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Radial Basis Function 

(Neural) Networks 



Radial Basis Network basics 

• The radial basis network is a two-layer network. There 

are two major distinctions between the radial basis 

function (RBF) network and a two layer perceptron: 

1. In layer 1 of the RBF network, instead of performing an inner 

product operation between the weights and the input (matrix 

multiplication), we calculate the distance between the input 

vector and the rows of the weight matrix 

2. Second, instead of adding the bias, we multiply by the bias.  

Therefore, the net input for neuron i in the first layer is 

calculated as follows: 

 

• Each row of the weight matrix acts as a center point - a point 

where the net input value will be zero 

• The bias (std dev OR variance OR spread const) performs a 

scaling operation on the transfer (basis) function, causing it to 

stretch or compress 



Radial Basis Network basics 

• The transfer functions used in the first layer of the RBF network are 

different than the sigmoid functions (generally) used in the hidden 

layers of MLP 

• There are several different types of transfer function: 

• D.S. Broomhead and D. Lowe, “Multivariable function interpolation and 

adaptive networks,” Complex Systems, vol.2, pp. 321-355, 1988 

• we will consider only the Gaussian function (the most commonly used 

in the neural network community). It is defined as follows: 

 

 

A key property of this function is that it is 

local – the output is close to zero if you 

move very far in either direction from the 

center point. This is in contrast to the global 

sigmoid functions, whose output remains close 

to 1 as the net input goes to infinity 



Other Radial Basis Functions 

• A number of functions can be used as the RBF: 

 



Radial Basis Network basics 

• The second layer of the RBF network is a standard linear 

layer: 

 

 



Function approximation example 

• This RBF network has been shown to be a universal 

approximator  (just like the MLP network) 

• J. Park and I.W. Sandberg, “Universal approximation using 

radial-basis-function networks,” Neural Computation, vol. 5, pp. 

305-316, 1993. 

• Consider a network with two neurons in the hidden layer, 

one output neuron, and with the following parameters: 

• The response consists of two hills, one 

for each of the Gaussian neurons (basis 

functions) in the first layer 

• By adjusting the network parameters, we 

can change the shape and location of 

each hill 



Function approximation example 

Effects of parameter 

changes on response 

(The blue curve is the 

nominal response) 

 the larger the bias, 

the narrower the hill 

 the weights in the 

first layer determine 

the location of the 

hills (a hill centered at 

each first layer 

weight) 

 the weights in the  

second layer scale the 

height of the hills 

 The bias in the second 

layer shifts the entire 

network response up 

or down 



Function approximation example 

• If we have enough neurons in the first layer of the RBF 

network, we can approximate virtually any function of 

interest 

• However, although both MLP and RBF networks are 

universal approximators, they perform their 

approximations in different ways 

• For the RBF network, each transfer function is only active 

over a small region of the input space - the response is local. 

If the input moves far from a given center, the output of the 

corresponding neuron will be close to zero 

• This has consequences for the design of RBF networks. We 

must have centers adequately distributed throughout the 

range of the network inputs, and we must select biases in such 

a way that all of the basis functions overlap in a significant 

way 



Pattern classification example: the XOR 

• The idea is to have the network produce outputs greater 

than zero when the input is near patterns p2 or p3, and 

outputs less than zero for all other inputs 

• From the problem statement, we know that the network 

will need to have two inputs and one output 

• For simplicity, we will use only two neurons in the first layer (two 

basis functions), since this will be sufficient to solve the XOR 

problem 

• the rows of the first-layer weight matrix will create centers for the 

two basis functions – we will choose the centers to be equal to the 

patterns p2 and p3 

 



Pattern classification example: the XOR 

• By centering a basis function at each pattern, we can 

produce maximum network outputs there 

• The first layer weight matrix is: 

 

• The choice of the bias in the first layer depends on the 

width that we want for each basis function 

• For this problem, we would like the network function to have two 

distinct peaks at p2 and p3. Therefore, we don’t want the basis 

functions to overlap too much. The centers of the basis functions 

are each a distance of √2 from the origin. We want the basis 

function to drop significantly from its peak in this distance 

• If we use a bias of 1, we would get the following reduction in that 

distance: α=e-n^2 = e-(1 * √2)^2 = e-2 = 0.1353 

• Therefore, each basis function will have a peak of 1 at the centers, 

and will drop to 0.1353 at the origin – this will work for our problem 

 



