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Introduction to Convolutional NN (CNNs) 

• Convolutional neural networks are designed to work with 

grid-structured inputs, which have strong spatial 

dependencies in local regions of the grid 

• The most obvious example of grid-structured data is a 2-

dimensional image 

• This type of data exhibits spatial dependencies, because adjacent 

spatial locations in an image often have similar color values of the 

individual pixels 

• An additional dimension captures the different colors, which creates a 

3-dimensional input volume 

• Therefore, the features in a convolutional neural network have 

dependencies among one another based on spatial distances 

• Other forms of sequential data like text, time-series, 

and sequences can also be considered special cases of 

grid-structured data with various types of 

relationships among adjacent items 



The neuroscientific basis of CNNs 

• The history of convolutional networks begins with 

neuroscientific experiments long before the relevant 

computational models were developed 

• Neurophysiologists David Hubel and Torsten Wiesel 

(‗59, ‘62, ‗68) collaborated for several years to 

determine many of the most basic facts about how the 

mammalian vision system works 
• Their accomplishments were eventually recognized with a Nobel 

prize (1981) 

• https://www.nobelprize.org/prizes/medicine/1981/summary/ 

• Their findings that have had the greatest influence 

on contemporary deep learning models were based on 

recording the activity of individual neurons in cats 

• They observed how neurons in the cat‘s brain 

responded to images projected in precise locations on 

a screen in front of the cat 

• Their great discovery was that neurons in the 

early visual system responded most strongly to 

very specific patterns of light, such as precisely 

oriented bars, but responded hardly at all to 

other patterns 



The neuroscientific basis of CNNs 



The neuroscientific basis of CNNs 

• In this simplified view, we focus on a part of the brain called V1, also 

known as the primary visual cortex 

• V1 is the first area of the brain that begins to perform significantly 

advanced processing of visual input 

• In this cartoon view, images are formed by light arriving in the eye 

and stimulating the retina, the light-sensitive tissue in the back of 

the eye 

• The neurons in the retina perform some simple preprocessing of the 

image but do not substantially alter the way it is represented 

• The image then passes through the optic nerve and a brain region 

called the Lateral Geniculate Nucleus (LGN) 

• The main role, as far as we are concerned here, of both of these 

anatomical regions is primarily just to carry the signal from the eye 

to V1, which is located at the back of the head 



The neuroscientific basis of CNNs 

• A convolutional network layer is designed to capture 

three properties of V1: 
 

1. V1 is arranged in a spatial map. It actually has a two-

dimensional structure mirroring the structure of the 

image in the retina 

• For example, light arriving at the lower half of the retina affects 

only the corresponding half of V1. Convolutional networks 

capture this property by having their features defined in terms 

of two dimensional maps 

2. V1 contains many simple cells. A simple cell‘s activity 

can to some extent be characterized by a linear function 

of the image in a small, spatially localized receptive field. 

The detector units of a convolutional network are 

designed to emulate these properties of simple cells 



The neuroscientific basis of CNNs 

• A convolutional network layer is designed to capture 

three properties of V1 (cont‘d): 
 

3. V1 also contains many complex cells. These cells 

respond to features that are similar to those detected by 

simple cells, but complex cells are invariant to small 

shifts in the position of the feature 

• This inspires the pooling units of convolutional networks. 

Complex cells are also invariant to some changes in 

lighting that cannot be captured simply by pooling over 

spatial locations 

• These invariances have inspired some of the cross-channel 

pooling strategies in convolutional networks, such as maxout 

units 



The neuroscientific basis of CNNs 

• Though we know the most about V1, it is generally believed that the 

same basic principles apply to other areas of the visual system 

• In our cartoon view of the visual system, the basic strategy of 

detection followed by pooling is repeatedly applied as we move deeper 

into the brain 

• As we pass through multiple anatomical layers of the brain, we 

eventually find cells that respond to some specific concept and are 

invariant to many transformations of the input 

• These cells have been nicknamed ―grandmother cells‖—the idea is 

that a person could have a neuron that activates when seeing an 

image of their grandmother, regardless of whether she appears in the 

left or right side of the image, whether the image is a close-up of her 

face or zoomed out shot of her entire body, whether she is brightly lit, 

or in shadow, etc. 

• These grandmother cells have been shown to actually exist in the 

human brain, in a region called the Medial Temporal Lobe 



The neuroscientific basis of CNNs 

• These medial temporal lobe neurons are somewhat more general than 

modern convolutional networks, which would not automatically 

generalize to identifying a person or object when reading its name 

• The closest analog to a convolutional network‘s last layer of features 

is a brain area called the Inferotemporal Cortex (IT) 

• When viewing an object, information flows from the retina, through 

the LGN, to V1, then onward to V2, then V4, then IT 

• This happens within the first 100ms of glimpsing an object 

• If a person is allowed to continue looking at the object for more time, 

then information will begin to flow backwards as the brain uses top-

down feedback to update the activations in the lower level brain areas 

• However, if we interrupt the person‘s gaze, and observe only the 

firing rates that result from the first 100ms of mostly feedforward 

activation, then IT proves to be very similar to a convolutional 

network 

• Convolutional networks can predict IT firing rates, and also perform very similarly 

to (time limited) humans on object recognition task 



The neuroscientific basis of CNNs 

• That being said, there are many differences between convolutional 

networks and the mammalian vision system 

• Some of these differences are not yet known, because many basic 

questions about how the mammalian vision system works remain 

unanswered 

• As a brief list: 

