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Numerical optimization 

techniques applied to 

Backpropagation:  

Newton, 

Conjugate Gradient (CGBP), 

Levenberg-Marquardt (LMBP), 

Quasi-Newton: BFGS, 

Adagrad, Adadelta, Adam 

AdaHessian 



Second-order optimization methods 

• Recall from your Numerical Analysis course: 

• Steepest Descent 

• is the simplest algorithm, but is often slow in converging 

• Newton’s method 

• is much faster, but requires calculation of the Hessian and of its inverse 

• Conjugate Gradient  

• it does not require the calculation of second derivatives, and yet it still 

has the quadratic convergence property. (It converges to the minimum 

of a quadratic function in a finite number of iterations 

• We will describe the Newton’s method 

• We will describe how the Conjugate Gradient algorithm can 

be used to train multilayer networks 

• We call this algorithm Conjugate Gradient BackPropagation 

(CGBP) 

• We will briefly describe the rest of the methods 
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Multivariate Newton’s 

method 



Multivariate Newton’s method 

• STEP-1 

• Calculate the gradient f(xk) and the Hessian 2f(xk) (or H(xk)) 

• STEP-2 

• Compute the minimizing direction: sk= [-2f(xk)]-1 f(xk) 

• STEP-3 

• Minimize[f(xk+λksk)] to find the optimal λκ (λκ  0) 

• Either from: df(xk - λκ [2f(xk)]-1 f(xk))/dλκ =0 

• Or using a one-dimensional optimization method 

• If f is quadratic, then always λκ = 1, for every k 

• STEP-4 

• Find the next point xk+1= xk+λksk 

• STEP-5 

• Check convergence criterion 



Newton’s method for quadratic function 

• Minimum: f(x)= x1
2 + 5x2

2 – 4, starting from x0= (2, 2)T 

 

 

 

 

 

 
 

 

 

• Thus: f(x)= (2x1, 10x2)
T and 𝐇 =

2 0
0 10

, k 



Newton’s method for quadratic function 

• We need to find the point x1= x0+λksk= 
2
2

 - λkH
-1f(x0)= 

2
2

 - λk

1/2 0
0 1/10

4
20

=
2 − 2𝜆𝑘
2 − 2𝜆𝑘

 

 

• From 
𝑑𝑓(𝒙0−𝜆0 

𝛻2𝑓 𝒙0
−1

 
𝛻𝑓 𝒙0 )

𝑑𝜆0
= 0 →

𝑑(5 2−2𝜆0
2−4)

𝑑𝜆0
= 0 →

10(2 − 2𝜆𝑘)(−2) = 0, which gives λ0=1 

• This result was expected (the whole process was not 

necessary) because the function is quadratic and thus our 

theory tells us that λk=1, for every k 

• Should we replace λ0=1 in the previous slide’s equation, 

we get x1=(0, 0)T = x*, the optimal point (with zero 

gradient there) 

• The problem was solved in a single step in this case 



Newton for non-quadratic function 

• Minimum: f(x)= x1
2 + x1

2 x2
2 + 3x2

4, starting from x0= (1, 1)T 

 

 

 

 

 

 
 

 
 

• Thus: f(x)= (2x1+2x1x2
2, 2x1

2x2+12x2
3)T and 

𝐇 =
2𝑥2

2+ 2 4𝑥1𝑥2
4𝑥1𝑥2 2𝑥1

2 + 36𝑥2
2  



Newton for non-quadratic function 

• From the previous equations (at x0), we get: f(x0)= (4, 14)T 

and 𝐇 =
4 4
4 38

 

• The inverse of H is: 𝐇−𝟏 =
1

136

38 −4
−4 4

 

• The first minimizing direction is: s0= 
−1

136

38 −4
−4 4

4
14

=

−1

136

96
56

= −
0.70588
0.41176

 

• So, 𝐱1 =
1
1

− 𝜆0
0.70588
0.41176

=
1 − 0.70588𝜆0
1 − 0.41176𝜆0

 

• We now replace x1 into the formula of f(x) and we get: 

• f(x0-λ0[
2f(x0)]

-1 f(x0))= (1-0.70588 λ0)
2 + (1-0.70588 λ0)

2(1-

0.41176 λ0)
2 + 3(1-0.41176 λ0)

4 



Newton for non-quadratic function 

• After calculations we get (purple curve): f(x0-λ0[
2f(x0)]

-1 f(x0)) 

