
1

Νεςπο-Ασαυήρ Υπολογιστική

Neuro-Fuzzy Computing

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 10η

2

Numerical optimization

techniques applied to

Backpropagation:

Newton,

Conjugate Gradient (CGBP),

Levenberg-Marquardt (LMBP),

Quasi-Newton: BFGS,

Adagrad, Adadelta, Adam

AdaHessian

Second-order optimization methods

• Recall from your Numerical Analysis course:

• Steepest Descent

• is the simplest algorithm, but is often slow in converging

• Newton’s method

• is much faster, but requires calculation of the Hessian and of its inverse

• Conjugate Gradient

• it does not require the calculation of second derivatives, and yet it still

has the quadratic convergence property. (It converges to the minimum

of a quadratic function in a finite number of iterations

• We will describe the Newton’s method

• We will describe how the Conjugate Gradient algorithm can

be used to train multilayer networks

• We call this algorithm Conjugate Gradient BackPropagation

(CGBP)

• We will briefly describe the rest of the methods

4

Multivariate Newton’s

method

Multivariate Newton’s method

• STEP-1

• Calculate the gradient f(xk) and the Hessian 2f(xk) (or H(xk))

• STEP-2

• Compute the minimizing direction: sk= [-2f(xk)]-1 f(xk)

• STEP-3

• Minimize[f(xk+λksk)] to find the optimal λκ (λκ  0)

• Either from: df(xk - λκ [2f(xk)]-1 f(xk))/dλκ =0

• Or using a one-dimensional optimization method

• If f is quadratic, then always λκ = 1, for every k

• STEP-4

• Find the next point xk+1= xk+λksk

• STEP-5

• Check convergence criterion

Newton’s method for quadratic function

• Minimum: f(x)= x1
2 + 5x2

2 – 4, starting from x0= (2, 2)T

• Thus: f(x)= (2x1, 10x2)
T and 𝐇 =

2 0
0 10

, k

Newton’s method for quadratic function

• We need to find the point x1= x0+λksk=
2
2

 - λkH
-1f(x0)=

2
2

 - λk

1/2 0
0 1/10

4
20

=
2 − 2𝜆𝑘
2 − 2𝜆𝑘

• From
𝑑𝑓(𝒙0−𝜆0

𝛻2𝑓 𝒙0
−1

𝛻𝑓 𝒙0)

𝑑𝜆0
= 0 →

𝑑(5 2−2𝜆0
2−4)

𝑑𝜆0
= 0 →

10(2 − 2𝜆𝑘)(−2) = 0, which gives λ0=1

• This result was expected (the whole process was not

necessary) because the function is quadratic and thus our

theory tells us that λk=1, for every k

• Should we replace λ0=1 in the previous slide’s equation,

we get x1=(0, 0)T = x*, the optimal point (with zero

gradient there)

• The problem was solved in a single step in this case

Newton for non-quadratic function

• Minimum: f(x)= x1
2 + x1

2 x2
2 + 3x2

4, starting from x0= (1, 1)T

• Thus: f(x)= (2x1+2x1x2
2, 2x1

2x2+12x2
3)T and

𝐇 =
2𝑥2

2+ 2 4𝑥1𝑥2
4𝑥1𝑥2 2𝑥1

2 + 36𝑥2
2

Newton for non-quadratic function

• From the previous equations (at x0), we get: f(x0)= (4, 14)T

and 𝐇 =
4 4
4 38

• The inverse of H is: 𝐇−𝟏 =
1

136

38 −4
−4 4

• The first minimizing direction is: s0=
−1

136

38 −4
−4 4

4
14

=

−1

136

96
56

= −
0.70588
0.41176

• So, 𝐱1 =
1
1

− 𝜆0
0.70588
0.41176

=
1 − 0.70588𝜆0
1 − 0.41176𝜆0

• We now replace x1 into the formula of f(x) and we get:

• f(x0-λ0[
2f(x0)]

-1 f(x0))= (1-0.70588 λ0)
2 + (1-0.70588 λ0)

2(1-

0.41176 λ0)
2 + 3(1-0.41176 λ0)

4

Newton for non-quadratic function

• After calculations we get (purple curve): f(x0-λ0[
2f(x0)]

-1 f(x0))

