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BackProp for CNNs: Do I 

need to understand it? 

“Why do we have to write the backward pass when 

frameworks in the real world, such as TensorFlow, 

compute them for you automatically?” 

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b 



Backpropagation for 

Convolutional Neural 

Networks 



Notation 

1. l is the l-th layer where l=1 is the first layer and l=L is the last layer 

2. Input x is of dimension H×W and has i by j as the iterators 

3. Filter or kernel w is of dimension k1×k2 has m by n as the iterators 

4. wl
m,n is the weight matrix connecting neurons of layer l with 

neurons of layer l−1 

5. bl is the bias unit at layer l 

6. xl
i,j is the convolved input vector at layer l plus the bias: 

 

 

7. ol
i,j is the output vector at layer l given by: 

ol
i,j = f(xl

i,j) 

8. f(…) is the activation function. Application of the activation layer to 

the convolved input vector at layer l is given by f(xl
i,j) 



Forward propagation 

• To perform a convolution operation, the kernel is flipped 180o and slid 

across the input feature map in equal and finite strides 

• At each location, the product between each element of the kernel and 

the input feature map element it overlaps is computed and the 

results summed up to obtain the output at that current location 

 

• This procedure is repeated using different kernels to form as many 

output feature maps as desired 

• The concept of weight sharing is used as demonstrated in the next 

slide’s diagram: 
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Forward propagation 

• Units in convolutional layer illustrated have receptive fields of size 4 

in the input feature map and are thus only connected to 4 adjacent 

neurons in the input layer 

• This is the idea of sparse connectivity in CNNs where there exists 

local connectivity pattern between neurons in adjacent layers 

• The color codes of the weights joining the input layer to the 

convolutional layer show how the kernel weights are distributed 

(shared) amongst neurons in the adjacent layers. Weights of the same 

color are constrained to be identical 

• The convolution process here is usually expressed as a cross-

correlation but with a flipped kernel. In the diagram below we 

illustrate a kernel that has been flipped both horizontally and 

vertically: 



Forward propagation 

• The convolution equation of the input at layer l is given by: 

 

 

 

 

• This is illustrated below: 



Error 

• For a total of P predictions, the predicted network outputs 

yp and their corresponding targeted values tp, the mean 

squared error is given by: 

 

 

• Learning will be achieved by adjusting the weights such 

that yp is as close as possible or equals to corresponding tp 

• In the classical backpropagation algorithm, the weights 

are changed according to the gradient descent direction of 

an error surface E 



Backpropagation 

• For backpropagation there are two updates performed, for the 

weights and the deltas 

• Lets begin with the weight update. 

• We are looking to compute ∂E/∂wl
m′,n′ which can be interpreted as the 

measurement of how the change in a single pixel wm′,n′ in the weight 

kernel affects the loss function E 



Backpropagation 

• During forward propagation, the convolution operation ensures that 

the yellow pixel wm′,n′ in the weight kernel makes a contribution in all 

the products (between each element of the weight kernel and the 

input feature map element it overlaps) 

• This means that pixel wm′,n′ will eventually affect all the elements in 

the output feature map 

• Convolution (no padding, stride=1) between the input feature map of 

dimension H×W and the weight kernel of dimension k1×k2 produces 

an output feature map of size (H−k1+1) by (W−k2+1). The gradient 

component for the individual weights can be obtained by applying the 

chain rule in the following way: 



Backpropagation 

• In Eq. 0, xl
i,j is equivalent to  

     

     and expanding this part of the equation gives: 

 

 

 

• Further expanding the summations in Eq. 1, and taking the partial 

derivatives for all the components results in zero values for all except 

the components where m=m′ and n=n′ in wl
m,n o

l−1
i+m,j+n as follows: 



Backpropagation 

• Substituting Eq. 2 in Eq. 0 gives us the following results: 

 

 

 

 

 