=f(λ0)=0.1707 λ0
4 - 0.92775 λ0

3
 + 4.96153 λ0

2 - 8.58816 λ0 + 5 

• So we seek that λ0 for which: df(λ0)/dλ0 = 0  

• We may use λk =1 k, even though the function is non quadratic, but this 

would result in more iterations before convergence 

• To find λ0 which satisfies the 

above, we may use the 

golden section method, which 

gives: λ0 = 1.12 

• Substituting this value of λ0 

into the equation for x1, we 

get 𝐱1 =
0.20941
0.53882

 

• We continue by checking the 

convergence criterion … 

λ0=1.12 

df(λ0)/dλ0=0 
since tangent is horizontal 



11 

Background on Conjugate 

Gradient 



Προσέγγιση κατά Taylor μιας συνάρτησης 

Ανάπτυγμα της σειράς Taylor μέχρι πρώτης και δεύτερης 

τάξης για την πολυδιάσταση συνάρτηση f(x) γύρω από το 

σημείο x* (ελάχιστο) και αποτελούν γραμμική και 

τετραγωνική προσέγγιση της συνάρτησης, αντίστοιχα 



Προσέγγιση κατά Taylor μιας συνάρτησης 

Ισοδύναμα έχουμε: 

όπου το ξk βρίσκεται πάνω στο ευθύγραμμο τμήμα που 

ορίζεται από τα σημεία xk και x* 

Αυτή η συνάρτηση ονομάζεται τετραγωνική μορφή (quadratic 

form την ξανασυναντήσαμε στην εκπαίδευση της ADALINE) και έχει την 

γενική μορφή: 



Τπενθύμιση της Steepest Descent 

• ΢ε κάθε βήμα, η Steepest Descent προσεγγίζει την 

αντικειμενική συνάρτηση κάνοντας χρήση της πρώτης 

παραγώγου (της πρώτης εξίσωσης της προηγούμενης διαφάνειας) 

 

 

    όπου το λk βρίσκεται με βελτιστοποίηση 

    Εάν όμως η συνάρτηση είναι τετραγωνική μορφή, τότε: 

 



΢υζυγείς διευθύνσεις 

• ΟΡΙ΢ΜΟ΢. Μια μέθοδος έχει την ιδιότητα του 

τετραγωνικού τερματισμού όταν συγκλίνει στο 

βέλτιστο σημείο x* μιας τετραγωνικής αντικειμενικής 

συνάρτησης σε γνωστό πεπερασμένο αριθμό επαναλήψεων 

 

• ΟΡΙ΢ΜΟ΢. Ένα σύνολο n γραμμικώς ανεξαρτήτων μη 

μηδενικών διανυσμάτων s1, s2, …, sn είναι συζυγή ως προς 

έναν θετικά ορισμένο πίνακα H εάν siHsj=0  1≤ i ≠ j ≤ n 

 

• ΟΡΙ΢ΜΟ΢. Μια μέθοδος βελτιστοποίησης ονομάζεται 

μέθοδος συζυγών διευθύνσεων εάν κατά την εφαρμογή 

της παράγει συζυγείς διευθύνσεις και εφαρμοζόμενη σε μια 

τετραγωνική μορφή με Hessian πίνακα H έχει την 

ιδιότητα του τετραγωνικού τερματισμού 



΢υζυγείς διευθύνσεις 

• ΘΕΩΡΗΜΑ. ΢ε κάθε αντικειμενική συνάρτηση που είναι 

τετραγωνική μορφή και έχει ένα ελάχιστο, εάν 

ακολουθήσουμε μια μέθοδο που παράγει συζυγείς ως προς 

τον Hessian πίνακα διευθύνσεις, το ελάχιστο θα εντοπιστεί 

σε n το πολύ βήματα, ένα για κάθε συζυγή διεύθυνση 

 

• ΘΕΩΡΗΜΑ. Εάν f(x) είναι τετραγωνική μορφή, και s0, s1, 

…, sk σύνολο συζυγών ως προς τον Hessian πίνακα 

διευθύνσεων, οι οποίες παράγονται με κάποια μέθοδο, 

μέχρι την προσέγγιση xk+1, τότε: 

T f(xk+1)sj = 0 για j=1,2,…k 



Παράδειγμα 

ΠΡΟΒΛΗΜΑ. Να εντοπιστεί το ελάχιστο της f(x)=x2
1+5x2

2-10 

 

ΛΤ΢Η.  