=f(λ0)=0.1707 λ0
4 - 0.92775 λ0

3
 + 4.96153 λ0

2 - 8.58816 λ0 + 5

• So we seek that λ0 for which: df(λ0)/dλ0 = 0

• We may use λk =1 k, even though the function is non quadratic, but this

would result in more iterations before convergence

• To find λ0 which satisfies the

above, we may use the

golden section method, which

gives: λ0 = 1.12

• Substituting this value of λ0

into the equation for x1, we

get 𝐱1 =
0.20941
0.53882

• We continue by checking the

convergence criterion …

λ0=1.12

df(λ0)/dλ0=0
since tangent is horizontal

11

Background on Conjugate

Gradient

Προσέγγιση κατά Taylor μιας συνάρτησης

Ανάπτυγμα της σειράς Taylor μέχρι πρώτης και δεύτερης

τάξης για την πολυδιάσταση συνάρτηση f(x) γύρω από το

σημείο x* (ελάχιστο) και αποτελούν γραμμική και

τετραγωνική προσέγγιση της συνάρτησης, αντίστοιχα

Προσέγγιση κατά Taylor μιας συνάρτησης

Ισοδύναμα έχουμε:

όπου το ξk βρίσκεται πάνω στο ευθύγραμμο τμήμα που

ορίζεται από τα σημεία xk και x*

Αυτή η συνάρτηση ονομάζεται τετραγωνική μορφή (quadratic

form την ξανασυναντήσαμε στην εκπαίδευση της ADALINE) και έχει την

γενική μορφή:

Τπενθύμιση της Steepest Descent

• ΢ε κάθε βήμα, η Steepest Descent προσεγγίζει την

αντικειμενική συνάρτηση κάνοντας χρήση της πρώτης

παραγώγου (της πρώτης εξίσωσης της προηγούμενης διαφάνειας)

 όπου το λk βρίσκεται με βελτιστοποίηση

 Εάν όμως η συνάρτηση είναι τετραγωνική μορφή, τότε:

΢υζυγείς διευθύνσεις

• ΟΡΙ΢ΜΟ΢. Μια μέθοδος έχει την ιδιότητα του

τετραγωνικού τερματισμού όταν συγκλίνει στο

βέλτιστο σημείο x* μιας τετραγωνικής αντικειμενικής

συνάρτησης σε γνωστό πεπερασμένο αριθμό επαναλήψεων

• ΟΡΙ΢ΜΟ΢. Ένα σύνολο n γραμμικώς ανεξαρτήτων μη

μηδενικών διανυσμάτων s1, s2, …, sn είναι συζυγή ως προς

έναν θετικά ορισμένο πίνακα H εάν siHsj=0  1≤ i ≠ j ≤ n

• ΟΡΙ΢ΜΟ΢. Μια μέθοδος βελτιστοποίησης ονομάζεται

μέθοδος συζυγών διευθύνσεων εάν κατά την εφαρμογή

της παράγει συζυγείς διευθύνσεις και εφαρμοζόμενη σε μια

τετραγωνική μορφή με Hessian πίνακα H έχει την

ιδιότητα του τετραγωνικού τερματισμού

΢υζυγείς διευθύνσεις

• ΘΕΩΡΗΜΑ. ΢ε κάθε αντικειμενική συνάρτηση που είναι

τετραγωνική μορφή και έχει ένα ελάχιστο, εάν

ακολουθήσουμε μια μέθοδο που παράγει συζυγείς ως προς

τον Hessian πίνακα διευθύνσεις, το ελάχιστο θα εντοπιστεί

σε n το πολύ βήματα, ένα για κάθε συζυγή διεύθυνση

• ΘΕΩΡΗΜΑ. Εάν f(x) είναι τετραγωνική μορφή, και s0, s1,

…, sk σύνολο συζυγών ως προς τον Hessian πίνακα

διευθύνσεων, οι οποίες παράγονται με κάποια μέθοδο,

μέχρι την προσέγγιση xk+1, τότε:

T f(xk+1)sj = 0 για j=1,2,…k

Παράδειγμα

ΠΡΟΒΛΗΜΑ. Να εντοπιστεί το ελάχιστο της f(x)=x2
1+5x2

2-10

ΛΤ΢Η.

