
Νεςπο-Ασαυήρ Υπολογιστική 

Neuro-Fuzzy Computing 
 

 
 

Διδάσκων – 

        Δημήτριος Κατσαρός 

 
          

 
@ Τμ. ΗΜΜΥ 

     Πανεπιστήμιο Θεσσαλίαρ 

Διάλεξη 12η 



Convolutional Neural 

Networks architecture(s) 



CNN architecture: DAG representation 

• Although there is no golden rule in designing a ConvNet, there are a 

few rule-of thumbs that can be found in many successful architectures 

• A ConvNet typically consists of several convolution-pooling layers 

followed by a few fully connected layers 

• Also, the last layer is always the output layer 

• From another perspective, a ConvNet is a directed acyclic graph 

(DAG) with one leaf node 

• In this DAG, each node represents a layer and edges show the connection between 

layers 

• A convenient way of designing a ConvNet is to use a DAG 

diagram like the one shown below: 



CNN architecture: DAG representation  

• One can define other nodes or combine several nodes into 

one node. You can design any DAG to represent a ConvNet 

• However, two rules have to be followed 

• First, there is always one leaf node in a ConvNet which represents 

the classification layer or the loss function. That does not make 

sense to have more than one classification layer in a ConvNet 

• Second, inputs of a node must have the same spatial dimension. 

The exception could be the concatenation node where you can also 

concatenate the inputs spatially 

• As long as these two rules are observed in the DAG, the 

architecture is valid and correct 

• Also, all operations represented by nodes in the DAG must be 

differentiable so that the backpropagation algorithm can be 

applied on the graph 



CNN architecture: Rules of thumb 

• As the first rule of thumb, remember to always compute the 

size of feature maps for each node in the DAG 

• Usually, nodes that are connected to fully connected layers have spatial 

size less than 8 × 8. Common sizes are 2 × 2, 3 × 3, and 4 × 4 

• However, the channels (third dimension) of the nodes connecting to fully 

connected layer could be any arbitrary size 

• The second rule of thumb is that the number of feature maps, 

usually, has a direct relation with depth of each node in the 

DAG 

• That means we start with small number of feature maps in early layers 

and the number of feature maps increases as they the depth of nodes 

increases 

• However, some flat architectures have been also proposed in literature 

where all layers have the same number of feature maps or they have a 

repetitive pattern 



CNN architecture: Rules of thumb 

• The third rule of thumb is that state-of-the-art ConvNets 

commonly use convolution filters of size 3 × 3, 5 × 5, and 7 × 7 

• AlexNet is the only one that has utilized 11 × 11 convolution filters 

• The fourth rule of thumb is activation functions usually come 

immediately after a convolution layer 

• A few works put the activation function after the pooling layer 

• As the fifth rule of thumb remember that while putting several 

convolution layers consecutively makes sense, it is not common 

to add two or more consecutive activation function layers 

• The sixth rule of thumb is to use an activation function from 

the family of ReLU function (ReLU, Leaky ReLU, PReLU, ELU 

or Noisy ReLU) 

• Also, always compute the number of trainable parameters of your 

ConvNet. If you do not have plenty of data and you design a ConvNet with 

millions of parameters, the ConvNet might not generalize well on the test 

set 



CNN architecture: Software libraries 

• Software libraries 
• Theano (deeplearning.net/software/theano/) 

• Lasagne (lasagne.readthedocs.io/en/latest/) 

• TensorFlow (www.tensorflow.org/) 

• Keras (keras.io/) 

• Torch (torch.ch/) 

• cuDNN (developer.nvidia.com/cudnn) 

• mxnet (mxnet.io) 

• Caffe (caffe.berkeleyvision.org/) 

•Architectures 
• https://arxiv.org/abs/1901.06032 



CNN visualization 



Number of parameters 

calculation in Convolutional 

Neural Networks 



LeNet architecture 

LeNet (1989) - proposed for recognizing handwritten digits 

• In this DAG, Ca,b shows a convolution layer with a filters of size b × b and the phrase 

/a in any nodes shows the stride of that operation.  P/a,b denotes a pooling operation 

with stride a and size b, FCa shows a fully connected layer with a neurons, Ya shows 

the output layer with a neurons 

• This ConvNet that consists of four convolution-pooling layers 

• The input of the ConvNet is a single-channel 32 × 32 image 

• The last pooling layer (S4) is connected to the fully connected layer C5 

• The convolution layer C1 contains six filters of size 5 × 5. Convolving a 

32 × 32 image with these filters produces six feature maps of size 28 × 
28. Since the input of the network is a single-channel image, the 

convolution filter in C1 are actually 5 × 5 × 1 filters 

 

 



LeNet architecture 

• The convolution layer C1 is followed by the pooling layer S2 with stride 2. 

