
1

Νεςπο-Ασαυήρ Υπολογιστική

Neuro-Fuzzy Computing

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 14η

2

Radial Basis Function

(Neural) Networks

Radial Basis Network basics

• The radial basis network is a two-layer network. There

are two major distinctions between the radial basis

function (RBF) network and a two layer perceptron:

1. In layer 1 of the RBF network, instead of performing an inner

product operation between the weights and the input (matrix

multiplication), we calculate the distance between the input

vector and the rows of the weight matrix

2. Second, instead of adding the bias, we multiply by the bias.

Therefore, the net input for neuron i in the first layer is

calculated as follows:

• Each row of the weight matrix acts as a center point - a point

where the net input value will be zero

• The bias (std dev OR variance OR spread const) performs a

scaling operation on the transfer (basis) function, causing it to

stretch or compress

Radial Basis Network basics

• The transfer functions used in the first layer of the RBF network are

different than the sigmoid functions (generally) used in the hidden

layers of MLP

• There are several different types of transfer function:

• D.S. Broomhead and D. Lowe, “Multivariable function interpolation and

adaptive networks,” Complex Systems, vol.2, pp. 321-355, 1988

• we will consider only the Gaussian function (the most commonly used

in the neural network community). It is defined as follows:

A key property of this function is that it is

local – the output is close to zero if you

move very far in either direction from the

center point. This is in contrast to the global

sigmoid functions, whose output remains close

to 1 as the net input goes to infinity

Other Radial Basis Functions

• A number of functions can be used as the RBF:

Radial Basis Network basics

• The second layer of the RBF network is a standard linear

layer:

Function approximation example

• This RBF network has been shown to be a universal

approximator (just like the MLP network)

• J. Park and I.W. Sandberg, “Universal approximation using

radial-basis-function networks,” Neural Computation, vol. 5, pp.

305-316, 1993.

• Consider a network with two neurons in the hidden layer,

one output neuron, and with the following parameters:

• The response consists of two hills, one

for each of the Gaussian neurons (basis

functions) in the first layer

• By adjusting the network parameters, we

can change the shape and location of

each hill

Function approximation example

Effects of parameter

changes on response

(The blue curve is the

nominal response)

 the larger the bias,

the narrower the hill

 the weights in the

first layer determine

the location of the

hills (a hill centered at

each first layer

weight)

 the weights in the

second layer scale the

height of the hills

 The bias in the second

layer shifts the entire

network response up

or down

Function approximation example

• If we have enough neurons in the first layer of the RBF

network, we can approximate virtually any function of

interest

• However, although both MLP and RBF networks are

universal approximators, they perform their

approximations in different ways

• For the RBF network, each transfer function is only active

over a small region of the input space - the response is local.

If the input moves far from a given center, the output of the

corresponding neuron will be close to zero

• This has consequences for the design of RBF networks. We

must have centers adequately distributed throughout the

range of the network inputs, and we must select biases in such

a way that all of the basis functions overlap in a significant

way

Pattern classification example: the XOR

• The idea is to have the network produce outputs greater

than zero when the input is near patterns p2 or p3, and

outputs less than zero for all other inputs

• From the problem statement, we know that the network

will need to have two inputs and one output

• For simplicity, we will use only two neurons in the first layer (two

basis functions), since this will be sufficient to solve the XOR

problem

• the rows of the first-layer weight matrix will create centers for the

two basis functions – we will choose the centers to be equal to the

patterns p2 and p3

Pattern classification example: the XOR

• By centering a basis function at each pattern, we can

produce maximum network outputs there

• The first layer weight matrix is:

• The choice of the bias in the first layer depends on the

width that we want for each basis function

• For this problem, we would like the network function to have two

distinct peaks at p2 and p3. Therefore, we don’t want the basis

functions to overlap too much. The centers of the basis functions

are each a distance of √2 from the origin. We want the basis

function to drop significantly from its peak in this distance

• If we use a bias of 1, we would get the following reduction in that

distance: α=e-n^2 = e-(1 * √2)^2 = e-2 = 0.1353

• Therefore, each basis function will have a peak of 1 at the centers,

and will drop to 0.1353 at the origin – this will work for our problem

Pattern classification example: the XOR

• So we select the first layer bias vector to be:

• [The original basis function response ranges from 0 to 1] We want

the output to be negative for inputs much different than

p2 and p3, so we will use a bias of -1 for the second layer,

and we will use a value of 2 for the second layer weights,

in order to bring the peaks back up to 1

• The second layer weights and biases then become:

Pattern classification example: the XOR

For these network

parameter, the response is:

• The figure also shows

where the surface

intersects the plane at

a2=0 , which is where the

decision takes place

• This is also indicated by

the contours shown

underneath the surface.

These are the function

contours where a2=0. They

are almost circles that

surround the p2 and p3

vectors. This means that

the network output will be

greater than 0 only when

the input vector is near

the p2 and p3 vectors

RBF network training by clustering

• There is another approach for selecting the weights and

biases in the first layer of the RBF network: by clustering

• k-means

• Competitive layer of Kohonen (subsequent lectures)

• Self-Organizing Feature Map (subsequent lectures)

• If we take the input vectors from the training set and

perform a clustering operation on them

• the resulting prototypes (cluster centers) could be used as centers

for the RBF network

• we could compute the variance of each individual cluster and use

that number to calculate an appropriate bias to be used for the

corresponding neuron

RBF network training by clustering

• The clustering procedure (finding the centers) will insure

that we will have basis functions located in areas where

input vectors are most likely to occur

• In addition to selecting the first layer weights, the

clustering process can provide us with a method for

determining the first layer biases

• For each neuron (basis function), locate the input vectors from the

training set that are closest to the corresponding weight vector

(center)

• Then compute the average distance between the center and its

neighbors

 where p1
i is the input vector that is closest to iw

1, and p2
i is the

 next closest input vector

RBF network training by clustering

• From these distances, we could set the first layer biases

as follows:

• Therefore, when a cluster is wide, the corresponding basis

function will be wide as well

• Notice that in this case each bias in the first layer will be

different. This should provide a network that is more efficient in

its use of basis functions than a network with equal biases

• After the weights and biases of the first layer are

determined, linear least squares is used to find the second

layer weights and biases

RBF network training by clustering

• There is a potential drawback to the clustering method for

designing the first layer of the RBF network: The method

only takes into account the distribution of the input

vectors; it does not consider the targets

• It is possible that the function we are trying to approximate is

more complex in regions for which there are fewer inputs

• For this case, the clustering method will not distribute the centers

appropriately

• On the other hand, one would hope that the training data is

located in regions where the network will be most used, and

therefore the function approximation will be most accurate in

those areas

RBF network training by nonlinear

optimization

• It is also possible to train RBF networks (in the same

manner as MLP networks) using nonlinear optimization

techniques, in which all weights and biases in the

network are adjusted at the same time

• These methods are not generally used for the full training of RBF

networks, because these networks tend to have many more

unsatisfactory local minima in their error surfaces

• However, nonlinear optimization can be used for the fine-

tuning of the network parameters, after initial training by

one of the two-stage methods we have presented

• We will indicate how the basic backpropagation algorithm

for computing the gradient in MLP networks can be

modified for RBF networks

RBF network training by nonlinear

optimization

• The net input for the second layer of the RBF network has

the same form as its counterpart in the MLP network,

• but the first layer net input has a different form:

• If we take the derivative of this function with respect to

the weights and biases, we get:

RBF network training by nonlinear

optimization

• This produces the modified gradient equations for Layer 1

of the RBF network