• Η κλίση είναι f(x)= (2x1, 10x2)
Σ

• Ο Hessian είναι:

• Ας εκκινήσουμε από το x0=(2 2)T

• Σότε, f(x0)= (4, 20)Σ

• Επιλέγοντας τυχαία μια διεύθυνση εκκίνησης, έστω την

s0=(1/2, √3/2)T που έχει ||s0 ||=1, παίρνω ότι λ0= -2.4150635

• Δεν είναι θετικό!!! γιατί η s0 δεν είναι διεύθυνση μείωσης

• x1=x0 +λ0s0=...=

Παράδειγμα

• Η κλίση εδώ είναι f(x1)= (1.5849365, -0.9150634)Σ

• Θέλουμε τώρα να υπολογίσουμε την επόμενη διεύθυνση

ελαχιστοποίησης με τέτοιον τρόπο ώστε να είναι συζυγής

ως προς την s0 σε σχέση με τον Hessian H και να είναι

μοναδιαία, δηλαδή να ισχύουν: sT
1Hs0=0 και sT

1s1=1

• Εάν συμβολίσουμε s1= (s1
1,s

1
2) προκύπτει από τις

προηγούμενες εξισώσεις ότι:

• Από τις δυο λύσεις του συστήματος αυτού, επιλέγουμε

εκείνη που δίνει διεύθυνση μείωσης, δηλαδή να ισχύει:

sT
1f(x1) < 0

Παράδειγμα

• Αυτή είναι η s1= (-0.99339927, 0.11470787)Σ

• Αυτή είναι η επόμενη διεύθυνση, και είναι μοναδιαία και

συζυγή της προηγούμενης, κατά μήκος της οποίας θα

κινηθούμε με βήμα λ1

• Από τον τύπο της Διαφάνειας-14, έχω ότι λ1=0.79773385

• Παρτηρήστε ότι το λ1 είναι θετικό όπως θα έπρεπε αφού

κινούμαστε σε διεύθυνση μείωσης

• Η επόμενη προσέγγιση είναι: x2 = x1 +λ1s1= … ≈ (0 0)T

• Αυτό είναι το βέλτιστο και βρέθηκε σε 2 βήματα (είναι

τεταγωνική η αντικειμενική συνάρτηση με διάσταση 2)

Μέθοδοι συζυγών κλίσεων

• Προτάθηκε αρχικά από τους Hestenes & Stiefel (1952) και

Beckman (1960)

• Γνωστότερη παραλλαγή αυτή των Fletcher-Reeves (1964)

• Παράγει στο βήμα k την διεύθυνση sk η οποία είναι γραμμικός

συνδυασμός της -f(xk) δηλαδή της διεύθυνσης της μέγιστης

αλλαγής στην τρέχουσα προσέγγιση, και των προηγούμενων

διευθύνσεων s0, s1, …, sk-1

• Οι συντελεστές του γραμμικού συνδυασμού επιλέγονται ώστε οι

παραγόμενες διευθύνσεις από προσέγγιση σε προσέγγιση να είναι

συζυγείς ως προς τον Hessian πίνακα της αντικειμενικής

συνάρτησης

• ΣΕΛΙΚΑ προκύπτει ότι για να υπολογίσουμε αυτούς τους

συντελεστές χρειαζόμαστε μόνο την τρέχουσα κλίση f(xk) και την

ακριβώς προηγούμενη f(xk-1)

Fletcher-Reeves conjugate gradient

Fletcher-Reeves conjugate gradient

Παραλλαγές μεθόδων συζυγών κλίσεων

Ακολουθούν τον προηγούμενο αλγόριθμο, αλλά διαφέρουν

στον τύπο υπολογισμού του ωk

 Μέθοδος του Daniel (1967)

 Μέθοδος των Crowder & Wolfe (1971)

 Μέθοδος των Polak & Ribiere (1969), Polyak (1969)

Drawbacks of basic Conjugate Gradient

• This conjugate gradient algorithm cannot be applied

directly to the neural network training task, because the

performance index is not quadratic. This affects the

algorithm in two ways:

• First, we can not minimize the function along a line, as required

in Step 2

• Second, the exact minimum will not normally be reached in a

finite number of steps, and therefore the algorithm will need to be

reset after some set number of iterations

Interval location

• Let’s address the linear search first

• We need to have a general procedure for locating the

minimum of a function in a specified direction

• This will involve two steps:

• interval location

• interval reduction

• The purpose of the interval location step is to find some

initial interval that contains a local minimum

• The interval reduction step then reduces the size of the

initial interval until the minimum is located to the

desired accuracy

Interval location

• We will use a function comparison method to perform the

interval location step, illustrated in the following figure
• We begin by evaluating the

performance index at an initial

point, represented by α1. This

point corresponds to the

current values of the network

weights and biases. In other

words, we are evaluating F(x0)

• The next step is to evaluate

the function at a second point,

represented by b1, which is a

distance ε from the initial

point, along the first search

direction p0. In other words,

we are evaluating F(x0+εp0)

• This process stops when the function increases between two consecutive

evaluations. The minimum is bracketed by the two points α5 and b5. The

minimum may occur either in the interval [α3,b3] or in the interval [α4,b4].