1. The human eye is mostly very low resolution, except for a tiny patch called the 

fovea. The fovea only observes an area about the size of a thumbnail held at arms 

length. Though we feel as if we can see an entire scene in high resolution, this is 

an illusion created by the subconscious part of our brain, as it stitches together 

several glimpses of small areas. Most convolutional networks actually receive 

large full resolution photographs as input. The human brain makes several eye 

movements called saccades to glimpse the most visually salient or task-relevant 

parts of a scene. Incorporating similar attention mechanisms into deep learning 

models is an active research direction. In the context of deep learning, attention 

mechanisms have been most successful for natural language processing, as 

described in section 12.4.5.1. Several visual models with foveation mechanisms 

have been developed but so far have not become the dominant approach 



The neuroscientific basis of CNNs 

• As a brief list (cont‘d): 

2. The human visual system is integrated with many other senses, such as hearing, 

and factors like our moods and thoughts. Convolutional networks are purely visual 

3. The human visual system does much more than just recognize objects. It is able to 

understand entire scenes including many objects and relationships between objects, 

and processes rich 3-D geometric information needed for our bodies to interface 

with the world. Convolutional networks have been applied to some of these 

problems but these applications are in their infancy 

4. Even simple brain areas like V1 are heavily impacted by feedback from higher 

levels. Feedback has been explored extensively in neural network models but has 

not yet been shown to offer a compelling improvement 

5. While feed-forward IT firing rates capture much of the same information as 

convolutional network features, it is not clear how similar the intermediate 

computations are. The brain probably uses very different activation and pooling 

functions. An individual neuron‘s activation probably is not well-characterized by a 

single linear filter response. A recent model of V1 involves multiple quadratic filters 

for each neuron (Rust et al., 2005). Indeed our cartoon picture of ―simple cells‖ and 

―complex cells‖ might create a nonexistent distinction; simple cells and complex 

cells might both be the same kind of cell but with their ―parameters‖ enabling a 

continuum of behaviors ranging from what we call ―simple‖ to what we call 

―complex‖ 



The neuroscientific basis of CNNs 

• It is also worth mentioning that neuroscience has told us relatively 

little about how to train convolutional networks 

• Model structures with parameter sharing across multiple spatial 

locations date back to early connectionist models of vision, but these 

models did not use the modern back-propagation algorithm and gradient 

descent. For example, the Neocognitron (Fukushima, 1980) incorporated 

most of the model architecture design elements of the modern 

convolutional network but relied on a layer-wise unsupervised clustering 

algorithm 

Planes Don’t Flap Wings to Fly 
[Engineering success may start with biological inspiration, but then take a totally different path] 



Motivational example (1/5) 

32 x 32 x 7200 = 7,372,800 parameters 

Assumptions: (a) image composed by 32 x 32 pixels, (b) 7200 hidden layer neurons, 

(c) fully connected each pixel with each hidden layer neuron 



Motivational example (2/5) 

Organize neurons into 50 blocks composed by 12 x 12 neurons 

Still 32 x 32 x 7200 = 7,372,800 parameters; Can exploit pixel geometry/correlation 



Motivational example (3/5) 

Correlation between far pixels is very low. Connect each neuron in each block to a 

5×5 region in the image. Neurons in a block cover all the input image and 

extract information for each 5 × 5 patch in the input image 

(5 x 5) x 50 x 12 x 12 = 180,000 parameters; 97.5% reduction 



Motivational example (4/5) 

Reduce number of weights by weight sharing 

(5 x 5) x 50 = 1,250 parameters; 99.98% reduction (w.r.t. the fully connected layer) 



Motivational example (5/5) 

Denoting the neuron (p,q) in block l in the previous slide’s figure by f lp,q, the output 

of this neuron is given by: 

where wl
p,q shows the weight (a,b) in block I and p,q=0,1,…,11. Here a,b vary 

between 0 and 4 since each neuron is connected to a 5 × 5 region. The output of 

each block will have the same size as its block. Hence, in this example, the 

output of each block will be a 12 × 12 matrix. With this formulation and denoting 

the output matrix of lth   with fl , this matrix can be obtained by computing: 

The above equation is exactly analogous to convolving the 5×5 filter w with the 

input image. As the result, output of the lth block is obtained by convolving the filter 

w on the input image 



CNNs in the ILSVRC contest 

• A factor that has played an important role in increasing the 

prominence of convolutional neural networks has been the annual 

ImageNet competition (also referred to as ―ImageNet Large Scale 

Visual Recognition Challenge [ILSVRC]‖). The ILSVRC competition 

uses the ImageNet data set 

• Convolutional neural networks have been consistent winners of this 

contest since 2012 

• In fact, the dominance of convolutional neural networks for image classification is 

so well recognized today that almost all entries in recent editions of this contest 

have been convolutional neural networks. One of the earliest methods that 

achieved success in the 2012 ImageNet competition by a large margin was AlexNet 

• Furthermore, the improvements in accuracy have been so 

extraordinarily large in the last few years that it has changed the 

landscape of research in the area 

• In spite of the fact that the vast majority of eye-catching performance gains have 

occurred from 2012 to 2015, the architectural differences between recent winners 

and some of the earliest convolutional neural networks are rather small at least at 