Thus, the output of S2 is six feature maps of size 14 × 14 which collectively 

show a six-channel input 

• Then, 16 filters of size 5 × 5 are applied on the six-channel image in the 

convolution layer C3. In fact, the size of convolution filters in C3 is 5×5×6. As 

the result, the output of C3 will be 16 images of size 10 × 10 which, together, 

show a 16-channel input 

• Next, the layer S4 applies a pooling operation with stride 2 and produces 16 

images of size 5 × 5 

• The layer C5 is a fully connected layer in which every neuron in C5 is 

connected to all the neuron in S4. In other words, every neuron in C5 is 

connected to 16 × 5 × 5 = 400 neurons in S4. From another perspective, C5 can 

be seen as a convolution layer with 120 filters of size 5 × 5 

• Likewise, S6 is also a fully connected layer that is connected to S5 

• Finally, the classification layer is a radial basis function layer where the 

inputs of the radial basis function are 84 dimensional vectors. However, for 

the purpose of our discussion, we consider the classification layer a fully 

connected layer composed of 10 neurons (one neuron for each digit) 



LeNet architecture 

• The pooling operation in this particular ConvNet is not the 

max-pooling or average-pooling operations 

• Instead, it sums the four inputs and divides them by the 

trainable parameter a and adds the trainable bias b to this 

result 

• Also, the activation functions are applied after the pooling 

layer and there is no activation function after the 

convolution layers 

• In this ConvNet, the sigmoid activation functions are used 



LeNet architecture: #params calculation 

• The first layer consists of six filters of size 5 × 5 × 1. Assuming that 

each filter has also a bias term, C1 is formulated using 6 × 5 × 5 × 1 + 6 

= 156 trainable parameters 

• Then, (in this particular ConvNet) each pooling unit is formulated using 

two parameters. Hence, S2 contains 12 trainable parameters 

• Then, taking into account the fact that C3 is composed of 16 filters of 

size 5 × 5 × 6, it will contain 16 × 5 × 5 × 6 + 16 = 2416 trainable 

parameters 

• S4 will also contain 32 parameters since each pooling unit is 

formulated using two parameters 

• In the case of C5, it consists of 120 × 5 × 5 × 16 + 120 = 48120 

parameters 

• Similarly, F6 contains 84 × 120 + 84 = 10164 trainable parameters 

and the output includes 10×84+10 = 850 trainable parameters 

• Therefore, the LeNet-5 ConvNet requires training 156 + 12 + 2416 + 

32 + 48120 + 10164 + 850 = 61750 parameters 



AlexNet architecture (without/with GPU) 



AlexNet architecture 

• AlexNet starts with 224 × 224 × 3 images and uses 96 

filters of size 11 × 11 × 3 in the first layer. A stride of 4 is 

used 

• This results in a first layer of size 55 × 55 × 96 

• After the first layer has been computed, a max-pooling 

layer is used 

• The ReLU activation function was applied after each convolutional 

layer, which was followed by response normalization and max-

pooling 

• The second convolutional layer uses the response-

normalized and pooled output of the first convolutional 

layer and filters it with 256 filters of size 5 × 5 × 96 



AlexNet architecture 

• No intervening pooling or normalization layers are present 

in the third, fourth, or fifth convolutional layers 

• The sizes of the filters of the third, fourth, and fifth 

convolutional layers are 3 × 3 × 256 (with 384 filters), 3 × 3 

× 384 (with 384 filters), and 3 × 3 × 384 (with 256 filters) 

• All max-pooling layers used 3 × 3 filters at stride 2. 

Therefore, there was some overlap among the pools 

• The fully connected layers have 4096 neurons 

• The final set of 4096 activations can be treated as a 4096-

dimensional representation of the image 

• The final layer of AlexNet uses a 1000-way softmax in 

order to perform the classification 



The Softmax function 

• Softmax function, is an activation function that turns 

numbers aka logits into probabilities that sum to one 

• Softmax function outputs a vector that represents the 

probability distributions of a list of potential outcomes 



Exercise 

• Calculate #parameters of the following CNN 

• Assume that each pooling layer has two parameters (like AlexNet), 

i.e., weight and bias 

Filter size= 5x5 

Stride= 1 

Valid padding 

 

(32-5+1)x(32-5+1) x 6 

=784 x 6 = 4704 neurons 

 

[(5x5) weights +1 bias] x 

6 filters= 156 trainable 

parameters 

Pooling window= 2x2 

Stride= 2 

 

14x14x6=1176 

neurons 

 

14x14x6x(2x2+1)= 

5880 connections 

 