• Η κλίση είναι f(x)= (2x1, 10x2)
Σ 

• Ο Hessian είναι: 

• Ας εκκινήσουμε από το x0=(2 2)T 

• Σότε, f(x0)= (4, 20)Σ 

• Επιλέγοντας τυχαία μια διεύθυνση εκκίνησης, έστω την 

s0=(1/2, √3/2)T που έχει ||s0 ||=1, παίρνω ότι λ0= -2.4150635 

• Δεν είναι θετικό!!! γιατί η s0 δεν είναι διεύθυνση μείωσης 

 

• x1=x0 +λ0s0=...=  



Παράδειγμα 

• Η κλίση εδώ είναι f(x1)= (1.5849365, -0.9150634)Σ 

• Θέλουμε τώρα να υπολογίσουμε την επόμενη διεύθυνση 

ελαχιστοποίησης με τέτοιον τρόπο ώστε να είναι συζυγής 

ως προς την s0 σε σχέση με τον Hessian H και να είναι 

μοναδιαία, δηλαδή να ισχύουν: sT
1Hs0=0 και sT

1s1=1 

• Εάν συμβολίσουμε s1= (s1
1,s

1
2) προκύπτει από τις 

προηγούμενες εξισώσεις ότι: 

 

 

 

• Από τις δυο λύσεις του συστήματος αυτού, επιλέγουμε 

εκείνη που δίνει διεύθυνση μείωσης, δηλαδή να ισχύει: 

sT
1f(x1) < 0 



Παράδειγμα 

• Αυτή είναι η s1= (-0.99339927,  0.11470787)Σ 

• Αυτή είναι η επόμενη διεύθυνση, και είναι μοναδιαία και 

συζυγή της προηγούμενης, κατά μήκος της οποίας θα 

κινηθούμε με βήμα λ1 

• Από τον τύπο της Διαφάνειας-14, έχω ότι λ1=0.79773385 

• Παρτηρήστε ότι το λ1 είναι θετικό όπως θα έπρεπε αφού 

κινούμαστε σε διεύθυνση μείωσης 

• Η επόμενη προσέγγιση είναι: x2 = x1 +λ1s1= … ≈ (0  0)T 

• Αυτό είναι το βέλτιστο και βρέθηκε σε 2 βήματα (είναι 

τεταγωνική η αντικειμενική συνάρτηση με διάσταση 2) 



Μέθοδοι συζυγών κλίσεων 

• Προτάθηκε αρχικά από τους Hestenes & Stiefel (1952) και 

Beckman (1960) 

• Γνωστότερη παραλλαγή αυτή των Fletcher-Reeves (1964) 

• Παράγει στο βήμα k την διεύθυνση sk η οποία είναι γραμμικός 

συνδυασμός της -f(xk) δηλαδή της διεύθυνσης της μέγιστης 

αλλαγής στην τρέχουσα προσέγγιση, και των προηγούμενων 

διευθύνσεων s0, s1, …, sk-1 

• Οι συντελεστές του γραμμικού συνδυασμού επιλέγονται ώστε οι 

παραγόμενες διευθύνσεις από προσέγγιση σε προσέγγιση να είναι 

συζυγείς ως προς τον Hessian πίνακα της αντικειμενικής 

συνάρτησης 

• ΣΕΛΙΚΑ προκύπτει ότι για να υπολογίσουμε αυτούς τους 

συντελεστές χρειαζόμαστε μόνο την τρέχουσα κλίση f(xk) και την 

ακριβώς προηγούμενη f(xk-1)  



Fletcher-Reeves conjugate gradient 



Fletcher-Reeves conjugate gradient 



Παραλλαγές μεθόδων συζυγών κλίσεων 

Ακολουθούν τον προηγούμενο αλγόριθμο, αλλά διαφέρουν 

στον τύπο υπολογισμού του ωk 

 Μέθοδος του Daniel (1967) 

 

 

 Μέθοδος των Crowder & Wolfe (1971) 

 

 
 

 Μέθοδος των Polak & Ribiere (1969), Polyak (1969) 



Drawbacks of basic Conjugate Gradient 

• This conjugate gradient algorithm cannot be applied 

directly to the neural network training task, because the 

performance index is not quadratic. This affects the 

algorithm in two ways: 

• First, we can not minimize the function along a line, as required 

in Step 2 

• Second, the exact minimum will not normally be reached in a 

finite number of steps, and therefore the algorithm will need to be 

reset after some set number of iterations 



Interval location 

• Let’s address the linear search first 

• We need to have a general procedure for locating the 

minimum of a function in a specified direction 

• This will involve two steps: 

• interval location  

• interval reduction 

• The purpose of the interval location step is to find some 

initial interval that contains a local minimum 

• The interval reduction step then reduces the size of the 

initial interval until the minimum is located to the 

desired accuracy 



Interval location 

• We will use a function comparison method to perform the 

interval location step, illustrated in the following figure 
• We begin by evaluating the 

performance index at an initial 

point, represented by α1. This 

point corresponds to the 

current values of the network 

weights and biases. In other 

words, we are evaluating F(x0) 

• The next step is to evaluate 

the function at a second point, 

represented by b1, which is a 

distance ε from the initial 

point, along the first search 

direction p0. In other words, 

we are evaluating F(x0+εp0) 

• This process stops when the function increases between two consecutive 

evaluations. The minimum is bracketed by the two points α5 and b5. The 

minimum may occur either in the interval [α3,b3] or in the interval [α4,b4]. 