Interval reduction

• The next step is interval reduction, which involves

evaluating the function at points inside the interval [a5,b5]

• From the figure below we can see that we will need to evaluate the

function at two internal points (at least) in order to reduce the size

of the interval of uncertainty
• The let figure shows that one internal function evaluation does not provide us

with any information on the location of the minimum

• However, if we evaluate the function at two points c and d, as in the right

figure, we can reduce the interval of uncertainty

 If F(c) > F(d), then the

minimum must occur

in the interval [c, b]

 If F(c) < F(d), then the

minimum must occur

in the interval [a, d]

We are assuming that there is a single

minimum located in the initial interval.

Interval reduction: Golden section search

• We need to

determine the

locations of points c

and d

• We will use Golden

Section search,

which is designed to

reduce the number

of function

evaluations required

• At each iteration

one new function

evaluation is

required

τ is user-set tolerance

Final adjustments to develop the CGBP

• There is one more modification to the conjugate gradient

algorithm that needs to be made before we apply it to

neural network training

• For quadratic functions the algorithm will converge to the

minimum in at most n iterations, where n is the number

of parameters being optimized

• The mean squared error performance index for multilayer

networks is not quadratic, therefore the algorithm would

not normally converge in n iterations

• The development of the conjugate gradient algorithm does

not indicate what search direction to use once a cycle of n

iterations has been completed
• There have been many procedures suggested, but the simplest method is

to reset the search direction to the steepest descent direction (negative of

the gradient) after n iterations

Critique of CGBP

• CGBP algorithm converges in many fewer iterations than

other algorithms

• This is a little deceiving, since each iteration of CGBP

requires more computations than these other methods

• there are many function evaluations involved in each iteration of

CGBP

• Even so, CGBP has been shown to be one of the

fastest batch training algorithms for multilayer

networks
• C. Charalambous, “Conjugate gradient algorithm for efficient

training of artificial neural networks,” IEE Proceedings, vol.

139, no. 3, pp. 301–310, 1992

31

Numerical optimization

techniques applied to

Backpropagation:

Levenberg-Marquardt

algorithm

Levenberg-Marquardt basic algorithm

• The Levenberg-Marquardt algorithm is a variation of

Newton’s method that was designed for minimizing

functions that are sums of squares of other nonlinear

functions

• This is very well suited to neural network training (recall

that their performance index is the mean squared error)

• Newton’s method for optimizing a performance index F(x)

is as follows:

 where

 and

Levenberg-Marquardt basic algorithm

• If we assume that F(x) is a sum of squares function

 then the j-th element of the gradient would be

• The gradient can therefore be written in matrix form

 where the Jacobian matrix is:

Levenberg-Marquardt basic algorithm

• Next we wish to find Hessian matrix. The k,j element

would be:

• The Hessian can be expressed in matrix form:

 where

• If we assume that S(x) is small, the we can approximate

Levenberg-Marquardt basic algorithm

• So, the Newton method evolves into the Gauss-Newton

method:

• One problem with the Gauss-Newton method is that the

matrix H=JTJ may not be invertible

• This can be overcome by using the following modification

to the approximate Hessian matrix: G=H+μI
• (Figure out why this matrix can be made invertible)

Levenberg-Marquardt basic algorithm

• This lead to the Levenberg-Marquardt algorithm:

• Or

• The algorithm begins with μk set to some small value (e.g., 0.01)

• If a step does not yield a smaller value for F(x), then the step is repeated with

μk multiplied by some factor θ>1 (e.g., θ=10)

