
Νεςπο-Ασαυήρ Υπολογιστική

Neuro-Fuzzy Computing

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 13η

BackProp for CNNs: Do I

need to understand it?

“Why do we have to write the backward pass when

frameworks in the real world, such as TensorFlow,

compute them for you automatically?”

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Backpropagation for

Convolutional Neural

Networks

Notation

1. l is the l-th layer where l=1 is the first layer and l=L is the last layer

2. Input x is of dimension H×W and has i by j as the iterators

3. Filter or kernel w is of dimension k1×k2 has m by n as the iterators

4. wl
m,n is the weight matrix connecting neurons of layer l with

neurons of layer l−1

5. bl is the bias unit at layer l

6. xl
i,j is the convolved input vector at layer l plus the bias:

7. ol
i,j is the output vector at layer l given by:

ol
i,j = f(xl

i,j)

8. f(…) is the activation function. Application of the activation layer to

the convolved input vector at layer l is given by f(xl
i,j)

Forward propagation

• To perform a convolution operation, the kernel is flipped 180o and slid

across the input feature map in equal and finite strides

• At each location, the product between each element of the kernel and

the input feature map element it overlaps is computed and the

results summed up to obtain the output at that current location

• This procedure is repeated using different kernels to form as many

output feature maps as desired

• The concept of weight sharing is used as demonstrated in the next

slide’s diagram:

1

3

2

1 3 a

a

b

b 2

Weight

Sharing in

CNNs

Forward propagation

• Units in convolutional layer illustrated have receptive fields of size 4

in the input feature map and are thus only connected to 4 adjacent

neurons in the input layer

• This is the idea of sparse connectivity in CNNs where there exists

local connectivity pattern between neurons in adjacent layers

• The color codes of the weights joining the input layer to the

convolutional layer show how the kernel weights are distributed

(shared) amongst neurons in the adjacent layers. Weights of the same

color are constrained to be identical

• The convolution process here is usually expressed as a cross-

correlation but with a flipped kernel. In the diagram below we

illustrate a kernel that has been flipped both horizontally and

vertically:

Forward propagation

• The convolution equation of the input at layer l is given by:

• This is illustrated below:

Error

• For a total of P predictions, the predicted network outputs

yp and their corresponding targeted values tp, the mean

squared error is given by:

• Learning will be achieved by adjusting the weights such

that yp is as close as possible or equals to corresponding tp

• In the classical backpropagation algorithm, the weights

are changed according to the gradient descent direction of

an error surface E

Backpropagation

• For backpropagation there are two updates performed, for the

weights and the deltas

• Lets begin with the weight update.

• We are looking to compute ∂E/∂wl
m′,n′ which can be interpreted as the

measurement of how the change in a single pixel wm′,n′ in the weight

kernel affects the loss function E

Backpropagation

• During forward propagation, the convolution operation ensures that

the yellow pixel wm′,n′ in the weight kernel makes a contribution in all

the products (between each element of the weight kernel and the

input feature map element it overlaps)

• This means that pixel wm′,n′ will eventually affect all the elements in

the output feature map

• Convolution (no padding, stride=1) between the input feature map of

dimension H×W and the weight kernel of dimension k1×k2 produces

an output feature map of size (H−k1+1) by (W−k2+1). The gradient

component for the individual weights can be obtained by applying the

chain rule in the following way:

Backpropagation

• In Eq. 0, xl
i,j is equivalent to

 and expanding this part of the equation gives:

• Further expanding the summations in Eq. 1, and taking the partial

derivatives for all the components results in zero values for all except

the components where m=m′ and n=n′ in wl
m,n o

l−1
i+m,j+n as follows:

Backpropagation

• Substituting Eq. 2 in Eq. 0 gives us the following results:

• The dual summation in Eq. 3 is as a result of weight sharing in the

network (same weight kernel is slid over all of the input feature map

during convolution). The summations represent a collection of all the

gradients δl
i,j coming from all the outputs in layer l

• Obtaining gradients w.r.t. the filter maps, we have a cross-correlation

which is transformed to a convolution by “flipping” the delta matrix

δl
i,j (horizontally and vertically) the same way we flipped the filters

during the forward propagation. An illustration of the flipped delta

matrix is shown:

Backpropagation

• The diagram

shows gradients

(δ11,δ12,δ21,δ22)

generated during

backpropagation

Backpropagation

• The convolution operation used to obtain the new set of weights as is

shown below:

Backpropagation

• During the reconstruction process, the deltas (δ11,δ12,δ21,δ22) are used.

These deltas are provided by an equation of the form:

• At this point we are looking to compute ∂E/∂xl
i′,j′ which can be

interpreted as the measurement of how the change in a single pixel

xi′,j′ in the input feature map affects the loss function E

Backpropagation

• From the previous diagram, we can see that region in the output

affected by pixel xi′,j′ from the input is the region in the output

bounded by the dashed lines where the top left corner pixel is given by

(i′−k1+1, j′−k2+1) and the bottom right corner pixel is given by (i′,j′)

• Using chain rule and introducing sums gives us the following

equation:

 where Q in the summation above represents the output region bounded by

 dashed lines and is composed of pixels in the output that are affected

 by the single pixel xi′,j′ in the input feature map

• A more formal way of representing Eq. 6 is the following:

Backpropagation

• In the region Q, the height ranges from i′−0 to i′−(k1−1) and width

j′−0 to j′−(k2−1)

• These two can simply be represented by i′−m and j′−n in the

summation, since the iterators m and n exist in the following similar

ranges from 0≤m≤k1−1 and 0≤n≤k2−1

Backpropagation

• In Eq. 7, xl+1
i’-m,j’-n is equivalent to

 and expanding this part of the equation gives:

• Further expanding the summation in Eq. 7 and taking the partial

derivatives for all the components results in zero values for all except

the components where m′=m and n′=n so that f(xl
i’-m+m’,j’-n+n’) becomes

f(xl
i’,j’) and wl+1

m’,n’ becomes wl+1
m,n in the relevant part of the

expanded summation as follows:

Backpropagation

• Substituting Eq. 9 in Eq. 7 gives us the following results:

Backpropagation

• For backpropagation, we make use of the flipped kernel and as a

result we will now have a convolution that is expressed as a cross-

correlation with a flipped kernel:

Backpropagation for the pooling layer

• The function of the pooling layer is to progressively reduce

the spatial size of the representation to reduce the

amount of parameters and computation in the network,

and hence to also control overfitting. No learning takes

place on the pooling layers

• Pooling units are obtained using functions like max-

pooling, average pooling and even L2-norm pooling. At the

pooling layer, forward propagation results in an N×N

pooling block being reduced to a single value - value of the

“winning unit”

• Backpropagation of the pooling layer then computes the

error which is acquired by this single value “winning unit”

Backpropagation for the pooling layer

• To keep track of the “winning unit” its index noted during

the forward pass and used for gradient routing during

backpropagation.

• Gradient routing is done in the following ways:

• Max-pooling - the error is just assigned to where it comes from -

the “winning unit” because other units in the previous layer’s

pooling blocks did not contribute to it hence all the other assigned

values of zero

• Average pooling - the error is multiplied by 1/(N×N) and assigned

to the whole pooling block (all units get this same value)

Example of forward and

backpropagation pass for a

sample CNN

The sample CNN

Parameter initialization

• C1 layer: k1
1,p (size 5x5) and b1

p (size 1x1), p=1,2,…,6

• C2 layer: k2
p,q (size 5x5) and b2

q (size 1x1), q=1,2,…,12

• FC layer: W (size 10x192) and b (size 10x1)

• All bias b1
p, b

2
q and b are initialized to zero. The others are drawn

randomly from a uniform distribution defined based on the kernel

size and number of input and output maps on corresponding layers

 where U(±x) denotes a uniform distribution with upper and lower

 bounds of ±x.

 Totally, the number of parameters is:

 (5 × 5 + 1) × 6 + (5 × 5 × 6 + 1) × 12 + 10 × 192 + 10 = 3898

Convolution layer C1

where p=1,2,…6 because there are 6 feature maps on C1 layer, and i, j

are row and column indices of the feature map. Only keeping those

parts of the convolution that are computed without the zero-padded

edges, the size of C1
p is 24×24, rather than 28 × 28 like I

Pooling layer S1

Convolution layer C2

where q=1,2,…12 because there are 12 feature maps on C1 layer. Only

keeping those parts of the convolution that are computed without the

zero-padded edges, the size of C2
q is 8×8, rather than 12 × 12 like S1

p

Pooling layer S2

Vectorization and Concatenation

• Each S2
q is a 4x4 matrix, and there are 12 such matrices on the S2

layer

• First, each S2
q is vectorized by column scan, then all 12 vectors are

concatenated to form a long vector with the length of 4x4x12 = 192

• We denote this process by:

 and the reverse process is:

Fully Connected Layer FC

Loss function

• Assuming the true label is y, the loss function is express by:

Backpropagation

• In the backpropagation, we will update the parameters from the back

to start, namely W and b, k2
p,q and b2

q, k
1
1,p and b1

p

Backpropagation: ΔW (size 10x192)

• Let , whose size is 10x1, then

Backpropagation: Δb (size 10x1)

Backpropagation: Δk2
p,q (size 5x5)

• Because of concatenation, vectorization, and pooling, we need to

compute the backpropagation error ΔC2
q on C2 layer before

calculating k2
p,q

Backpropagation: Δk2
p,q (size 5x5) cont’d

• From Slide “Vectorization & concatentaion”, we reshape the long

error vector Δf (size 192 × 1) by

 which gets the error on S2 layer (twelve 4 × 4 error maps). Because

 there is no parameters on S2 layer, we do not need to do any

 derivative stuff. Then, upsampling is performed to obtain the error

 on C2 layer

Note that the size of ΔS2
q and ΔC2

q are 4×4 and 8×8, respectively.

Now, we are ready to derive Δk2
p,q

Backpropagation: Δk2
p,q (size 5x5) cont’d

• Let , which is actually the

error before sigmoid function onC2 layer. Therefore,

Backpropagation: Δk2
p,q (size 5x5) cont’d

• Rotating S1
p 180 degrees, we get S1

p,rot180, thus

S1
p,rot180(u-i,v-j)=S1

p(i-u, j-v). Therefore, Δk2
p,q can be expressed:

Backpropagation: Δb2
q (size 1x1)

Backpropagation: Δk1
1,p (size 5x5)

• Similar to the derivation of Δk2
p,q, we should first obtain ΔS1

p, the

error on S1 layer. Then, upsampling will be performed to get ΔC1
p,

the error on C1 layer. Finally, following the same way, we can

calculate Δk1
1,p

Backpropagation: Δk1
1,p (size 5x5) cont’d

• Rotating k2
p,q 180 degrees, we get k2

p,q,rot180(-u,-v)=k2
p,q(u,v).

Therefore:

• By upsampling, we get the error on C1 layer:

Backpropagation: Δk1
1,p (size 5x5) cont’d

• Now, we are ready to calculate Δk1
1,p

Backpropagation: Δk1
1,p (size 5x5) cont’d

• By the same token, rotate I 180 degrees, and let

• Finally

Backpropagation: Δb1
p (size 1x1)

Backpropagation: Parameter update

• We need to set a learning rate α (0,1]