Interval reduction 

• The next step is interval reduction, which involves 

evaluating the function at points inside the interval [a5,b5] 

• From the figure below we can see that we will need to evaluate the 

function at two internal points (at least) in order to reduce the size 

of the interval of uncertainty 
• The let figure shows that one internal function evaluation does not provide us 

with any information on the location of the minimum 

• However, if we evaluate the function at two points c and d, as in the right 

figure, we can reduce the interval of uncertainty 

 If F(c) > F(d), then the 

minimum must occur 

in the interval [c, b] 

 If F(c) < F(d), then the 

minimum must occur 

in the interval [a, d] 
 

We are assuming that there is a single 

minimum located in the initial interval. 



Interval reduction: Golden section search 

• We need to 

determine the 

locations of points c 

and d 

• We will use Golden 

Section search, 

which is designed to 

reduce the number 

of function 

evaluations required 

• At each iteration 

one new function 

evaluation is 

required 

 

τ is user-set tolerance 



Final adjustments to develop the CGBP 

• There is one more modification to the conjugate gradient 

algorithm that needs to be made before we apply it to 

neural network training  

• For quadratic functions the algorithm will converge to the 

minimum in at most n iterations, where n is the number 

of parameters being optimized 

• The mean squared error performance index for multilayer 

networks is not quadratic, therefore the algorithm would 

not normally converge in n iterations 

• The development of the conjugate gradient algorithm does 

not indicate what search direction to use once a cycle of n 

iterations has been completed 
• There have been many procedures suggested, but the simplest method is 

to reset the search direction to the steepest descent direction (negative of 

the gradient) after n iterations 



Critique of CGBP 

• CGBP algorithm converges in many fewer iterations than 

other algorithms  

• This is a little deceiving, since each iteration of CGBP 

requires more computations than these other methods 

• there are many function evaluations involved in each iteration of  

CGBP 

 

• Even so, CGBP has been shown to be one of the 

fastest batch training algorithms for multilayer 

networks 
• C. Charalambous, “Conjugate gradient algorithm for efficient 

training of artificial neural networks,” IEE Proceedings, vol. 

139, no. 3, pp. 301–310, 1992 
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Numerical optimization 

techniques applied to 

Backpropagation: 

Levenberg-Marquardt 

algorithm 



Levenberg-Marquardt basic algorithm 

• The Levenberg-Marquardt algorithm is a variation of 

Newton’s method that was designed for minimizing 

functions that are sums of squares of other nonlinear 

functions 

• This is very well suited to neural network training (recall 

that their performance index is the mean squared error) 

• Newton’s method for optimizing a performance index F(x) 

is as follows: 

 

    where 

 

    and 

 



Levenberg-Marquardt basic algorithm 

• If we assume that F(x) is a sum of squares function 

 

 

    then the j-th element of the gradient would be 

 
 

• The gradient can therefore be written in matrix form 
 

    where the Jacobian matrix is: 



Levenberg-Marquardt basic algorithm 

• Next we wish to find Hessian matrix. The k,j element 

would be: 

 

 

• The Hessian can be expressed in matrix form:  

 
 

    where  

 

• If we assume that S(x) is small, the we can approximate 



Levenberg-Marquardt basic algorithm 

• So, the Newton method evolves into the Gauss-Newton 

method: 

 

 

 

• One problem with the Gauss-Newton method is that the 

matrix H=JTJ may not be invertible 

• This can be overcome by using the following modification 

to the approximate Hessian matrix: G=H+μI 
• (Figure out why this matrix can be made invertible) 

 

 



Levenberg-Marquardt basic algorithm 

• This lead to the Levenberg-Marquardt algorithm: 

 

 

• Or 

 
• The algorithm begins with μk set to some small value (e.g., 0.01) 

• If a step does not yield a smaller value for F(x), then the step is repeated with 

μk multiplied by some factor θ>1 (e.g., θ=10) 

• Eventually F(x) should decrease, since we would be taking a small step in the 

direction of steepest descent 

• If a step does produce a smaller value for F(x), then μk is divided by θ for the 

next step, so that the algorithm will approach Gauss-Newton, which should 

provide faster convergence 

• The algorithm provides a nice compromise between the speed of Newton’s 

method and the guaranteed convergence of steepest descent 

 