• The dual summation in Eq. 3 is as a result of weight sharing in the 

network (same weight kernel is slid over all of the input feature map 

during convolution). The summations represent a collection of all the 

gradients δl
i,j coming from all the outputs in layer l 

• Obtaining gradients w.r.t. the filter maps, we have a cross-correlation 

which is transformed to a convolution by “flipping” the delta matrix 

δl
i,j (horizontally and vertically) the same way we flipped the filters 

during the forward propagation. An illustration of the flipped delta 

matrix is shown: 



Backpropagation 

• The diagram 

shows gradients 

(δ11,δ12,δ21,δ22) 

generated during 

backpropagation 



Backpropagation 

• The convolution operation used to obtain the new set of weights as is 

shown below: 



Backpropagation 

• During the reconstruction process, the deltas (δ11,δ12,δ21,δ22) are used. 

These deltas are provided by an equation of the form: 

 

 
 

• At this point we are looking to compute ∂E/∂xl
i′,j′ which can be 

interpreted as the measurement of how the change in a single pixel 

xi′,j′ in the input feature map affects the loss function E 



Backpropagation 

• From the previous diagram, we can see that region in the output 

affected by pixel xi′,j′ from the input is the region in the output 

bounded by the dashed lines where the top left corner pixel is given by 

(i′−k1+1, j′−k2+1) and the bottom right corner pixel is given by (i′,j′) 

• Using chain rule and introducing sums gives us the following 

equation: 

 

 

 

 

 

 

    where Q in the summation above represents the output region bounded by  

    dashed lines and is composed of pixels in the output that are affected     

    by the single pixel xi′,j′ in the input feature map 

• A more formal way of representing Eq. 6 is the following: 



Backpropagation 

• In the region Q, the height ranges from i′−0 to i′−(k1−1) and width 

j′−0 to j′−(k2−1) 

• These two can simply be represented by i′−m and j′−n in the 

summation, since the iterators m and n exist in the following similar 

ranges from 0≤m≤k1−1 and 0≤n≤k2−1 



Backpropagation 

• In Eq. 7, xl+1
i’-m,j’-n is equivalent to 

 

    and expanding this part of the equation gives: 

 

 

 

 

 

• Further expanding the summation in Eq. 7 and taking the partial 

derivatives for all the components results in zero values for all except 

the components where m′=m and n′=n so that f(xl
i’-m+m’,j’-n+n’) becomes 

f(xl
i’,j’) and wl+1

m’,n’ becomes wl+1
m,n in the relevant part of the 

expanded summation as follows: 



Backpropagation 

• Substituting Eq. 9 in Eq. 7 gives us the following results: 



Backpropagation 

• For backpropagation, we make use of the flipped kernel and as a 

result we will now have a convolution that is expressed as a cross-

correlation with a flipped kernel: 



Backpropagation for the pooling layer 

• The function of the pooling layer is to progressively reduce 

the spatial size of the representation to reduce the 

amount of parameters and computation in the network, 

and hence to also control overfitting. No learning takes 

place on the pooling layers 

 

• Pooling units are obtained using functions like max-

pooling, average pooling and even L2-norm pooling. At the 

pooling layer, forward propagation results in an N×N 

pooling block being reduced to a single value - value of the 

“winning unit” 

• Backpropagation of the pooling layer then computes the 

error which is acquired by this single value “winning unit” 



Backpropagation for the pooling layer 

• To keep track of the “winning unit” its index noted during 

the forward pass and used for gradient routing during 

backpropagation. 

• Gradient routing is done in the following ways: 

• Max-pooling - the error is just assigned to where it comes from - 

the “winning unit” because other units in the previous layer’s 

pooling blocks did not contribute to it hence all the other assigned 

values of zero 

• Average pooling - the error is multiplied by 1/(N×N) and assigned 

to the whole pooling block (all units get this same value) 



Example of forward and 

backpropagation pass for a 

sample CNN 



The sample CNN 



Parameter initialization 

• C1 layer: k1
1,p (size 5x5) and b1

p (size 1x1), p=1,2,…,6 

• C2 layer: k2
p,q (size 5x5) and b2

q (size 1x1), q=1,2,…,12 

• FC layer: W (size 10x192) and b (size 10x1) 

• All bias b1
p, b

2
q and b are initialized to zero. The others are drawn 

randomly from a uniform distribution defined based on the kernel 

size and number of input and output maps on corresponding layers 

 

 

 

 

 

   where U(±x) denotes a uniform distribution with upper and lower  

   bounds of ±x.  