[(1 weight +1 bias] x 6 

‘slices’= 12 trainable 

parameters 

Filter size= 5x5 

Stride= 1 

Valid padding 

 

(14-5+1)x(14-

5+1)x16=1600 neurons 

 

[(5x5x6) weights +1 

bias] x 16 filters= 2416 

trainable parameters 

Pooling window= 2x2 

Stride= 2 

 

5x5x16=400 neurons 

 

[(1 weight +1 bias] x 

16 ‘slices’= 32 

trainable parameters 

170 neurons x 

(400 neurons 

+1 bias) = 

48120 trainable 

parameters 

17 neurons 

x (170 

neurons +1 

bias) = 

2907 

trainable 

parameters 



Some (not so) modern CNNs: AlexNet 

• AlexNet, which employed an 8-layer CNN, 

won the ImageNet Large Scale Visual 

Recognition Challenge 2012 

• In AlexNetʼs first layer, the convolution 

window shape is 11 x 11 
• Since most images in ImageNet are more than ten 

times higher and wider than the MNIST images, 

objects in ImageNet data tend to occupy more pixels. 

Consequently, a larger convolution window is needed 

to capture the object 

• AlexNet changed the sigmoid activation 

function to a ReLU activation function 
• The computation of the ReLU activation function is 

simpler. The ReLU activation function makes model 

training easier when using different parameter 

initialization methods. This is because, when the 

output of the sigmoid activation function is very close 

to 0 or 1, the gradient of these regions is almost 0, so 

that backpropagation cannot continue to update 

some of the model parameters. In contrast, the 

gradient of the ReLU activation function in the 

positive interval is always 1 



Some (not so) modern CNNs: VGG 

• While AlexNet offered empirical evidence that 

deep CNNs can achieve good results, it did not 

provide a general template to guide in 

designing new networks. The idea of using 

blocks first emerged from the Visual Geometry 

Group96 (VGG) at Oxford University, in their 

eponymously-named VGG network 

• The basic building block of classic 

CNNs is a sequence of the following: 

(i) a convolutional layer with 

padding to maintain the resolution, 

(ii) a nonlinearity (e.g., ReLU), (iii) a 

pooling layer such as a max pooling 

layer. One VGG block consists of a 

sequence of convolutional layers, 

followed by a max pooling layer for 

spatial downsampling.  
• In the original VGG paper, the authors 

employed  convolutions with 3 x 3 kernels 

with padding of 1 (keeping height and 

width) and 2 x 2 max pooling with stride of 

2 (halving the resolution after each block) 



Some (not so) modern CNNs: NiN 

• AlexNet, and VGG all share a common design pattern:  

• extract features exploiting spatial structure via a sequence of convolution and 

pooling layers and then post-process the representations via fully-connected layers.  

• Alternatively, one could imagine using fully-connected layers earlier 

in the process. However, a careless use of dense layers might give up 

the spatial structure of the representation entirely, network in 

network (NiN) blocks offer an alternative.  

• They were proposed based on a very simple insight: to use an MLP on the channels 

for each pixel separately 

• NiN uses convolutional layers with window shapes of 11x11, 5x5, and 

3x3, and the corresponding numbers of output channels are the same 

as in AlexNet. Each NiN block is followed by a maximum pooling layer 

with a stride of 2 and a window shape of 3x3 

• One significant difference between NiN and AlexNet is that NiN 

avoids fully-connected layers altogether. Instead, NiN uses an NiN 

block with a number of output channels equal to the number of label 

classes, followed by a global average pooling layer 



Some (not so) modern CNNs: NiN 



Some (not so) modern CNNs: GoogLeNet 

(or InceptionNet) 
• In 2014, GoogLeNet won the ImageNet Challenge, 

proposing a structure that combined the strengths of NiN 

and paradigms of repeated blocks   

• sometimes it can be advantageous to employ a combination of 

variously-sized kernels (to capture details at multiple scales) 

• The basic convolutional block in GoogLeNet is called an 

Inception block 
• It consists of four parallel paths. The first three paths use convolutional 

layers with window sizes of 1 x 1, 3 x 3, and 5 x 5 to extract information 

from different spatial sizes. The middle two paths perform a 1 x 1 

convolution on the input to reduce the number of channels, reducing the 

modelʼs complexity. The fourth path uses a 3 x 3 maximum pooling 

layer, followed by a 1 x 1 convolutional layer to change the number of 

channels. The four paths all use appropriate padding to give the input 

and output the same height and width. Finally, the outputs along each 

path are concatenated along the channel dimension and comprise the 

blockʼs output. 



Overview of CNNs architectures till 2018 

More parameters do 

not always lead to 

better accuracy! 



Comparison of modern CNNs 