a conceptual level. Nevertheless, small details seem to matter a lot when working 

with almost all types of neural networks 



Generic observations about CNNs 

• The secret to the success of any neural architecture lies in tailoring 

the structure of the network with a semantic understanding of the 

domain at hand 

• CNNs are heavily based on this principle, because they use sparse 

connections with a high-level of parameter-sharing in a domain-

sensitive way 

• In other words, not all states in a particular layer are connected to those in the 

previous layer in an indiscriminate way. Rather, the value of a feature in a 

particular layer is connected only to a local spatial region in the previous layer 

with a consistent set of shared parameters across the full spatial footprint of the 

image 

• A significant level of domain-aware regularization is also available in 

recurrent neural networks, which share the parameters from 

different temporal periods 

• This sharing is based on the assumption that temporal dependencies remain 

invariant with time 

• Recurrent neural networks are based on intuitive understanding of temporal 

relationships, whereas convolutional neural networks are based on an intuitive 

understanding of spatial relationships 



Basic structure of CNNs 

• In convolutional neural networks, the states in each layer are 

arranged according to a spatial grid structure. These spatial 

relationships are inherited from one layer to the next because each 

feature value is based on a small local spatial region in the previous 

layer 

• It is important to maintain these spatial relationships among the grid 

cells, because the convolution operation and the transformation to the 

next layer is critically dependent on these relationships 

• Each layer in the convolutional network is a 3-dimensional grid 

structure, which has a height, width, and depth 

• The depth of a layer in a convolutional neural network should not be 

confused with the depth of the network itself 

• The word ―depth‖ (when used in the context of a single layer) refers to the 

number of channels in each layer, such as the number of primary color 

channels (e.g., blue, green, and red) in the input image or the number of 

feature maps in the hidden layers 



Basic structure of CNNs 

• The convolutional neural network functions much like a 

traditional feed-forward neural network, except that the 

operations in its layers are spatially organized with 

sparse (and carefully designed) connections between 

layers 

• In the following, we will describe each of the different 

types of operations and layers 



Basic structure of CNNs 

• Why do we need depth in each layer of a convolutional neural 

network? 

• To understand this point, let us examine how the input to the convolutional neural 

network is organized 

• The input data to the convolutional neural network is organized into 

a 2-dimensional grid structure, and the values of the individual grid 

points are referred to as pixels 

• Each pixel, therefore, corresponds to a spatial location within the image 

• However, in order to encode the precise color of the pixel, we need a 

multidimensional array of values at each grid location 

• In the RGB color scheme, we have an intensity of the three primary 

colors, corresponding to red, green, and blue, respectively 

• Therefore, if the spatial dimensions of an image are 32×32 pixels and the depth is 

3 (corresponding to the RGB color channels), then the overall number of pixels in 
the image is 32 × 32 × 3. This particular image size is quite common, and also 

occurs in a popularly used data set for benchmarking, known as CIFAR-10 



Basic structure of CNNs 

• An example of this organization is shown in the next slide 

 

• It is natural to represent the input layer in this 3-dimensional 

structure because two dimensions are devoted to spatial relationships 

and a third dimension is devoted to the independent properties along 

these channels 

• For example, the intensities of the primary colors are the independent properties 

in the first layer 

• In the hidden layers, these independent properties correspond to various types of 

shapes extracted from local regions of the image 

• For the purpose of discussion, assume that the input in the q-th layer 

is of size Lq × Bq × dq 

• Lq refers to the height (or length), Bq refers to the width (or breadth), and dq is the 

depth 

• In almost all image-centric applications, the values of Lq and Bq are the same.  

• However, we will work with separate notations for height and width in order to retain 

generality in presentation 



Basic structure of CNNs 



Basic structure of CNNs 

• For the first (input) layer, these values are decided by the nature of 

the input data and its preprocessing 

• In the above example, the values are L1 = 32, B1 = 32, and d1 = 3 

• Later layers have exactly the same 3-dimensional organization, 

except that each of the dq 2-dimensional grid of values for a particular 

input can no longer be considered a grid of raw pixels 

• Furthermore, the value of dq is much larger than three for the hidden 

layers because the number of independent properties of a given local 

region that are relevant to classification can be quite significant 

• For q > 1, these grids of values are referred to as feature maps or 

activation maps 

• These values are analogous to the values in the hidden layers in a 

feed-forward network 



Basic structure of CNNs 

• In the convolutional neural network, the parameters are 

organized into sets of 3-dimensional structural units, 

known as filters or kernels 

• Each filter is an array of numbers (the numbers are called 

weights or parameters) 

• The filter is usually square in terms of its spatial 

dimensions, which are typically much smaller than those 

of the layer the filter is applied to 

• On the other hand, the depth of a filter is always same is 

the same as that of the layer to which it is applied 
• Assume that the dimensions of the filter in the q-th layer are Fq × Fq × dq 

• An example of a filter with F1 = 5 and d1 = 3 is shown in the figure of the 

Slide-20 

• It is common for the value of Fq to be small and odd 

• Examples of commonly used values of Fq are 3 and 5, although there are some 

interesting cases in which it is possible to use Fq = 1 

 



Basic structure of CNNs 

• The convolution operation places the filter at each 

possible position in the image (or hidden layer) so that the 

filter fully overlaps with the image, and performs a dot 

product between the Fq × Fq × dq parameters in the filter 

and the matching grid in the input volume (with same 

size Fq × Fq × dq) 

• The dot product is performed by treating the entries in the relevant 3-

dimensional region of the input volume and the filter as vectors of 

size Fq × Fq × dq, so that the elements in both vectors are ordered 

based on their corresponding positions in the grid-structured volume 

• How many possible positions are there for placing the filter? 