 

 



Training with Levenberg-Marquardt 

• The performance index for multilayer network training is 

the mean squared error 

• If each target occurs with equal probability, the mean 

squared error is proportional to the sum of squared errors 

over the Q targets in the training set: 

 

 

 

• This is equivalent to the performance index for which 

Levenberg-Marquardt was designed 

• It should be a straightforward matter to adapt the 

algorithm for network training, but it turns out that it 

does require some care in working out the details 



Training with Levenberg-Marquardt 

• The key step in the Levenberg-Marquardt algorithm is the 

computation of the Jacobian matrix 

• To perform this computation we will use a variation of the 

backpropagation algorithm 

• To create the Jacobian matrix we need to compute the 

derivatives of the errors, instead of the derivatives of the 

squared errors (as we did for the standard backpropagation) 

 

 



Jacobian calculation 

• Recall Jacobian’s form from (slide 33) 

• Error vector: 

• Parameter vector: 

        N=Q x SM and n=S1(R+1)+S2(S1 + 1)+…+SM(SM-1 + 1) 

 

 

 

 

• So: 

 



Jacobian calculation 

• The terms in this Jacobian matrix can be computed by a 

simple modification to the backpropagation algorithm 

• Standard backpropagation calculates terms like: 

 

 

• For the elements of the Jacobian matrix that are needed 

for the Levenberg-Marquardt algorithm we need to 

calculate terms like: 

 

 

• In our derivation of standard backpropagation: 
                                            

                                             where 

 



Marquardt sensitivity 

• The backpropagation process computed the sensitivities through a 

recurrence relationship from the last layer backward to the first layer 

• We can use the same concept to compute the terms needed 

for the Jacobian matrix if we define Marquardt sensitivity: 

 

 

   where h=(q-1)SM + k 

• We can compute the elements of the Jacobian 

 
 

• or if xl is a bias 



Marquardt sensitivity 

• Marquardt sensitivities can be computed through the same recurrence 

relations as the standard sensitivities with one modification at the final 

layer 

• For the Marquardt sensitivities at the final layer we have: 

 

 

• Therefore when the input pq has been applied to the 

network and the corresponding network aM
q output has 

been computed, the Levenberg-Marquardt backpropagation 

is initialized with: 
 

   where F’M(nM)is define as in standard backpropagation 

• The columns can also be backpropagated together using 



Marquardt sensitivity 

• The total Marquardt sensitivity matrices for each layer are 

then created by augmenting the matrices computed for 

each input: 

 
 

• Note that for each input that is presented to the network 

we will backpropagate SM sensitivity vectors 

• This is because we are computing the derivatives of each individual 

error, rather than the derivative of the sum of squares of the errors.  

• For every input applied to the network there will be SM 

errors (one for each element of the network output) 

• For each error there will be one row of the Jacobian matrix 

• After the sensitivities have been backpropagated, the 

Jacobian matrix is computed using equation of slide 41 



Levenberg-Marquardt backpropagation 

1. Present all inputs to the network and compute the 

corresponding outputs and the errors eq=tq-a
M

q. Compute 

the sum of squared errors over all inputs, F(x) (slide 37) 

2. Compute the Jacobian matrix. Calculate the sensitivities 

with the recurrence relations (equations in slide 42). 

Augment the individual matrices into the Marquardt 

sensitivities. Compute the elements of the Jacobian 

matrix with equations in slide 41 

3. Solve equation in slide 36 to obtain Δxk 

4. Recompute the sum of squared errors using xk+Δxk. If this 

new sum of squares is smaller than that computed in 

Step-1, then divide μ by θ, let xk+1=xk+Δxk and go back to 

Step-1. If the sum of squares is not reduced, then multiply 

μ by θ and go back to Step-3 



Critique of LMBP 

• Even given the large number of computations, however, the 

LMBP algorithm appears to be the fastest neural network 

training algorithm for moderate numbers of network 

parameters 

• M. T. Hagan and M. Menhaj, “Training feedforward networks with 

the Marquardt algorithm,” IEEE Transactions on Neural 

Networks, vol. 5, no. 6, 1994. 

