
1

Νευρο-Ασαφής Υπολογιστική
Neuro-Fuzzy Computing

Διδάσκων –
Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ
Πανεπιστήμιο Θεσσαλίας

Διάλεξη 18η



2

Competitive layers in 
biology



Competitive layers in biology
• In biological neural networks, neurons are typically 

arranged in two-dimensional layers, in which they are 
densely interconnected through lateral feedback

• Often weights vary as a function of the distance between 
the neurons they connect

• For example, the weights for Layer 2 of the Hamming 
network are assigned as follows:

• These equations will assign the weight values 
shown
• Each neuron i is labeled with the value of the weight 

wij, which comes from it to the neuron marked j



Competitive layers in biology
• The term on-center/off-surround is often used to describe 

such a connection pattern between neurons
• Each neuron reinforces itself (center), while inhibiting all other 

neurons (surround)
• It turns out that this is a crude approximation of 

biological competitive layers
• In biology, a neuron reinforces not only itself, but also those 

neurons close to it. Typically, the transition from reinforcement to 
inhibition occurs smoothly as the distance between neurons 
increases [The Mexican-hat function]



Competitive layers in biology
• Biological competitive systems, 

• in addition to having a gradual transition between 
excitatory and inhibitory regions of the on-center/off-
surround connection pattern

• [They] also have a weaker form of competition 
than the winner-take-all competition
• Instead of a single active neuron (winner), biological 

networks generally have “bubbles” of activity that are 
centered around the most active neuron

• This is caused 
• in part by the form of the on-center/off-surround connectivity 

pattern, and also 
• by nonlinear feedback connections



6

Self-Organizing Feature 
Maps



Self-Organizing Feature Maps
• In order to emulate the activity bubbles of biological 

systems, without having to implement the nonlinear on-
center/off-surround feedback connections, Kohonen
designed the following simplification:
• His self-organizing feature map (SOFM) network first determines 

the winning neuron using the same procedure as the competitive 
layer

• Next, the weight vectors for all neurons within a certain 
neighborhood of the winning neuron are updated using the 
Kohonen rule:

where the neighborhood Ni*(d) contains the indices for all of the 
neurons that lie within a radius d of the winning neuron i*:

Ni(d) = {j: dij ≤ d}



Self-Organizing Feature Maps
• When a vector p is presented, the weights of the winning 

neuron and its neighbors will move toward p. The result 
is that, after many presentations, neighboring neurons 
will have learned vectors similar to each other

• To demonstrate the concept of a neighborhood, consider 
the two figures below:



Self-Organizing Feature Maps

• The neurons in an SOFM do not have to be arranged in a 
two-dimensional pattern

• It is possible to use a one-dimensional arrangement, or 
even three or more dimensions
• For a one-dimensional SOFM, a neuron will only have two 

neighbors within a radius of 1 (or a single neighbor if the neuron 
is at the end of the line)

• It is also possible to define distance in different ways
• For instance, Kohonen has suggested rectangular and hexagonal 

neighborhoods for efficient implementation
• The performance of the network is not sensitive to the 

exact shape of the neighborhoods



Self-Organizing Feature Maps: Example
• Let’s demonstrate the performance of an SOFM network 

Below we show a feature map and the two-dimensional 
topology of its neurons

• The diagram on the right shows the initial weight vectors for the 
feature map. Each three-element weight vector is represented by a dot 
on the sphere. (The weights are normalized, therefore they will fall on the surface of 
a sphere.) Dots of neighboring neurons are connected by lines so you can 
see how the physical topology of the network is arranged in the input 
space



Self-Organizing Feature Maps: Example

• The diagram to the left shows a square 
region on the surface of the sphere

• We will randomly pick vectors in this 
region and present them to the feature map

• Each time a vector is presented, the neuron 
with the closest weight vector will win the 
competition

• The winning neuron and its neighbors 
move their weight vectors closer to the 
input vector (and therefore to each other)
• For this example we are using a neighborhood 

with a radius of 1



Self-Organizing Feature Maps: Example

• The weight vectors have two tendencies
• first, they spread out over the input space as more 

vectors are presented
• second, they move toward the weight vectors of 

neighboring neurons
• These two tendencies work together to rearrange 

the neurons in the layer so that they evenly 
classify the input space



Self-Organizing Feature Maps: Example
• The series of diagrams shows how the weights of the 25 

neurons spread out over the active input space and 
organize themselves to match its topology (the input vectors 
were generated with equal probability from any point in the input space. 
Therefore, the neurons classify roughly equal areas of the input space.)