   Totally, the number of parameters is: 

   (5 × 5 + 1) × 6 + (5 × 5 × 6 + 1) × 12 + 10 × 192 + 10 = 3898 

 



Convolution layer C1 

where p=1,2,…6  because there are 6 feature maps on C1 layer, and i, j 

are row and column indices of the feature map. Only keeping those 

parts of the convolution that are computed without the zero-padded 

edges, the size of C1
p is 24×24, rather than 28 × 28 like I 



Pooling layer S1 



Convolution layer C2 

where q=1,2,…12  because there are 12 feature maps on C1 layer. Only 

keeping those parts of the convolution that are computed without the 

zero-padded edges, the size of C2
q is 8×8, rather than 12 × 12 like S1

p 



Pooling layer S2 



Vectorization and Concatenation 

• Each S2
q is a 4x4 matrix, and there are 12 such matrices on the S2 

layer 

• First, each S2
q is vectorized by column scan, then all 12 vectors are 

concatenated to form a long vector with the length of 4x4x12 = 192 

• We denote this process by: 

 

 

     and the reverse process is: 

 



Fully Connected Layer FC 



Loss function 

• Assuming the true label is y, the loss function is express by: 



Backpropagation 

• In the backpropagation, we will update the parameters from the back 

to start, namely W and b, k2
p,q and b2

q, k
1
1,p and b1

p 

Backpropagation: ΔW (size 10x192) 

• Let                                                        ,   whose size is 10x1, then 



Backpropagation: Δb (size 10x1) 



Backpropagation: Δk2
p,q (size 5x5) 

• Because of concatenation, vectorization, and pooling, we need to 

compute the backpropagation error ΔC2
q on C2 layer before  

calculating k2
p,q 



Backpropagation: Δk2
p,q (size 5x5) cont’d 

• From Slide “Vectorization & concatentaion”, we reshape the long 

error vector Δf (size 192 × 1) by 

 

 

     which gets the error on S2 layer (twelve 4 × 4 error maps). Because     

     there is no parameters on S2 layer, we do not need to do any  

     derivative stuff. Then, upsampling is performed to obtain the error  

     on C2 layer 

 

 

Note that the size of ΔS2
q and ΔC2

q are 4×4 and 8×8, respectively. 

Now, we are ready to derive Δk2
p,q 



Backpropagation: Δk2
p,q (size 5x5) cont’d 

• Let                                                                         ,  which is actually the 

error before sigmoid function onC2 layer. Therefore, 



Backpropagation: Δk2
p,q (size 5x5) cont’d 

• Rotating S1
p 180 degrees, we get S1

p,rot180, thus                       

S1
p,rot180(u-i,v-j)=S1

p(i-u, j-v). Therefore, Δk2
p,q can be expressed: 



Backpropagation: Δb2
q (size 1x1) 



Backpropagation: Δk1
1,p (size 5x5) 

• Similar to the derivation of Δk2
p,q, we should first obtain ΔS1

p, the 

error on S1 layer. Then, upsampling will be performed to get ΔC1
p, 

the error on C1 layer. Finally, following the same way, we can 

calculate Δk1
1,p 



Backpropagation: Δk1
1,p (size 5x5) cont’d 

• Rotating k2
p,q 180 degrees, we get k2

p,q,rot180(-u,-v)=k2
p,q(u,v). 

Therefore: 

• By upsampling, we get the error on C1 layer: 



Backpropagation: Δk1
1,p (size 5x5) cont’d 

• Now, we are ready to calculate Δk1
1,p 



Backpropagation: Δk1
1,p (size 5x5) cont’d 

• By the same token,  rotate I 180 degrees, and let 

• Finally 



Backpropagation: Δb1
p (size 1x1) 



Backpropagation: Parameter update 

• We need to set a learning rate α  (0,1] 