• The key drawback of the LMBP algorithm is the storage 

requirement: The algorithm must store the approximate 

Hessian matrix JTJ 

• This is an nxn matrix, where n is the number of parameters (weights and 

biases) 

• Recall that the other methods discussed need only store the gradient, 

which is an n-dimensional vector 

• When the number of parameters is very large, it may be impractical to 

use the Levenberg-Marquardt algorithm 
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Recent approaches:  

First-order and second-

order optimizers 
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First-order optimizers 



Adagrad (COLT 2010 & JMLR 2011) 

• The operations are applied coordinate wise 

• ϵ is an additive constant that ensures that we do not divide by 0 

• Accumulating squared gradients in st means that st grows essentially 

at linear rate (somewhat slower than linearly in practice, since the 

gradients initially diminish). This leads to O(1/ 𝑡) learning rate, 

albeit adjusted on a per coordinate basis. For convex problems this is 

perfectly adequate 

• In deep learning, though, we might want to decrease the learning 

rate rather more slowly. This led to a number of Adagrad variants 



Adagrad (COLT 2010 & JMLR 2011) 

• Adagrad relies on only first order information, but has some 

properties of second order methods 

• While there is the hand tuned global learning rate, each dimension has its own 

dynamic rate. Since this dynamic rate grows with the inverse of the gradient 

magnitudes, large gradients have smaller learning rates and small gradients have 

large learning rates 

• This has the nice property, as in second order methods, that the progress along each 

dimension evens out over time. This is very beneficial for training deep neural networks 

since the scale of the gradients in each layer is often different by several orders of 

magnitude, so the optimal learning rate should take that into account. Additionally, this 

accumulation of gradient in the denominator has the same effects as annealing, reducing 

the learning rate over time 

• Since the magnitudes of gradients are factored out in ADAGRAD, this method can 

be sensitive to initial conditions of the parameters and the corresponding 

gradients 

• If the initial gradients are large, the learning rates will be low for the remainder of 

training. This can be combatted by increasing the global learning rate, making the 

ADAGRAD method sensitive to the choice of learning rate. Also, due to the continual 

accumulation of squared gradients in the denominator, the learning rate will continue to 

decrease throughout training, eventually decreasing to zero and stopping training 

completely. ADADELTA was created to overcome the sensitivity to the hyperparameter 

selection as well as to avoid the continual decay of the learning rates 



RMSProp (Lecture 6.5 – Coursera: NN and ML 2012) 

• One of the key issues in Adagrad is that the learning rate decreases 

at a predefined schedule of effectively O(1/ 𝑡). While this is 

generally appropriate for convex problems, it might not be ideal for 

nonconvex ones, such as those encountered in deep learning. Yet, the 

coordinate-wise adaptivity of Adagrad is highly desirable as a 

preconditioner 

• We need to decouple rate scheduling from coordinate-adaptive 

learning rates. The issue is that Adagrad accumulates the squares of 

the gradient gt into a state vector st = st-1+g2
t. As a result st keeps on 

growing without bound due to the lack of normalization, essentially 

linearly as the algorithm converges 

• One way of fixing this problem would be to use st/t. For reasonable 

distributions of gt this will converge. Unfortunately it might take a 

very long time until the limit behavior starts to matter since the 

procedure remembers the full trajectory of values. An alternative is 

to use a leaky average in the same way we used in the momentum 

method, i.e., st  ← γ st-1 + (1 - γ) g2
t for some parameter  γ > 0 



RMSProp (Lecture 6.5 – Coursera: NN and ML 2012) 

• The constant ϵ > 0 is typically set to 10-6 to ensure that we do not 

suffer from division by zero or overly large step sizes 



Adadelta (arxiv.org 2012) 

• Adadelta is a variant of AdaGrad. The main difference lies in the fact 

that it decreases the amount by which the learning rate is adaptive 

to coordinates. Moreover, traditionally it referred to as not having a 

learning rate since it uses the amount of change itself as calibration 

for future change 

• Adadelta uses two state variables, st to store a leaky average of the 

second moment of the gradient and Δwt to store a leaky average of 

the second moment of the change of parameters in the model itself 



Adam (ICLR 2015) 

• Adaptive Moment Estimation (Adam) uses exponential weighted 

moving averages (also known as leaky averaging) to obtain an 

estimate of both the momentum and also the second moment of the 

gradient. That is, it uses the state variables 

• Here β1 and β2 are nonnegative weighting parameters. Common 

choices for them are β1=0.9 and β2 =0.999. That is, the variance 

estimate moves much more slowly than the momentum term. Note 

that if we initialize v0 = s0 = 0 we have a significant amount of bias 

initially towards smaller values. This can be addressed by using the 

fact that  𝛽𝑖 =
1−𝛽𝜄

1−𝛽
𝑡
𝑖=0   to re-normalize terms. Correspondingly the 

normalized state variables are given by: 



Adam (ICLR 2015) 

• We can now write out the update equations. First, we rescale the 

gradient in a manner very much akin to that of RMSProp to obtain: 