Pattern classification example: the XOR 

• So we select the first layer bias vector to be: 

 

 

• [The original basis function response ranges from 0 to 1] We want 

the output to be negative for inputs much different than 

p2 and p3, so we will use a bias of -1 for the second layer, 

and we will use a value of 2 for the second layer weights, 

in order to bring the peaks back up to 1 

• The second layer weights and biases then become: 



Pattern classification example: the XOR 

For these network 

parameter, the response is: 

• The figure also shows 

where the surface 

intersects the plane at 

a2=0 , which is where the 

decision takes place 

• This is also indicated by 

the contours shown 

underneath the surface. 

These are the function 

contours where a2=0. They 

are almost circles that 

surround the p2 and p3 

vectors. This means that 

the network output will be 

greater than 0 only when 

the input vector is near 

the p2 and p3 vectors 



RBF network training by clustering 

• There is another approach for selecting the weights and 

biases in the first layer of the RBF network: by clustering 

• k-means 

• Competitive layer of Kohonen (subsequent lectures) 

• Self-Organizing Feature Map (subsequent lectures) 

 

• If we take the input vectors from the training set and 

perform a clustering operation on them 

• the resulting prototypes (cluster centers) could be used as centers 

for the RBF network 

• we could compute the variance of each individual cluster and use 

that number to calculate an appropriate bias to be used for the 

corresponding neuron 



RBF network training by clustering 

• The clustering procedure (finding the centers) will insure 

that we will have basis functions located in areas where 

input vectors are most likely to occur 

• In addition to selecting the first layer weights, the 

clustering process can provide us with a method for 

determining the first layer biases 

• For each neuron (basis function), locate the input vectors from the 

training set that are closest to the corresponding weight vector 

(center) 

• Then compute the average distance between the center and its 

neighbors 

 

 

   where p1
i is the input vector that is closest to iw

1, and p2
i is the   

   next closest input vector 



RBF network training by clustering 

• From these distances, we could set the first layer biases 

as follows: 

 

 

• Therefore, when a cluster is wide, the corresponding basis 

function will be wide as well 

• Notice that in this case each bias in the first layer will be 

different. This should provide a network that is more efficient in 

its use of basis functions than a network with equal biases 

 

• After the weights and biases of the first layer are 

determined, linear least squares is used to find the second 

layer weights and biases 



RBF network training by clustering 

• There is a potential drawback to the clustering method for 

designing the first layer of the RBF network: The method 

only takes into account the distribution of the input 

vectors; it does not consider the targets 

• It is possible that the function we are trying to approximate is 

more complex in regions for which there are fewer inputs 

• For this case, the clustering method will not distribute the centers 

appropriately 

• On the other hand, one would hope that the training data is 

located in regions where the network will be most used, and 

therefore the function approximation will be most accurate in 

those areas 



RBF network training by nonlinear 

optimization 

• It is also possible to train RBF networks (in the same 

manner as MLP networks) using nonlinear optimization 

techniques, in which all weights and biases in the 

network are adjusted at the same time 

• These methods are not generally used for the full training of RBF 

networks, because these networks tend to have many more 

unsatisfactory local minima in their error surfaces 

• However, nonlinear optimization can be used for the fine-

tuning of the network parameters, after initial training by 

one of the two-stage methods we have presented 

 

• We will indicate how the basic backpropagation algorithm 

for computing the gradient in MLP networks can be 

modified for RBF networks 



RBF network training by nonlinear 

optimization 

• The net input for the second layer of the RBF network has 

the same form as its counterpart in the MLP network,  

• but the first layer net input has a different form: 

 

 

 

• If we take the derivative of this function with respect to 

the weights and biases, we get: 

 

 

 



RBF network training by nonlinear 

optimization 

• This produces the modified gradient equations for Layer 1 

of the RBF network 

 

 

 

 