Improving Feature Maps
• One method to improve the performance of the feature 

map is to vary the size of the neighborhoods during 
training
• Initially, the neighborhood size, d, is set large. As training 

progresses, is gradually reduced, until it only includes the 
winning neuron. This speeds up self-organizing and makes twists 
in the map very unlikely

• The learning rate can also be varied over time. An initial 
rate of 1 allows neurons to quickly learn presented 
vectors. During training, the learning rate is decreased 
asymptotically toward 0, so that learning becomes stable

• Another alteration that speeds self-organization is to have 
the winning neuron use a larger learning rate than the 
neighboring neurons



Improving Feature Maps
• Finally, both competitive layers and feature maps often 

use an alternative expression for net input
• Instead of using the inner product, they can directly

compute the distance between the input vector and the 
prototype vectors

• The advantage of using the distance is that input vectors 
do not need to be normalized

• This alternative net input expression is introduced in the 
next section on LVQ networks



16

Learning Vector 
Quantization (LVQ)



Learning Vector Quantization
• The learning vector quantization (LVQ) network is a 

hybrid network
• It uses both unsupervised and supervised learning to form 

classifications
• In the LVQ network, each neuron in the first layer is 

assigned to a class, with several neurons often assigned to 
the same class. Each class is then assigned to one neuron 
in the second layer
• The number of neurons in the first layer, S1, will therefore always 

be at least as large as the number of neurons in the second layer, 
S2, and will usually be larger



Learning Vector Quantization
• As with the competitive network, each neuron in the first layer of 

the LVQ network learns a prototype vector, which allows it 
to classify a region of the input space

• Instead of computing the proximity of the input and weight 
vectors by using the inner product, we will simulate the 
LVQ networks by calculating the distance directly



Learning Vector Quantization
• One advantage of calculating the distance directly is that 

vectors need not be normalized
• When the vectors are normalized, the response of the network will 

be the same, whether the inner product is used or the distance is 
directly calculated

• The net input of the first layer of the LVQ will be:

or in vector form:

• The output of the 1st layer of the LVQ is: a1=compet(n1)
• Therefore the neuron whose weight vector is closest to the input 

vector will output a 1, and the other neurons will output 0



Learning Vector Quantization

• Thus far, the LVQ network behaves exactly like the 
competitive network (at least for normalized vectors) 

• However:
• In the competitive network, the neuron with the nonzero output 

indicates which class the input vector belongs to
• For the LVQ network, the winning neuron indicates a subclass

• There may be several different neurons (subclasses) that make up 
each class

• The 2nd layer of the LVQ network is used to combine 
subclasses into a single class
• This is done with the W2 matrix

• The columns of W2 represent subclasses, and the rows represent 
classes. W2 has a single 1 in each column, with the other elements set 
to zero. The row in which the 1 occurs indicates which class the 
appropriate subclass belongs to

(wki
2 = 1)  subclass i is part of class k



Learning Vector Quantization

• The process of combining subclasses to form a class allows 
the LVQ network to create complex class boundaries

• A standard competitive layer has the limitation that it 
can only create decision regions that are convex

• The LVQ network overcomes this limitation



LVQ Learning
• The learning in the LVQ network combines competitive 

learning with supervision
• As with all supervised learning algorithms, it requires a 

set of examples of proper network behavior:
{p1, t1}, {p2, t2}, …, {pQ, tQ}

• Each target vector must contain only zeros, except for a 
single 1. The row in which the 1 appears indicates the 
class to which the input vector belongs
• For example, if we have a problem where we would like to classify 

a particular three-element vector into the second of four classes, 
we can express this as



LVQ Learning
• Before learning can occur, each neuron in the first layer is 

assigned to an output neuron
• This generates the matrix W2

• Typically, equal numbers of hidden neurons are connected 
to each output neuron, so that each class can be made up 
of the same number of convex regions

• All elements of are set to zero, except for the following:
If hidden neuron i is to be assigned to class k, then set wki

2 = 1

• Once W2 is defined, it will never be altered. The hidden 
weights W1 are trained with a variation of the Kohonen
rule



LVQ Learning
• The LVQ learning rule proceeds as follows:

• At each iteration, an input vector p is presented to the 
network, and the distance from p to each prototype 
vector is computed

• The hidden neurons compete, neuron i* wins the 
competition, and the i*-th element of a1 is set to 1

• Next, a1 is multiplied by W2 to get the final output a2, 
which also has only one nonzero element, k*, indicating 
that is being assigned to class k*



LVQ Learning
• The Kohonen rule is used to improve the hidden layer of 

the LVQ network in two ways
• First, if p is classified correctly, then we move the weights 

i*w1 of the winning hidden neuron toward p:

• Second, if p was classified incorrectly, then we know that 
the wrong hidden neuron won the competition, and 
therefore we move its weights i*w1 away from p:

• The result will be that each hidden neuron moves toward 
vectors that fall into the class for which it forms a 
subclass and away from vectors that fall into other classes



LVQ Learning: Example
• We would like to train an LVQ network to solve the 

following classification problem:

• We begin by assigning target vectors to each input:



LVQ Learning: Example
• We now must choose how many subclasses will make up 

each of the two classes
• If we let each class be the union of two subclasses, we will 

end up with four neurons in the hidden layer. The output 
layer weight matrix will be