• This question is important, because each such position therefore defines a spatial 

―pixel‖ (or, more accurately, a feature) in the next layer 

• In other words, the number of alignments between the filter and image defines the 

spatial height and width of the next hidden layer 

 



Basic structure of CNNs 

• The relative spatial positions of the features in the next layer are 

defined based on the relative positions of the upper left corners of the 

corresponding spatial grids in the previous layer 

• When performing convolutions in the q-th layer, one can align the 

filter at Lq+1=(Lq−Fq+1) positions along the height and Bq+1=(Bq−Fq+1) 

along the width of the image (without having a portion of the filter 

―sticking out‖ from the borders of the image) 

• This results in a total of Lq+1 × Bq+1 possible dot products, which 

defines the size of the next hidden layer 

• In the previous example, the values of L2 and B2 are therefore defined 

as follows: 

L2 = 32 − 5 + 1 = 28 

B2 = 32 − 5 + 1 = 28 

• The next hidden layer of size 28 × 28 is shown in the figure of Slide-20 



Basic structure of CNNs 

• However, this hidden layer also has a depth of size d2 = 5. Where does 

this depth come from?  

• This is achieved by using 5 different filters with their own 

independent sets of parameters. Each of these 5 sets of spatially 

arranged features obtained from the output of a single filter is 

referred to as a feature map. Clearly, an increased number of 

feature maps is a result of a larger number of filters (i.e., parameter 

footprint) 

• The number of filters used in each layer controls the capacity of the 

model because it directly controls the number of parameters 

• Furthermore, increasing the number of filters in a particular layer 

increases the number of feature maps (i.e., depth) of the next layer 

• It is possible for different layers to have very different numbers of 

feature maps, depending on the number of filters we use for the 

convolution operation in the previous layer 



Basic structure of CNNs 

• For example, the input layer typically only has three color channels, 

but it is possible for the each of the later hidden layers to have depths 

(i.e., number of feature maps) of more than 500 

• The idea here is that each filter tries to identify a 

particular type of spatial pattern in a small rectangular 

region of the image, and therefore a large number of 

filters is required to capture a broad variety of the 

possible shapes that are combined to create the final 

image (unlike the case of the input layer, in which three 

RGB channels are sufficient) 

• Typically, the later layers tend to have a smaller spatial footprint, but 

greater depth in terms of the number of feature maps 

 



Basic structure of CNNs 

• For example, the filter shown in the figure below represents a 

horizontal edge detector on a gray-scale image with one channel 

 

 

 

 

 

 

• The resulting feature will have high activation at each position where a horizontal 

edge is seen. A perfectly vertical edge will give zero activation, whereas a slanted 

edge might give intermediate activation 

• Therefore, sliding the filter everywhere in the image will already 

detect several key outlines of the image in a single feature map of the 

output volume 

• Multiple filters are used to create an output volume with more than 

one feature map. For example, a different filter might create a spatial 

feature map of vertical edge activations 



Example operation of a filter 



Example operation of a filter 



Example operation of a filter 



Operation on Lena of Sobel filters 

Vertical Sobel filter 

Horizontal Sobel filter 

-1 0 1 

-2 0 2 

-1 0 1 

1 2 1 

0 0 0 

-1 -2 -1 



Basic structure of CNNs 

• We are now ready to formally define the convolution operation 

• The p-th filter in the q-th layer has parameters denoted by the 3-

dimensional tensor W(p,q) = [w(p,q)
ijk] 

• The indices i, j, k indicate the positions along the height, width, and depth of the 

filter 

• The feature maps in the q-th layer are represented by the 3-

dimensional tensor H(q) = [h(q)
ijk] 

• When the value of q is 1, the special case corresponding to the 

notation H(1) simply represents the input layer (which is not hidden) 

• Then, the convolutional operations from the q-th layer to the (q+1)-th 

layer are defined as follows: 

 

 

 



Basic structure of CNNs 

• The convolutional operation is really a simple dot product 

over the entire volume of the filter, which is repeated over all 

valid spatial positions (i, j) and filters (indexed by p) 

• It is intuitively helpful to understand a convolution operation by 

placing the filter at each of the 28×28 possible spatial positions in the 

first layer of figure in Slide-20 and performing a dot product between 

the vector of 5 × 5 × 3 = 75 values in the filter and the corresponding 

75 values in H(1) 

• Even though the size of the input layer in that figure is 32×32, there are only 

(32−5+1)×(32−5+1) possible spatial alignments between an input volume of 

size 32 × 32 and a filter of size 5 × 5 

• One property of convolution is that it shows equivariance to 

translation 

• I.e., if we shift the pixel values in the input in any direction by one unit and then 

apply convolution, the corresponding feature values will shift with the input 

values. This is because of the shared parameters of the filter across the entire 

convolution. The reason for sharing parameters across the entire convolution is 

that the presence of a particular shape in any part of the image should be 

processed in the same way irrespective of its specific spatial location 



Example of a convolution 

• We have shown an example of an input layer and a filter with depth 1 

for simplicity (which does occur in the case of gray-scale images with a single color channel) 