• Unlike RMSProp the update uses the momentum 𝑣𝑡  rather than the 

gradient itself. Moreover, there is a slight cosmetic difference as the 

rescaling happens using  1/( 𝒔𝑡 +∈) instead of 1/ 𝒔𝑡 +∈. The former 

works arguably slightly better in practice, hence the deviation from 

RMSProp. Typically we pick ϵ=10-6 for a good trade-off between 

numerical stability and fidelity 

• Now we have all the pieces in place to compute updates. That is: 

• Reviewing the design of Adam its inspiration is clear. Momentum and scale are clearly visible in 

the state variables. Their rather peculiar definition forces us to debias terms (this could be fixed by 

a slightly different initialization and update condition). Second, the combination of both terms is 

pretty straightforward, given RMSProp. Last, the explicit learning rate α allows us to control he 

step length to address issues of convergence 
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Second-order optimizers 



Introduction 

• Choosing the right hyper-parameter for optimizing a NN training 

has become dark-art 

• Even the choice of the optimizer is a hyper-parameter 

 
Task CV NLP Recommendation 

System 

Optimizer choice SGD AdamW Adagrad 

• First order methods only use gradient information and do not 

consider the curvature properties of the loss landscape, thereby 

leading to their suboptimal behaviour 

• Second order methods, on the other hand, are specifically designed to 

capture and exploit the curvature of the loss landscape and to 

incorporate both gradient and Hessian information 

 



Introduction 

• The main idea underlying second order methods involves 

preconditioning the gradient vector before using it for weight update. 

The preconditioner automatically rotates and rescales the gradient 

vector. This has a very intuitive motivation related to the curvature of 

the loss function landscape 

• For a general problem, different parameter dimensions exhibit 

different curvature properties 

• For example, the loss could be very flat in one dimension and very sharp in another. 

As a result, the step size taken by the optimizer should be different for these 

dimensions, and we would prefer to take bigger steps for the flatter directions and 

relatively smaller steps for the sharper directions 

• Second order methods capture this curvature difference, by 

normalizing different dimensions through rotation and scaling of the 

gradient vector before the weight update. Nonetheless, this comes at a 

cost 

• Despite the theoretically faster convergence rate of second order 

methods, they are rarely used for training NN models. This is due in 

part to their high computational cost 



Introduction 

f(x) = 0.1 x2 + 2y2 

• Gradient descent: learning rate 0.4 (left) and 0.6 (right) 



Introduction 



Quasi-Newton methods: BFGS 

• The Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm attempts to bring some of the advantages of 

Newton’s method without the computational burden. In that 

respect, BFGS is similar to the conjugate gradient method 

• However, BFGS takes a more direct approach to the 

approximation of Newton’s update. Recall that Newton’s 

update is given by: 

W* = W0 – H-1WF(W0) 

• The primary computational difficulty in applying Newton’s 

update is the calculation of the inverse Hessian H−1. The 

approach adopted by quasi-Newton methods (of which the 

BFGS algorithm is the most prominent) is to approximate the 

inverse with a matrix Mt that is iteratively refined by low rank 

updates to become a better approximation of H−1 



Quasi-Newton methods: BFGS 

• Once the inverse Hessian approximation Mt is updated, the direction 

of descent ρt is determined by ρt = Mtgt. A line search is performed in 

this direction to determine the size of the step ε* taken in this 

direction. The final update to the parameters is given by: 

• W(k+1) = W(k) + ρtε
* 

• Like the method of conjugate gradients, the BFGS algorithm iterates 

a series of line searches with the direction incorporating second-order 

information. However unlike conjugate gradients, the success of the 

approach is not heavily dependent on the line search finding a point 

very close to the true minimum along the line 

• Thus, relative to conjugate gradients, BFGS has the advantage that 

it can spend less time refining each line search. On the other hand, 

the BFGS algorithm must store the inverse Hessian matrix, M, that 

requires O(n2) memory, making BFGS impractical for most modern 

deep learning models that typically have millions of parameters 

• See however the Limited memory BFGS (L-BFGS) 