• Eventually F(x) should decrease, since we would be taking a small step in the

direction of steepest descent

• If a step does produce a smaller value for F(x), then μk is divided by θ for the

next step, so that the algorithm will approach Gauss-Newton, which should

provide faster convergence

• The algorithm provides a nice compromise between the speed of Newton’s

method and the guaranteed convergence of steepest descent

Training with Levenberg-Marquardt

• The performance index for multilayer network training is

the mean squared error

• If each target occurs with equal probability, the mean

squared error is proportional to the sum of squared errors

over the Q targets in the training set:

• This is equivalent to the performance index for which

Levenberg-Marquardt was designed

• It should be a straightforward matter to adapt the

algorithm for network training, but it turns out that it

does require some care in working out the details

Training with Levenberg-Marquardt

• The key step in the Levenberg-Marquardt algorithm is the

computation of the Jacobian matrix

• To perform this computation we will use a variation of the

backpropagation algorithm

• To create the Jacobian matrix we need to compute the

derivatives of the errors, instead of the derivatives of the

squared errors (as we did for the standard backpropagation)

Jacobian calculation

• Recall Jacobian’s form from (slide 33)

• Error vector:

• Parameter vector:

 N=Q x SM and n=S1(R+1)+S2(S1 + 1)+…+SM(SM-1 + 1)

• So:

Jacobian calculation

• The terms in this Jacobian matrix can be computed by a

simple modification to the backpropagation algorithm

• Standard backpropagation calculates terms like:

• For the elements of the Jacobian matrix that are needed

for the Levenberg-Marquardt algorithm we need to

calculate terms like:

• In our derivation of standard backpropagation:

 where

Marquardt sensitivity

• The backpropagation process computed the sensitivities through a

recurrence relationship from the last layer backward to the first layer

• We can use the same concept to compute the terms needed

for the Jacobian matrix if we define Marquardt sensitivity:

 where h=(q-1)SM + k

• We can compute the elements of the Jacobian

• or if xl is a bias

Marquardt sensitivity

• Marquardt sensitivities can be computed through the same recurrence

relations as the standard sensitivities with one modification at the final

layer

• For the Marquardt sensitivities at the final layer we have:

• Therefore when the input pq has been applied to the

network and the corresponding network aM
q output has

been computed, the Levenberg-Marquardt backpropagation

is initialized with:

 where F’M(nM)is define as in standard backpropagation

• The columns can also be backpropagated together using

Marquardt sensitivity

• The total Marquardt sensitivity matrices for each layer are

then created by augmenting the matrices computed for

each input:

• Note that for each input that is presented to the network

we will backpropagate SM sensitivity vectors

• This is because we are computing the derivatives of each individual

error, rather than the derivative of the sum of squares of the errors.

• For every input applied to the network there will be SM

errors (one for each element of the network output)

• For each error there will be one row of the Jacobian matrix

• After the sensitivities have been backpropagated, the

Jacobian matrix is computed using equation of slide 41

Levenberg-Marquardt backpropagation

1. Present all inputs to the network and compute the

corresponding outputs and the errors eq=tq-a
M

q. Compute

the sum of squared errors over all inputs, F(x) (slide 37)

2. Compute the Jacobian matrix. Calculate the sensitivities

with the recurrence relations (equations in slide 42).

Augment the individual matrices into the Marquardt

sensitivities. Compute the elements of the Jacobian

matrix with equations in slide 41

3. Solve equation in slide 36 to obtain Δxk

4. Recompute the sum of squared errors using xk+Δxk. If this

new sum of squares is smaller than that computed in

Step-1, then divide μ by θ, let xk+1=xk+Δxk and go back to

Step-1. If the sum of squares is not reduced, then multiply

μ by θ and go back to Step-3

Critique of LMBP

• Even given the large number of computations, however, the

LMBP algorithm appears to be the fastest neural network

training algorithm for moderate numbers of network

parameters

• M. T. Hagan and M. Menhaj, “Training feedforward networks with

the Marquardt algorithm,” IEEE Transactions on Neural

Networks, vol. 5, no. 6, 1994.