• Note that:  

1. the depth of a layer must exactly match that of its 

filter/kernel, and  

2. the contributions of the dot products over all the feature 

maps in the corresponding grid region of a particular 

layer will need to be added (in the general case) to create 

a single output feature value in the next layer 

• The figure in the next slide depicts two specific examples of the 

convolution operations with a layer of size 7×7×1 and a 3×3×1 filter in 

the bottom row. Furthermore, the entire feature map of the next layer 

is shown on the upper right-hand side of figure 

• Examples of two convolution operations are shown in  which the outputs are 16 

and 26, respectively. These values are arrived at by using the following 

multiplication and aggregation operations: 

5 × 1 + 8 × 1 + 1 × 1 + 1 × 2 = 16 

4 × 1 + 4 × 1 + 4 × 1 + 7 × 2 = 26 



Example-1 of a convolution 

The Sobel operator, sometimes called the Sobel–Feldman operator or Sobel 

filter, and  it creates an image emphasizing edges. It is named after Irwin 

Sobel and Gary Feldman, colleagues at the Stanford Artificial Intelligence 

Laboratory (SAIL). Technically, it is a discrete differentiation operator, 

computing an approximation of the gradient of the image intensity function. 

At each point in the image, the result of the Sobel–Feldman operator is either 

the corresponding gradient vector or the norm of this vector.  



Example-2 of a convolution 



Example-3 of a convolution          kernel= 



Comments on convolution 

• A convolution in the q-th layer increases the receptive 

field (the region covered by a filter/kernel while it is sliding over the input) of a 

feature from the q-th layer to the (q+1)-th layer. In other 

words, each feature in the next layer captures a larger 

spatial region in the input layer 
• I.e., when using a 3 × 3 filter convolution successively in three layers, the 

activations in the first, second, and third hidden layers capture pixel 

regions of size 3×3, 5×5, and 7×7, respectively, in the original input image 

• As we will see later, other types of operations increase the 

receptive fields further, as they reduce the size of the 

spatial footprint of the layers 

• This is a natural consequence of the fact that features in 

later layers capture complex characteristics of the image 

over larger spatial regions, and then combine the simpler 

features in earlier layers 



Comments on convolution 

• When performing the operations from the q-th layer to 

the (q+1)-th layer, the depth dq+1 of the computed layer 

depends on the number of filters in the q-th layer, and it 

is independent of the depth of the q-th layer or any of its 

other dimensions 

• In other words, the depth dq+1 in the (q+1)-th layer is 

always equal to the number of filters in the q-th layer 
• For example, the depth of the second layer in the figure of Slide-20 is 5, 

because a total of five filters are used in the first layer for the 

transformation 

• However, in order to perform the convolutions in the second layer (to 

create the third layer), one must now use filters of depth 5 in order to 

match the new depth of this layer, even though filters of depth 3 were 

used in the convolutions of the first layer (to create the second layer) 



Convolution example with 2 kernels 

• A convolution mapping from two 

input feature maps to three 

output feature maps using a 

3x2x3x3 collection of kernels w 

• In the left pathway, input feature 

map 1 is convolved with kernel 

w1,1 and input feature map 2 is 

convolved with kernel w1,2, and 

the results are summed together 

element-wise to form the first 

output feature map 

• The same is repeated for the 

middle and right pathways to 

form the second and third feature 

maps, and all three output 

feature maps are grouped 

together to form the output 





Padding 

• The convolution operation reduces the size of the (q+1)-th 

layer in comparison with the size of the q-th layer 

• This type of reduction in size is not desirable in general, because it 

tends to lose some information along the borders of the image (or of 

the feature map, in the case of hidden layers) 

• This problem can be resolved by using padding. In 

padding, one adds (Fq −1)/2 ―pixels‖ all around the borders 

of the feature map in order to maintain the spatial 

footprint 
• Note that these pixels are really feature values in the case of padding 

hidden layers. The value of each of these padded feature values is set to 0, 

irrespective of whether the input or the hidden layers are being padded. As 

a result, the spatial height and width of the input volume will both 

increase by (Fq−1), which is exactly what they reduce by (in the output 

volume) after the convolution is performed. The padded portions do not 

contribute to the final dot product because their values are set to 0 



Padding: Half-padding 

• In a sense, what padding does is to allow the convolution 

operation with a portion of the filter ―sticking out‖ from 

the borders of the layer and then performing the dot 

product only over the portion of the layer where the 

values are defined 

• This type of padding is referred to as half-padding 

because (almost) half the filter is sticking out from all 

sides of the spatial input in the case where the filter is 

placed in its extreme spatial position along the edges. 

