
Νεςπο-Ασαυήρ Υπολογιστική

Neuro-Fuzzy Computing

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 12η

Convolutional Neural

Networks architecture(s)

CNN architecture: DAG representation

• Although there is no golden rule in designing a ConvNet, there are a

few rule-of thumbs that can be found in many successful architectures

• A ConvNet typically consists of several convolution-pooling layers

followed by a few fully connected layers

• Also, the last layer is always the output layer

• From another perspective, a ConvNet is a directed acyclic graph

(DAG) with one leaf node

• In this DAG, each node represents a layer and edges show the connection between

layers

• A convenient way of designing a ConvNet is to use a DAG

diagram like the one shown below:

CNN architecture: DAG representation

• One can define other nodes or combine several nodes into

one node. You can design any DAG to represent a ConvNet

• However, two rules have to be followed

• First, there is always one leaf node in a ConvNet which represents

the classification layer or the loss function. That does not make

sense to have more than one classification layer in a ConvNet

• Second, inputs of a node must have the same spatial dimension.

The exception could be the concatenation node where you can also

concatenate the inputs spatially

• As long as these two rules are observed in the DAG, the

architecture is valid and correct

• Also, all operations represented by nodes in the DAG must be

differentiable so that the backpropagation algorithm can be

applied on the graph

CNN architecture: Rules of thumb

• As the first rule of thumb, remember to always compute the

size of feature maps for each node in the DAG

• Usually, nodes that are connected to fully connected layers have spatial

size less than 8 × 8. Common sizes are 2 × 2, 3 × 3, and 4 × 4

• However, the channels (third dimension) of the nodes connecting to fully

connected layer could be any arbitrary size

• The second rule of thumb is that the number of feature maps,

usually, has a direct relation with depth of each node in the

DAG

• That means we start with small number of feature maps in early layers

and the number of feature maps increases as they the depth of nodes

increases

• However, some flat architectures have been also proposed in literature

where all layers have the same number of feature maps or they have a

repetitive pattern

CNN architecture: Rules of thumb

• The third rule of thumb is that state-of-the-art ConvNets

commonly use convolution filters of size 3 × 3, 5 × 5, and 7 × 7

• AlexNet is the only one that has utilized 11 × 11 convolution filters

• The fourth rule of thumb is activation functions usually come

immediately after a convolution layer

• A few works put the activation function after the pooling layer

• As the fifth rule of thumb remember that while putting several

convolution layers consecutively makes sense, it is not common

to add two or more consecutive activation function layers

• The sixth rule of thumb is to use an activation function from

the family of ReLU function (ReLU, Leaky ReLU, PReLU, ELU

or Noisy ReLU)

• Also, always compute the number of trainable parameters of your

ConvNet. If you do not have plenty of data and you design a ConvNet with

millions of parameters, the ConvNet might not generalize well on the test

set

CNN architecture: Software libraries

• Software libraries
• Theano (deeplearning.net/software/theano/)

• Lasagne (lasagne.readthedocs.io/en/latest/)

• TensorFlow (www.tensorflow.org/)

• Keras (keras.io/)

• Torch (torch.ch/)

• cuDNN (developer.nvidia.com/cudnn)

• mxnet (mxnet.io)

• Caffe (caffe.berkeleyvision.org/)

•Architectures
• https://arxiv.org/abs/1901.06032

CNN visualization

Number of parameters

calculation in Convolutional

Neural Networks

LeNet architecture

LeNet (1989) - proposed for recognizing handwritten digits

• In this DAG, Ca,b shows a convolution layer with a filters of size b × b and the phrase

/a in any nodes shows the stride of that operation. P/a,b denotes a pooling operation

with stride a and size b, FCa shows a fully connected layer with a neurons, Ya shows

the output layer with a neurons

• This ConvNet that consists of four convolution-pooling layers

• The input of the ConvNet is a single-channel 32 × 32 image

• The last pooling layer (S4) is connected to the fully connected layer C5

• The convolution layer C1 contains six filters of size 5 × 5. Convolving a

32 × 32 image with these filters produces six feature maps of size 28 ×
28. Since the input of the network is a single-channel image, the

convolution filter in C1 are actually 5 × 5 × 1 filters

LeNet architecture

• The convolution layer C1 is followed by the pooling layer S2 with stride 2.