Quasi-Newton methods: L-BFGS 

• L-BFGS method has a desirable linear computational and memory 

complexity 

• It approximates the Hessian as a series sum of first order 

information from prior iterations 

• These approaches do not directly use the Hessian operator 

• While this approach works well for many optimization problems, it 

does not work well for many machine learning problems 

• One reason for this is that L-BFGS method requires full batch gradients, as 

stochastic gradients can lead to drastic errors in the approximation 

• This is one of the main challenges with Quasi-Newton methods applied to 

machine learning problems 

• One of the reasons that second order methods have not been 

successful yet for ML, as opposed to other domains such as scientific 

computing, is due to the stochastic nature of the problem 

• Such stochastic noise leads to an erroneous approximation of the 

Hessian, leading to suboptimal descent directions 



Quasi-Newton methods critique 

• SGD is more robust to such noise since we can efficiently 

incorporate moving averages and momentum 

• Ideally, if there was a way to apply the same moving 

average method to the Hessian, then that would help 

smooth out local curvature noise to get a better 

approximation to the non-noisy curvature of the loss 

landscape 

• However, such an approximation is challenging since the 

Hessian is a matrix that cannot be explicitly formed to be 

averaged, whereas it is easy to form the gradient vector 

• But … 



AdaHessian (AAAI 2021) summary 

Generic update formula for the first-order methods, where ηt is the learning 

rate, mt and vt denote the first and second moment terms, and gt is the gradient 

of a mini-batch at t-th iteration: 

Optimizer mt vt 

SGD with momentum 1 

Adagrad gt 

Adam 

RMSProp gt 

AdaHessian 



AdaHessian (AAAI 2021) 

• Problems that exhibit this behaviour (i.e., curvature is 

generally different across different directions/layers) are 

ill-conditioned 

• The role of the Hessian is to automatically normalize this 

ill-conditionedness by stretching and contracting different 

directions to accommodate for the curvature differences 

(full Newton method also rotates the gradient vector 

along with adjusting the step size) 

• There are two major problems with this approach: 

• The first problem is that a naïve use of the Hessian preconditioner 

comes at the prohibitively high cost of applying Hessian inverse to 

the gradient vector at every iteration (H-k g term) 

• The second and more challenging problem is that local Hessian 

(curvature) information can be very misleading for a noisy loss 

landscape 



AdaHessian (AAAI 2021) 

• A simple example is illustrated below, where we plot a simple 

parabola with a small sinusoidal noise as the loss landscape (shown 

in green). As one can see, the local Hessian (curvature) information is 

completely misleading, as it computes the curvature of the sinusoidal 

noise instead of global Hessian information for the parabola 



AdaHessian: Diagonal approximation 

• The most simple and computationally efficient approach is to 

approximate the Hessian as a diagonal operator: 

Δw = diag(H)-1 g = D g 

• The Hessian diagonal D can be efficiently computed using the 

Hutchinson’s method 

• Another important advantage, besides computational 

efficiency, of using the Hessian diagonal is that we can 

compute its moving average to resolve the local noisy Hessian 

as mentioned earlier 

• This allows us to smooth out noisy local curvature information, 

and to obtain estimates that use global Hessian information 

instead 

• We incorporate both spatial averaging and momentum 

(temporal averaging) to smooth out this noisy Hessian estimate 

as described next 



AdaHessian: Spatial averaging 

• The Hessian diagonal can vary significantly for each single 

parameter dimension of the problem 

• It was found helpful to perform spatial averaging of Hessian 

diagonal and use the average to smooth out spatial variations 

• We can perform a simple spatial averaging on the Hessian 

diagonal as follows: 

 

 

where D(s) is the spatially averaged Hessian diagonal, D[i] 

(D(s)[i]) refers to the i-th element of D (D(s)), b is the spatially 

average block size, and d is the number of model parameters 

divisible by b 

 

 



AdaHessian: Momentum 

• We can easily apply momentum to Hessian diagonal since it is 

a vector instead of a quadratically large matrix 

• If \bar{D}t is the Hessian diagonal with momentum, then: 

 

 

 

where 0<b2<1 is the second momentum hyperparameter 

This is exactly the same as the momentum in Adam or 

RMSProp except that we are using the spatial averaging 

Hessian diagonal instead of the gradient 

 

 

 



AdaHessian: Momentum example 

• To illustrate the importance of Hessian momentum, we 

provide a simple example in 1D (as shown in an earlier 

slide) by considering: 

f(x) = x2 + 0.1 sin(20 π x) 
• The method without the second order momentum gets 

trapped at a local minima even with more than 1000 

iterations (orange trajectory) 

• On the contrary, the optimization converges within 7 

iterations with Hessian momentum (blue trajectory) 

 

 



AdaHessian algorithm 

• Require: Initial parameter: θ0 

• Require: Learning rate: η 

• Require: Exponential decay rates: β1, β2 

• Require: Block size: b 

• Require: Hessian Power: k (=1) 

• Set: m0=0, v0=0 

• for t=1,2,,… do       //Training iterations 

gt = current step gradient 

Dt = current step estimated diagonal Hessian 

Compute D(s)
t 

Update \bar{D}t 

Update mt, vt                     //See equations in the AdaHessian summary slide 

θt = θt-1 – n mt/vt 

 

 