Half-padding is designed to maintain the spatial footprint 

exactly 



Padding: Valid padding 

• When padding is not used, the resulting ―padding‖ is also 

referred to as a valid padding 

• Valid padding generally does not work well from an 

experimental point of view. Using half-padding ensures 

that some of the critical information at the borders of the 

layer is represented in a standalone way 

• In the case of valid padding, the contributions of the 

pixels on the borders of the layer will be under-

represented compared to the central pixels in the next 

hidden layer, which is undesirable 

• This under-representation will be compounded over 

multiple layers. Therefore, padding is typically performed 

in all layers, and not just in the first layer where the 

spatial locations correspond to input values 

 



Padding: Half-padding example 

• Consider a situation in which the layer has size 7×7×1 and the filter is 

of size 5×5×1 

• Therefore, (5 − 1)/2 = 2 zeros are padded on all sides of the image 

• As a result, the 7 × 7 spatial footprint first increases to 11 × 11 

because of padding, and then it reduces back to 7 × 7 after performing 

the convolution 



Padding: Full padding 

• Another useful form of padding is full-padding 

• In full-padding, we allow (almost) the full filter to stick out from 

various sides of the input. In other words, a portion of the filter of size 

Fq−1 is allowed to stick out from any side of the input with an overlap 

of only one spatial feature 

• For example, the kernel and the input image might overlap at a 

single pixel at an extreme corner 

• Therefore, the input is padded with (Fq−1) zeros on each side. In 

other words, each spatial dimension of the input increases by 2(Fq−1) 

• Therefore, if the input dimensions in the original image are Lq and 

Bq, the padded spatial dimensions in the input volume become Lq 

+2(Fq−1) and Bq +2(Fq−1) 

• After performing the convolution, the feature-map dimensions in 

layer (q+1) become Lq+Fq−1 and Bq+Fq−1, respectively 



Padding: Full padding 

• While convolution normally reduces the spatial footprint, 

full padding increases the spatial footprint 

• Interestingly, full-padding increases each dimension of 

the spatial footprint by the same value (Fq−1) that no-

padding decreases it 

 

• This relationship is not a coincidence because a “reverse” 

convolution operation can be implemented by applying 

another convolution on the fully padded output (of the 

original convolution) with an appropriately defined kernel 

of the same size 



Strides 

• There are other ways in which convolution can reduce the spatial 

footprint of the image (or hidden layer) 

• The above approach performs the convolution at every position in the 

spatial location of the feature map 

• However, it is not necessary to perform the convolution at every 

spatial position in the layer. One can reduce the level of granularity 

of the convolution by using the notion of strides 

• The description above corresponds to the case when a stride of 1 is 

used. When a stride of Sq is used in the q-th layer, the convolution is 

performed at the locations 1, Sq + 1, 2Sq + 1, and so on along both 

spatial dimensions of the layer 

• The spatial size of the output on performing this convolution1 has 

height of (Lq − Fq)/Sq + 1 and a width of (Bq − Fq)/Sq + 1 

• As a result, the use of strides will result in a reduction of each spatial 

dimension of the layer by a factor of approximately Sq and the area by 

S2
q , although the actual factor may vary because of edge effects 



Strides 

• It is most common to use a stride of 1, although a stride of 2 is 

occasionally used as well 

• It is rare to use strides more than 2 in normal circumstances 

• Even though a stride of 4 was used in the input layer of the winning 

architecture of the ILSVRC competition of 2012, the winning entry in 

the subsequent year reduced the stride to 2 to improve accuracy 

• Larger strides can be helpful in memory-constrained settings or to 

reduce overfitting if the spatial resolution is unnecessarily high 

• Strides have the effect of rapidly increasing the receptive field of each 

feature in the hidden layer, while reducing the spatial footprint of the 

entire layer 

• An increased receptive field is useful in order to capture a complex feature in a 

larger spatial region of the image 

• As we will see later, the hierarchical feature engineering process of a convolutional 

neural network captures more complex shapes in later layers. Historically, the 

receptive fields have been increased with another operation, known as the max-

pooling operation. In recent years, larger strides have been used in lieu of max-

pooling operations, which will be discussed later 



Convolution (https://github.com/vdumoulin/conv_arithmetic) 

No padding, no strides 



Convolution (https://github.com/vdumoulin/conv_arithmetic) 

Arbitrary padding, no strides 



Convolution (https://github.com/vdumoulin/conv_arithmetic) 

Half padding, no strides 



Convolution (https://github.com/vdumoulin/conv_arithmetic) 

Full padding, no strides 



Convolution (https://github.com/vdumoulin/conv_arithmetic) 

No padding, strides 



Convolution (https://github.com/vdumoulin/conv_arithmetic) 

Padding, strides 



Convolution (https://github.com/vdumoulin/conv_arithmetic) 

Padding, strides (odd) 



Example-4 of a convolution (3x3 kernel applied to a 5x5 

input padded with a 1x1 border of zeros using 2x2 strides) 



Typical settings 

• It is common to use stride sizes of 1 in most settings. Even when 

strides are used, small strides of size 2 are used. Furthermore, it is 

common to have Lq = Bq.  

• In other words, it is desirable to work with square images. In cases where the 

input images are not square, preprocessing is used to enforce this property.  

• For example, one can extract square patches of the image to create the training 

data.  

• The number of filters in each layer is often a power of 2, because this 

often results in more efficient processing 

• Such an approach also leads to hidden layer depths that are powers of 2 

• Typical values of the spatial extent of the filter size (denoted by Fq) 

are 3 or 5 

• Small filter sizes often provide the best results, although some practical challenges 

exist in using filter sizes that are too small. Small filter sizes typically lead to 

deeper networks (for the same parameter footprint) and therefore tend to be more 

powerful 

• In fact, one of the top entries in an ILSVRC contest, referred to as VGG, was the 

first to experiment with a spatial filter dimension of only Fq = 3 for all layers, and 

the approach was found to work very well in comparison with larger filter sizes 



Use of bias 

• As in all neural networks, it is also possible to add biases to the 

forward operations 

• Each unique filter in a layer is associated with its own bias 

• Therefore, the p-th filter in the q-th layer has bias b(p,q) 

• When any convolution is performed with the p-th filter in the q-th 

layer, the value of b(p,q) is added to the dot product 

• The use of the bias simply increases the number of parameters in 

each filter by 1, and therefore it is not a significant overhead 

• Like all other parameters, the bias is learned during backpropagation 

• One can treat the bias as a weight of a connection whose input is always set to +1. 