Thus, the output of S2 is six feature maps of size 14 × 14 which collectively

show a six-channel input

• Then, 16 filters of size 5 × 5 are applied on the six-channel image in the

convolution layer C3. In fact, the size of convolution filters in C3 is 5×5×6. As

the result, the output of C3 will be 16 images of size 10 × 10 which, together,

show a 16-channel input

• Next, the layer S4 applies a pooling operation with stride 2 and produces 16

images of size 5 × 5

• The layer C5 is a fully connected layer in which every neuron in C5 is

connected to all the neuron in S4. In other words, every neuron in C5 is

connected to 16 × 5 × 5 = 400 neurons in S4. From another perspective, C5 can

be seen as a convolution layer with 120 filters of size 5 × 5

• Likewise, S6 is also a fully connected layer that is connected to S5

• Finally, the classification layer is a radial basis function layer where the

inputs of the radial basis function are 84 dimensional vectors. However, for

the purpose of our discussion, we consider the classification layer a fully

connected layer composed of 10 neurons (one neuron for each digit)

LeNet architecture

• The pooling operation in this particular ConvNet is not the

max-pooling or average-pooling operations

• Instead, it sums the four inputs and divides them by the

trainable parameter a and adds the trainable bias b to this

result

• Also, the activation functions are applied after the pooling

layer and there is no activation function after the

convolution layers

• In this ConvNet, the sigmoid activation functions are used

LeNet architecture: #params calculation

• The first layer consists of six filters of size 5 × 5 × 1. Assuming that

each filter has also a bias term, C1 is formulated using 6 × 5 × 5 × 1 + 6

= 156 trainable parameters

• Then, (in this particular ConvNet) each pooling unit is formulated using

two parameters. Hence, S2 contains 12 trainable parameters

• Then, taking into account the fact that C3 is composed of 16 filters of

size 5 × 5 × 6, it will contain 16 × 5 × 5 × 6 + 16 = 2416 trainable

parameters

• S4 will also contain 32 parameters since each pooling unit is

formulated using two parameters

• In the case of C5, it consists of 120 × 5 × 5 × 16 + 120 = 48120

parameters

• Similarly, F6 contains 84 × 120 + 84 = 10164 trainable parameters

and the output includes 10×84+10 = 850 trainable parameters

• Therefore, the LeNet-5 ConvNet requires training 156 + 12 + 2416 +

32 + 48120 + 10164 + 850 = 61750 parameters

AlexNet architecture (without/with GPU)

AlexNet architecture

• AlexNet starts with 224 × 224 × 3 images and uses 96

filters of size 11 × 11 × 3 in the first layer. A stride of 4 is

used

• This results in a first layer of size 55 × 55 × 96

• After the first layer has been computed, a max-pooling

layer is used

• The ReLU activation function was applied after each convolutional

layer, which was followed by response normalization and max-

pooling

• The second convolutional layer uses the response-

normalized and pooled output of the first convolutional

layer and filters it with 256 filters of size 5 × 5 × 96

AlexNet architecture

• No intervening pooling or normalization layers are present

in the third, fourth, or fifth convolutional layers

• The sizes of the filters of the third, fourth, and fifth

convolutional layers are 3 × 3 × 256 (with 384 filters), 3 × 3

× 384 (with 384 filters), and 3 × 3 × 384 (with 256 filters)

• All max-pooling layers used 3 × 3 filters at stride 2.

