,966		89°	0,999	0,018	57,290
				1	90°	1,000	0,000	

Γωνία	nura	anna	50040		wia	0.00	ann 1	E (04.)
00	0.000	1 000	0.000	i 🛏	450	0.707	0.707	00φ3
10	0.017	0,999	0.017		40	0,707	0,707	1,000
20	0.035	0,999	0.035		40	0,720	0,695	1,036
30	0.052	0,999	0.052		47	0,731	0,002	1,072
40	0.070	0,998	0.070		40	0,745	0,009	1 150
50	0.087	0,996	0.087		49 60°	0,755	0,000	1,100
60	0.105	0,395	0.105		510	0,700	0,645	1,192
70	0.122	0,993	0.123		520	0,788	0,025	1,200
80	0.139	0,990	0.141		520	0,700	0,010	1.200
90	0.156	0.988	0.158		540	0,755	0,002	1 376
10°	0,174	0.985	0.176		550	0,809	0,555	1 428
110	0.191	0.982	0.194		56*	0.829	0,574	1 483
12°	0.208	0.978	0.213		570	0,839	0,535	1,400
13°	0.225	0.974	0.231		580	0.848	0,540	1,600
14°	0.242	0,970	0.249		59°	0.857	0,515	1 664
15°	0,259	0,966	0.268		60°	0.866	0,500	1,732
16°	0.276	0,961	0.287		61°	0.875	0.485	1.804
17°	0,292	0,956	0,306		62°	0.883	0.470	1.881
18°	0,309	0,951	0,325		63°	0.891	0.454	1.963
19°	0,326	0,946	0,344		64°	0.899	0.438	2.050
20°	0,342	0,940	0,364		65°	0,906	0.423	2.145
21°	0,358	0,934	0,348		66°	0.914	0.407	2.246
22°	0,375	0,927	0,404		67°	0,921	0,391	2,356
	σε μοίρες	σε rad	ημω	συνω	εφω	σφω		
	0°	0	0	1	0	Δεν		
	-	π	1	5	5	οριζειαί		
	30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$		
	45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1		
	60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$		
	90°	$\frac{\pi}{2}$	1	0	Δεν ορίζεται	0		

The figure shows three input vectors and three initial weight vectors for a three-neuron competitive layer

The values of the input vectors:

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \ \mathbf{p}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \mathbf{p}_3 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

The initial values of the three weight vectors are:

$${}_{1}\mathbf{w} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, {}_{2}\mathbf{w} = \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}, {}_{3}\mathbf{w} = \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$$

Calculate the resulting weights found after training the competitive layer with the Kohonen rule and a learning rate of α =0.5, on the following series of inputs: **p**₁, **p**₂, **p**₃

Exercise-15

Consider the configuration of input vectors and initial weights shown in the figure

Train a competitive network to cluster these vectors using the Kohonen rule with learning rate α =0.5

Find graphically the position of the weights after all of the input vectors (in the order shown, i.e., \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , \mathbf{p}_4) have been presented once