This special input is used in all convolutions, irrespective of the spatial location of 

the convolution 

• Therefore, one can assume that a special pixel appears in the input 

whose value is always set to 1. Therefore, the number of input 

features in the q-th layer is 1+Lq × Bq × dq 



The ReLU layer 

• The convolution operation is interleaved with the pooling 

and ReLU operations 

• The ReLU activation is not very different from how it is 

applied in a traditional neural network 

 

• For each of the Lq × Bq × dq values in a layer, the ReLU 

activation function is applied to it to create Lq × Bq × dq 

thresholded values 

• These values are then passed on to the next layer 

 

• Therefore, applying the ReLU does not change the 

dimensions of a layer because it is a simple one-to-one 

mapping of activation values  



The ReLU activation function 

tanh x =  
ex − e−x

ex + e−x
 

𝑓 𝑧 = max (0, 𝑧) • Rectified Linear Unit (ReLU): 

Reason: 

1. Fast to compute 

2. Biological reason 

3. Vanishing gradient problem 

𝑧 

𝑎 

𝑎 = 𝑧 

𝑎 = 0 

[Xavier Glorot, AISTATS’11] 
[Andrew L. Maas, ICML’13] 
[Kaiming He, arXiv’15] 

we called it: 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 (𝑝𝑜𝑠𝑙𝑖𝑛) 



• Activation function                               Derivative 

• 𝒚 = max(𝟎, 𝒛)                   
𝝏𝒚

𝝏𝒛
=  

𝟎 𝒛 ≤ 𝟎
𝟏           𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

  

• Advantages 

• no squashing of back propagated error signal as long as unit 

is activated 

• discontinuity in derivative at z=0 

 

• Disadvantages 

• can potentially lead to exploding gradients and activations 

• may waste units:  units that are never activated above 

threshold won‘t learn 

𝒛 

𝒚 
The ReLU activation function 



The ReLU layer 

• In traditional neural networks, the activation function is combined with a 

linear transformation with a matrix of weights to create the next layer of 

activations 

• Similarly, a ReLU typically follows a convolution operation 

(which is the rough equivalent of the linear transformation in 

traditional neural networks), and the ReLU layer is often not 

explicitly shown in pictorial illustrations of the convolution neural network 

architectures 

• It is noteworthy that the use of the ReLU activation function is a 

recent evolution in neural network design 

• In the earlier years, saturating activation functions like sigmoid and tanh 

were used 

• Leaky ReLU, Randomized Leaky ReLU, Parameterized ReLU, Exponential Linear 

Units (ELU), Scaled Exponential Linear Units, hardtanh, softtanh, softsign, 

softmax, softplus 

• It was shown in that the use of the ReLU has tremendous advantages 

over these activation functions both in terms of speed and accuracy 

• Increased speed is also connected to accuracy because it allows one to use 

deeper models and train them for a longer time 



• Activation function                         Derivative 

• 𝒚 =   
𝒛 𝒛 > 𝟎
𝜶𝒛           𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

       
𝝏𝒚

𝝏𝒛
=  

𝟏 𝒛 > 𝟎
𝜶           𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

  

 

• Reduces to standard ReLU if 𝜶 = 𝟎 

• Trade off 

• 𝜶 = 𝟎 leads to inefficient use of resources 

(underutilized units) 

• 𝜶 = 𝟏 lose nonlinearity essential for interesting 

computation 

 

𝒛 

𝒚 
The Leaky ReLU activation function 



• Activation function                              Derivative 

• 𝒚 = 𝐥𝐧 𝟏 + 𝒆𝒛                     
𝝏𝒚

𝝏𝒛
=

𝟏

𝟏+𝒆−𝒛 = 𝐥𝐨𝐠𝐢𝐬𝐭𝐢𝐜 𝒛  

 

• Derivative 

• defined everywhere 

• zero only for 𝒛 → −∞ 

𝒛 

𝒚 
The Softplus activation function 



Exponential Linear Unit (ELU) 

• Activation function                            Derivative 

• 𝒚 =  
𝒛 𝒛 > 𝟎

𝜶(𝒆𝒛 − 𝟏) 𝒛 ≤ 𝟎
        

𝝏𝒚

𝝏𝒛
=  

𝟏 𝒛 > 𝟎
𝒚 + 𝜶 𝒛 ≤ 𝟎

 

 

• Reduces to standard ReLU if 𝜶 = 𝟎 

𝒛 

𝒚 

𝒛 

𝒚 



Pooling 

• The pooling operation works on small grid regions of size Pq × Pq in 

each layer, and produces another layer with the same depth (unlike 

filters) 

• For each square region of size Pq × Pq in each of the dq activation 

maps, the maximum of these values is returned 

• This approach is referred to as max-pooling 

• If a stride of 1 is used, then this will produce a new layer of size 

(Lq−Pq+1) × (Bq−Pq+1) × dq 

• However, it is more common to use a stride Sq > 1 in pooling. In such 

cases, the length of the new layer will be (Lq −Pq)/Sq + 1 and the 

breadth will be (Bq −Pq)/Sq + 1 

• Therefore, pooling drastically reduces the spatial dimensions of each 

activation map 



Pooling 

• Unlike with convolution operations, pooling is done at the level of 

each activation map 

• Whereas a convolution operation simultaneously uses all dq feature 

maps in combination with a filter to produce a single feature value, 

pooling independently operates on each feature map to produce 

another feature map 

• Therefore, the operation of pooling does not change the number of feature maps 

• In other words, the depth of the layer created using pooling is the same as that of 

the layer on which the pooling operation was performed. 