W2 connects hidden neurons 1 and 2 to output neuron 1. It 
connects hidden neurons 3 and 4 to output neuron 2. 
Each class will be made up of two convex regions



LVQ Learning: Example
• The row vectors in W1 are initially set to random values
• They can be seen here:

• The weights belonging to the two hidden neurons that 
define class 1 are marked with hollow circles. The weights 
defining class 2 are marked with solid circles. The values 
for these weights are:



LVQ Learning: Example
• At each iteration of the training process, we present an 

input vector, find its response, and then adjust the 
weights. In this case we will begin by presenting p3



LVQ Learning: Example
• The third hidden neuron has the closest weight vector to 

p3
• In order to determine which class this neuron belongs to, 

we multiply a1 by W2

• This output indicates that p3 is a member of class 2. This 
is correct, so 3w1 is updated by moving it toward p3



LVQ Learning: Example

• The figure on the right shows the 
weights after 3w1 was updated on the 
first iteration

• The figure on the right shows the 
weights after the algorithm has 
converged. The figure also indicates how 
the regions of the input space will be 
classified. The regions that will be 
classified as class 1 are shown in gray, 
and the regions that will be classified as 
class 2 are shown in blue



Improving LVQ Networks
• The LVQ network suffers from a couple of limitations:

• First, as with competitive layers, occasionally a hidden neuron in 
an LVQ network can have initial weight values that stop it from 
ever winning the competition. The result is a dead neuron that 
never does anything useful
• This problem is solved with the use of a “conscience” mechanism (will 

see it as an exercise in class)
• Secondly, depending on how the initial weight vectors are 

arranged, a neuron’s weight vector may have to travel through a 
region of a class that it doesn’t represent, to get to a region that it 
does represent
• Because the weights of such a neuron will be repulsed by vectors in 

the region it must cross, it may not be able to cross, and so it may 
never properly classify the region it is being attracted to

• This is usually solved by applying the following modification to the 
Kohonen rule



Improving LVQ Networks: The LVQ2
• If the winning neuron in the hidden layer incorrectly 

classifies the current input, we move its weight vector 
away from the input vector, as before

• However, we also adjust the weights of the closest neuron 
to the input vector that does classify it properly
• The weights for this second neuron should be moved toward the 

input vector
• When the network correctly classifies an input vector, the 

weights of only one neuron are moved toward the input 
vector. However, if the input vector is incorrectly 
classified, the weights of two neurons are updated, one 
weight vector is moved away from the input vector, and 
the other one is moved toward the input vector

• The resulting algorithm is called LVQ2



34

Appendix:
The Voronoi diagram



Definition of the Voronoi diagram

• The Post Office problem
• We are given a set of n points in the plane
• We define the Voronoi diagram of P as the subdivision of 

the plane into n cells, one for each site in P, with the 
property that a point q lies in the cell corresponding to a 
site pi if and only if dist(q, pi) < dist(q, pj) for each pj ∈ P 
with j  i



Structure of the Voronoi diagram

• What does the complete Voronoi diagram look like? 
• Each cell of the diagram is the intersection of a number of half-

planes, so the Voronoi diagram is a planar subdivision whose 
edges are straight

• Some edges are line segments and others are half-lines
• Unless all sites are collinear there will be no edges that are full 

lines



Structure of the Voronoi diagram
• Theorem. For the Voronoi

diagram Vor(P) of a set of 
points P the following holds:
i. A point q is a vertex of Vor(P) if 

and only if its largest empty 
circle CP(q) contains three or 
more sites on its boundary.

ii. The bisector between sites pi
and pj defines an edge of Vor(P) 
if and only if there is a point q 
on the bisector such that CP(q) 
contains both pi and pj on its 
boundary but no other site



Computation of the Voronoi diagram

i. Fortune’s algorithm after its inventor—computes the 
Voronoi diagram in O(nlogn) time

ii. You may be tempted to look for an even faster 
algorithm, for example one that runs in linear time

iii. The problem of sorting n real numbers is reducible to 
the problem of computing Voronoi diagrams, so any 
algorithm for computing Voronoi diagrams must take 
Ω(nlogn) time in the worst case

iv. Hence, Fortune’s algorithm is optimal



39

Appendix:
The Delaunay Graph



The dual of the Voronoi diagram
• The dual graph G of the Voronoi diagram
• This graph G has a node for every Voronoi cell—equivalently, for every 

site—and it has an arc between two nodes if the corresponding cells 
share an edge. Note that this means that G has an arc for every edge of 
Vor(P)

• As you can see, there is a one-to-one correspondence between the 
bounded faces of G and the vertices of Vor(P).



Definition of the Delaunay Graph
• Consider the straight-line embedding of G, where the node 

corresponding to the Voronoi cell V(p) is the point p, and the arc 
connecting the nodes of V(p) and V(q) is the segment pq—see Figure 
below

• We call this embedding the Delaunay graph of P, and we denote it by 
DG(P)