• The key drawback of the LMBP algorithm is the storage

requirement: The algorithm must store the approximate

Hessian matrix JTJ

• This is an nxn matrix, where n is the number of parameters (weights and

biases)

• Recall that the other methods discussed need only store the gradient,

which is an n-dimensional vector

• When the number of parameters is very large, it may be impractical to

use the Levenberg-Marquardt algorithm

46

Recent approaches:

First-order and second-

order optimizers

47

First-order optimizers

Adagrad (COLT 2010 & JMLR 2011)

• The operations are applied coordinate wise

• ϵ is an additive constant that ensures that we do not divide by 0

• Accumulating squared gradients in st means that st grows essentially

at linear rate (somewhat slower than linearly in practice, since the

gradients initially diminish). This leads to O(1/ 𝑡) learning rate,

albeit adjusted on a per coordinate basis. For convex problems this is

perfectly adequate

• In deep learning, though, we might want to decrease the learning

rate rather more slowly. This led to a number of Adagrad variants

Adagrad (COLT 2010 & JMLR 2011)

• Adagrad relies on only first order information, but has some

properties of second order methods

• While there is the hand tuned global learning rate, each dimension has its own

dynamic rate. Since this dynamic rate grows with the inverse of the gradient

magnitudes, large gradients have smaller learning rates and small gradients have

large learning rates

• This has the nice property, as in second order methods, that the progress along each

dimension evens out over time. This is very beneficial for training deep neural networks

since the scale of the gradients in each layer is often different by several orders of

magnitude, so the optimal learning rate should take that into account. Additionally, this

accumulation of gradient in the denominator has the same effects as annealing, reducing

the learning rate over time

• Since the magnitudes of gradients are factored out in ADAGRAD, this method can

be sensitive to initial conditions of the parameters and the corresponding

gradients

• If the initial gradients are large, the learning rates will be low for the remainder of

training. This can be combatted by increasing the global learning rate, making the

ADAGRAD method sensitive to the choice of learning rate. Also, due to the continual

accumulation of squared gradients in the denominator, the learning rate will continue to

decrease throughout training, eventually decreasing to zero and stopping training

completely. ADADELTA was created to overcome the sensitivity to the hyperparameter

selection as well as to avoid the continual decay of the learning rates

RMSProp (Lecture 6.5 – Coursera: NN and ML 2012)

• One of the key issues in Adagrad is that the learning rate decreases

at a predefined schedule of effectively O(1/ 𝑡). While this is

generally appropriate for convex problems, it might not be ideal for

nonconvex ones, such as those encountered in deep learning. Yet, the

coordinate-wise adaptivity of Adagrad is highly desirable as a

preconditioner

• We need to decouple rate scheduling from coordinate-adaptive

learning rates. The issue is that Adagrad accumulates the squares of

the gradient gt into a state vector st = st-1+g2
t. As a result st keeps on

growing without bound due to the lack of normalization, essentially

linearly as the algorithm converges

• One way of fixing this problem would be to use st/t. For reasonable

distributions of gt this will converge. Unfortunately it might take a

very long time until the limit behavior starts to matter since the

procedure remembers the full trajectory of values. An alternative is

to use a leaky average in the same way we used in the momentum

method, i.e., st ← γ st-1 + (1 - γ) g2
t for some parameter γ > 0

RMSProp (Lecture 6.5 – Coursera: NN and ML 2012)

• The constant ϵ > 0 is typically set to 10-6 to ensure that we do not

suffer from division by zero or overly large step sizes

Adadelta (arxiv.org 2012)

• Adadelta is a variant of AdaGrad. The main difference lies in the fact

that it decreases the amount by which the learning rate is adaptive

to coordinates. Moreover, traditionally it referred to as not having a

learning rate since it uses the amount of change itself as calibration

for future change

• Adadelta uses two state variables, st to store a leaky average of the

second moment of the gradient and Δwt to store a leaky average of

the second moment of the change of parameters in the model itself

Adam (ICLR 2015)

• Adaptive Moment Estimation (Adam) uses exponential weighted

moving averages (also known as leaky averaging) to obtain an

estimate of both the momentum and also the second moment of the

gradient. That is, it uses the state variables

• Here β1 and β2 are nonnegative weighting parameters. Common

choices for them are β1=0.9 and β2 =0.999. That is, the variance

estimate moves much more slowly than the momentum term. Note

that if we initialize v0 = s0 = 0 we have a significant amount of bias

initially towards smaller values. This can be addressed by using the

fact that 𝛽𝑖 =
1−𝛽𝜄

1−𝛽
𝑡
𝑖=0 to re-normalize terms. Correspondingly the

normalized state variables are given by:

Adam (ICLR 2015)

• We can now write out the update equations. First, we rescale the

gradient in a manner very much akin to that of RMSProp to obtain:

• Unlike RMSProp the update uses the momentum 𝑣𝑡 rather than the

gradient itself. Moreover, there is a slight cosmetic difference as the

rescaling happens using 1/(𝒔𝑡 +∈) instead of 1/ 𝒔𝑡 +∈. The former

works arguably slightly better in practice, hence the deviation from

RMSProp. Typically we pick ϵ=10-6 for a good trade-off between

numerical stability and fidelity

• Now we have all the pieces in place to compute updates. That is:

• Reviewing the design of Adam its inspiration is clear. Momentum and scale are clearly visible in

the state variables. Their rather peculiar definition forces us to debias terms (this could be fixed by

a slightly different initialization and update condition). Second, the combination of both terms is

pretty straightforward, given RMSProp. Last, the explicit learning rate α allows us to control he

step length to address issues of convergence

55

Second-order optimizers

Introduction

• Choosing the right hyper-parameter for optimizing a NN training

has become dark-art

• Even the choice of the optimizer is a hyper-parameter

Task CV NLP Recommendation

System

Optimizer choice SGD AdamW Adagrad

• First order methods only use gradient information and do not

consider the curvature properties of the loss landscape, thereby

leading to their suboptimal behaviour

• Second order methods, on the other hand, are specifically designed to

capture and exploit the curvature of the loss landscape and to

incorporate both gradient and Hessian information

Introduction

• The main idea underlying second order methods involves

preconditioning the gradient vector before using it for weight update.

The preconditioner automatically rotates and rescales the gradient

vector. This has a very intuitive motivation related to the curvature of

the loss function landscape

• For a general problem, different parameter dimensions exhibit

different curvature properties

• For example, the loss could be very flat in one dimension and very sharp in another.

As a result, the step size taken by the optimizer should be different for these

dimensions, and we would prefer to take bigger steps for the flatter directions and

relatively smaller steps for the sharper directions

• Second order methods capture this curvature difference, by

normalizing different dimensions through rotation and scaling of the

gradient vector before the weight update. Nonetheless, this comes at a

cost

• Despite the theoretically faster convergence rate of second order

methods, they are rarely used for training NN models. This is due in

part to their high computational cost

Introduction

f(x) = 0.1 x2 + 2y2

• Gradient descent: learning rate 0.4 (left) and 0.6 (right)

Introduction

Quasi-Newton methods: BFGS

• The Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm attempts to bring some of the advantages of

Newton’s method without the computational burden. In that

respect, BFGS is similar to the conjugate gradient method

• However, BFGS takes a more direct approach to the

approximation of Newton’s update. Recall that Newton’s

update is given by:

W* = W0 – H-1WF(W0)

• The primary computational difficulty in applying Newton’s

update is the calculation of the inverse Hessian H−1. The

approach adopted by quasi-Newton methods (of which the

BFGS algorithm is the most prominent) is to approximate the

inverse with a matrix Mt that is iteratively refined by low rank

updates to become a better approximation of H−1

Quasi-Newton methods: BFGS

• Once the inverse Hessian approximation Mt is updated, the direction

of descent ρt is determined by ρt = Mtgt. A line search is performed in

this direction to determine the size of the step ε* taken in this

direction. The final update to the parameters is given by:

• W(k+1) = W(k) + ρtε
*

• Like the method of conjugate gradients, the BFGS algorithm iterates

a series of line searches with the direction incorporating second-order

information. However unlike conjugate gradients, the success of the

approach is not heavily dependent on the line search finding a point

very close to the true minimum along the line

• Thus, relative to conjugate gradients, BFGS has the advantage that

it can spend less time refining each line search. On the other hand,

the BFGS algorithm must store the inverse Hessian matrix, M, that

requires O(n2) memory, making BFGS impractical for most modern

deep learning models that typically have millions of parameters

• See however the Limited memory BFGS (L-BFGS)