• Examples of pooling with strides of 1 and 2 are shown in next slide‘s 

figure. Here, we use pooling over 3×3 regions. The typical size Pq of 

the region over which one performs pooling is 2×2. At a stride of 2, 

there would be no overlap among the different regions being pooled, 

and it is quite common to use this type of setting 

• However, it has sometimes been suggested that it is desirable to have at least 

some overlap among the spatial units at which the pooling is performed, because it 

makes the approach less likely to overfit 



Max-pooling example 



Avg-pooling example (output values of a 3x3 average 

pooling operation on a 5x5 input using 1x1 strides) 



Max-pooling example (output values of a 3x3 max 

pooling operation on a 5x5 input using 1x1 strides) 



Why pooling? 

• The intuitive reasoning behind this layer is that once we 

know that a specific feature is in the original input volume 

(there will be a high activation value), its exact location is 

not as important as its relative location to the other 

features 

• Aw we said earlier, this layer drastically reduces the 

spatial dimension (the length and the width change but not 

the depth) of the input volume 

• This serves two main purposes: 
• The first is that the amount of parameters or 

weights is reduced (e.g., by 75% for a 2x2 filter 

with a stride equal to 2 on a 4x4 input), thus 

lessening the computation cost 

• The second is that it will control overfitting 



Pooling 

• It is common to use pooling with 2 × 2 filters and a stride 

of 2, when it is desired to reduce the spatial footprint of 

the activation maps 

• Pooling results in (some) invariance to translation 

because shifting the image slightly does not change the 

activation map significantly. 

• This property is referred to as translation invariance. The 

idea is that similar images often have very different 

relative locations of the distinctive shapes within them, 

and translation invariance helps in being able to classify 

such images in a similar way 
• For example, one should be able to classify a bird as a bird, irrespective of 

where it occurs in the image 



Pooling 

• Another important purpose of pooling is that it increases the size of 

the receptive field while reducing the spatial footprint of the layer 

because of the use of strides larger than 1 

• Increased sizes of receptive fields are needed to be able to capture 

larger regions of the image within a complex feature in later layers 

• Most of the rapid reductions in spatial footprints of the layers (and 

corresponding increases in receptive fields of the features) are caused 

by the pooling operations 

• Convolutions increase the receptive field only gently unless the stride 

is larger than 1 

• In recent years, it has been suggested that pooling is not always 

necessary. One can design a network with only convolutional and 

ReLU operations, and obtain the expansion of the receptive field by 

using larger strides within the convolutional operations 

• Therefore, there is an emerging trend in recent years to get rid of the max-pooling 

layers altogether 

• However, this trend has not been fully established and validated so far 



Fully Connected Layers 

• Each feature in the final spatial layer is connected to each hidden 

state in the first fully connected layer 

• This layer functions in exactly the same way as a traditional feed-

forward network 

• In most cases, one might use more than one fully connected layer to increase the 

power of the computations towards the end 

• The connections among these layers are exactly structured like a traditional feed-

forward network 

• Since the fully connected layers are densely connected, the vast majority of 

parameters lie in the fully connected layers 

• For example, if each of two fully connected layers has 4096 hidden units, then the 

connections between them have more than 16 million weights 

• Similarly, the connections from the last spatial layer to the first fully connected layer will 

have a large number of parameters. 

• Even though the convolutional layers have a larger number of 

activations (and a larger memory footprint), the fully connected 

layers often have a larger number of connections (and parameter 

footprint) 



Fully Connected Layers 

• The reason that activations contribute to the memory footprint more 

significantly is that the number of activations are multiplied by mini-

batch size while tracking variables in the forward and backward 

passes of backpropagation 

• These trade-offs are useful to keep in mind while choosing neural-

network design based on specific types of resource constraints (e.g., 

data versus memory availability) 

• It is noteworthy that the nature of the fully-connected layer can be 

sensitive to the application at hand 

• For example, the nature of the fully-connected layer for a classification application 

would be somewhat different from the case of a segmentation application 

• The output layer of a convolutional neural network is designed in an 

application-specific way. In the following, we will consider the 

representative application of classification. In such a case, the output 

layer is fully connected to every neuron in the penultimate layer, and 

has a weight associated with it 

• One might use the logistic, softmax, or linear activation depending on the nature 

of the application (e.g., classification or regression). 



Overall architecture of a CNN 

• Max-pooling layers are interleaved with the convolutional/ReLU 

layers, although the former occurs less frequently in deep architectures 

• This is because pooling drastically reduces the spatial size of the feature map, and 

only a few pooling operations are required to reduce the spatial map to a small 

constant size 

Omitted: 

• Dropout layers 

• Network in 

Network layers 