Therefore, there was some overlap among the pools

• The fully connected layers have 4096 neurons

• The final set of 4096 activations can be treated as a 4096-

dimensional representation of the image

• The final layer of AlexNet uses a 1000-way softmax in

order to perform the classification

The Softmax function

• Softmax function, is an activation function that turns

numbers aka logits into probabilities that sum to one

• Softmax function outputs a vector that represents the

probability distributions of a list of potential outcomes

Exercise

• Calculate #parameters of the following CNN

• Assume that each pooling layer has two parameters (like AlexNet),

i.e., weight and bias

Filter size= 5x5

Stride= 1

Valid padding

(32-5+1)x(32-5+1) x 6

=784 x 6 = 4704 neurons

[(5x5) weights +1 bias] x

6 filters= 156 trainable

parameters

Pooling window= 2x2

Stride= 2

14x14x6=1176

neurons

14x14x6x(2x2+1)=

5880 connections

[(1 weight +1 bias] x 6

‘slices’= 12 trainable

parameters

Filter size= 5x5

Stride= 1

Valid padding

(14-5+1)x(14-

5+1)x16=1600 neurons

[(5x5x6) weights +1

bias] x 16 filters= 2416

trainable parameters

Pooling window= 2x2

Stride= 2

5x5x16=400 neurons

[(1 weight +1 bias] x

16 ‘slices’= 32

trainable parameters

170 neurons x

(400 neurons

+1 bias) =

48120 trainable

parameters

17 neurons

x (170

neurons +1

bias) =

2907

trainable

parameters

Some (not so) modern CNNs: AlexNet

• AlexNet, which employed an 8-layer CNN,

won the ImageNet Large Scale Visual

Recognition Challenge 2012

• In AlexNetʼs first layer, the convolution

window shape is 11 x 11
• Since most images in ImageNet are more than ten

times higher and wider than the MNIST images,

objects in ImageNet data tend to occupy more pixels.

Consequently, a larger convolution window is needed

to capture the object

• AlexNet changed the sigmoid activation

function to a ReLU activation function
• The computation of the ReLU activation function is

simpler. The ReLU activation function makes model

training easier when using different parameter

initialization methods. This is because, when the

output of the sigmoid activation function is very close

to 0 or 1, the gradient of these regions is almost 0, so

that backpropagation cannot continue to update

some of the model parameters. In contrast, the

gradient of the ReLU activation function in the

positive interval is always 1

Some (not so) modern CNNs: VGG

• While AlexNet offered empirical evidence that

deep CNNs can achieve good results, it did not

provide a general template to guide in

designing new networks. The idea of using

blocks first emerged from the Visual Geometry

Group96 (VGG) at Oxford University, in their

eponymously-named VGG network

• The basic building block of classic

CNNs is a sequence of the following:

(i) a convolutional layer with

padding to maintain the resolution,

(ii) a nonlinearity (e.g., ReLU), (iii) a

pooling layer such as a max pooling

layer. One VGG block consists of a

sequence of convolutional layers,

followed by a max pooling layer for

spatial downsampling.
• In the original VGG paper, the authors

employed convolutions with 3 x 3 kernels

with padding of 1 (keeping height and

width) and 2 x 2 max pooling with stride of

2 (halving the resolution after each block)

Some (not so) modern CNNs: NiN

• AlexNet, and VGG all share a common design pattern:

• extract features exploiting spatial structure via a sequence of convolution and

pooling layers and then post-process the representations via fully-connected layers.

• Alternatively, one could imagine using fully-connected layers earlier

in the process. However, a careless use of dense layers might give up

the spatial structure of the representation entirely, network in

network (NiN) blocks offer an alternative.

• They were proposed based on a very simple insight: to use an MLP on the channels

for each pixel separately

• NiN uses convolutional layers with window shapes of 11x11, 5x5, and

3x3, and the corresponding numbers of output channels are the same

as in AlexNet. Each NiN block is followed by a maximum pooling layer

with a stride of 2 and a window shape of 3x3

• One significant difference between NiN and AlexNet is that NiN

avoids fully-connected layers altogether. Instead, NiN uses an NiN

block with a number of output channels equal to the number of label

classes, followed by a global average pooling layer

Some (not so) modern CNNs: NiN

Some (not so) modern CNNs: GoogLeNet

(or InceptionNet)
• In 2014, GoogLeNet won the ImageNet Challenge,

proposing a structure that combined the strengths of NiN

and paradigms of repeated blocks

• sometimes it can be advantageous to employ a combination of

variously-sized kernels (to capture details at multiple scales)

• The basic convolutional block in GoogLeNet is called an

Inception block
• It consists of four parallel paths. The first three paths use convolutional

layers with window sizes of 1 x 1, 3 x 3, and 5 x 5 to extract information

from different spatial sizes. The middle two paths perform a 1 x 1

convolution on the input to reduce the number of channels, reducing the

modelʼs complexity. The fourth path uses a 3 x 3 maximum pooling

layer, followed by a 1 x 1 convolutional layer to change the number of

channels. The four paths all use appropriate padding to give the input

and output the same height and width. Finally, the outputs along each

path are concatenated along the channel dimension and comprise the

blockʼs output.

Overview of CNNs architectures till 2018

More parameters do

not always lead to

better accuracy!

Comparison of modern CNNs