Quasi-Newton methods: L-BFGS

• L-BFGS method has a desirable linear computational and memory

complexity

• It approximates the Hessian as a series sum of first order

information from prior iterations

• These approaches do not directly use the Hessian operator

• While this approach works well for many optimization problems, it

does not work well for many machine learning problems

• One reason for this is that L-BFGS method requires full batch gradients, as

stochastic gradients can lead to drastic errors in the approximation

• This is one of the main challenges with Quasi-Newton methods applied to

machine learning problems

• One of the reasons that second order methods have not been

successful yet for ML, as opposed to other domains such as scientific

computing, is due to the stochastic nature of the problem

• Such stochastic noise leads to an erroneous approximation of the

Hessian, leading to suboptimal descent directions

Quasi-Newton methods critique

• SGD is more robust to such noise since we can efficiently

incorporate moving averages and momentum

• Ideally, if there was a way to apply the same moving

average method to the Hessian, then that would help

smooth out local curvature noise to get a better

approximation to the non-noisy curvature of the loss

landscape

• However, such an approximation is challenging since the

Hessian is a matrix that cannot be explicitly formed to be

averaged, whereas it is easy to form the gradient vector

• But …

AdaHessian (AAAI 2021) summary

Generic update formula for the first-order methods, where ηt is the learning

rate, mt and vt denote the first and second moment terms, and gt is the gradient

of a mini-batch at t-th iteration:

Optimizer mt vt

SGD with momentum 1

Adagrad gt

Adam

RMSProp gt

AdaHessian

AdaHessian (AAAI 2021)

• Problems that exhibit this behaviour (i.e., curvature is

generally different across different directions/layers) are

ill-conditioned

• The role of the Hessian is to automatically normalize this

ill-conditionedness by stretching and contracting different

directions to accommodate for the curvature differences

(full Newton method also rotates the gradient vector

along with adjusting the step size)

• There are two major problems with this approach:

• The first problem is that a naïve use of the Hessian preconditioner

comes at the prohibitively high cost of applying Hessian inverse to

the gradient vector at every iteration (H-k g term)

• The second and more challenging problem is that local Hessian

(curvature) information can be very misleading for a noisy loss

landscape

AdaHessian (AAAI 2021)

• A simple example is illustrated below, where we plot a simple

parabola with a small sinusoidal noise as the loss landscape (shown

in green). As one can see, the local Hessian (curvature) information is

completely misleading, as it computes the curvature of the sinusoidal

noise instead of global Hessian information for the parabola

AdaHessian: Diagonal approximation

• The most simple and computationally efficient approach is to

approximate the Hessian as a diagonal operator:

Δw = diag(H)-1 g = D g

• The Hessian diagonal D can be efficiently computed using the

Hutchinson’s method

• Another important advantage, besides computational

efficiency, of using the Hessian diagonal is that we can

compute its moving average to resolve the local noisy Hessian

as mentioned earlier

• This allows us to smooth out noisy local curvature information,

and to obtain estimates that use global Hessian information

instead

• We incorporate both spatial averaging and momentum

(temporal averaging) to smooth out this noisy Hessian estimate

as described next

AdaHessian: Spatial averaging

• The Hessian diagonal can vary significantly for each single

parameter dimension of the problem

• It was found helpful to perform spatial averaging of Hessian

diagonal and use the average to smooth out spatial variations

• We can perform a simple spatial averaging on the Hessian

diagonal as follows:

where D(s) is the spatially averaged Hessian diagonal, D[i]

(D(s)[i]) refers to the i-th element of D (D(s)), b is the spatially

average block size, and d is the number of model parameters

divisible by b

AdaHessian: Momentum

• We can easily apply momentum to Hessian diagonal since it is

a vector instead of a quadratically large matrix

• If \bar{D}t is the Hessian diagonal with momentum, then:

where 0<b2<1 is the second momentum hyperparameter

This is exactly the same as the momentum in Adam or

RMSProp except that we are using the spatial averaging

Hessian diagonal instead of the gradient

AdaHessian: Momentum example

• To illustrate the importance of Hessian momentum, we

provide a simple example in 1D (as shown in an earlier

slide) by considering:

f(x) = x2 + 0.1 sin(20 π x)
• The method without the second order momentum gets

trapped at a local minima even with more than 1000

iterations (orange trajectory)

• On the contrary, the optimization converges within 7

iterations with Hessian momentum (blue trajectory)

AdaHessian algorithm

• Require: Initial parameter: θ0

• Require: Learning rate: η

• Require: Exponential decay rates: β1, β2

• Require: Block size: b

• Require: Hessian Power: k (=1)

• Set: m0=0, v0=0

• for t=1,2,,… do //Training iterations

gt = current step gradient

Dt = current step estimated diagonal Hessian

Compute D(s)
t

Update \bar{D}t

Update mt, vt //See equations in the AdaHessian summary slide

θt = θt-1 – n mt/vt

