Nevpo-Aco@nS YTOAOYIGTIKY)
Neuro-Fuzzy Computing

AWdoKkwv —
Anunrprog Katcapog

@ Tp. HMMY

Awdreén 10

. Numerical optimization

\ techniques applied to
Backpropagation:
! Newton,
Conjugate Gradient (CGBP),
Levenberg-Marquardt (LMBP),
Quasi-Newton: BFGS,
Adagrad, Adadelta, Adam
AdaHessian

ﬁ Second-order optimization methods

=4 Recall from your Numerical Analysis course:
« Steepest Descent
* 1s the simplest algorithm, but is often slow in converging
* Newton’s method
* 1s much faster, but requires calculation of the Hessian and of its inverse

* Conjugate Gradient

1t does not require the calculation of second derivatives, and yet it still
has the quadratic convergence property. (It converges to the minimum
of a quadratic function in a finite number of 1terations

 We will describe the Newton’s method

* We will describe how the Conjugate Gradient algorithm can
be used to train multilayer networks

* We call this algorithm Conjugate Gradient BackPropagation
(CGBP)

* We will briefly describe the rest of the methods

Multivariate Newton’s
method

)
& - Multivariate Newton’s method

&% STEP-1
- Calculate the gradient Vf(x,) and the Hessian V3f(x,) (or H(x,))

STEP-2
« Compute the minimizing direction: s, = [-V?f(x,)]! V{(x,)
STEP-3
* Minimize[f(x,+A,s;)] to find the optimal A, (1> 0)
* Either from: df(x, - A, [V?f(x})]! VI(x,))/dA, =0
* Or using a one-dimensional optimization method

- If fis quadratic, then always A, = 1, for every k
STEP-4

* Find the next point x; ;= X, +A. S,
STEP-5

* Check convergence criterion

Newton’s method for quadratic function

DI
TR \\\\ \\‘
\\\\\\\\\\\\\\\\\\\\ \\\\\\ \ ‘
\\\\\\\\ \\\\\ \\\ o
11! ,/III’”III

Thus: Vf(x)= (2x;, 10x,)" and H

]Vk

010

-

Newton’s method for quadratic function

v’ We need to find the point X;= Xyt 8= @) - L H1V1(x,)=

1/2 _
B) -0 110G = G2

df (x,— 2, [V’ f(x)1~ Vf(x,)) d(5(2—21,)°%—4)
From ar =0- an

10(2 — 24,)(—2) = 0, which gives A,=1
This result was expected (the whole process was not

necessary) because the function is quadratic and thus our
theory tells us that A, =1, for every k

:O—)

Should we replace Ay=1 in the previous slide’s equation,
we get x,=(0, 0)T = x*, the optimal point (with zero
ogradient there)

The problem was solved in a single step in this case

600000

500000 m ,,,,,/ ’ II/ i
il Tl
5{%{4 ////%5555%,%/%’Wn/u/ ,;f//i/) ’/z’it!! Iy

““““““

400000
300000 -
200000 1

100000 -

* Thus: VI(x)= (2x,+2x,X,2, 2x,2x,+12x,3)T and

!

2x,% + 2
4x,x,

4x.x,

H = [2x,% + 36x,

i i

Newton for non-quadratic function

il
1
IIII’,
)1”

& Newton for non-quadratic function

From the previous equations (at x,), we get: VI(x,)= (4, 14)T
0 0

4 4
and H = [4 39
e The inverse of H is: H™1 = [38 _4]
136 4

* The first minimizing direction is: s,= E [38 _4] ()
__(96) _ (0.70588)
136 \56 0.41176

o= () - (L1050 - (70

- We now replace x; into the formula of f(x) and we get:

o f(x- A [V2E(x()] T VE(xg))= (1-0.70588 A)2 + (1-0.70588 1,)2(1-
0.41176)2 + 3(1-0.41176 A)*

B e,
- |

Newton for non-quadratic function

£ After calculations we get (purple curve): f(xo-Ao[V2A(x)] VE(x,))
=f(]t0)20.1707]t04 - 0.92775 AO?’ + 4.90153 AO2 - 8.58816 AO + 5

* So we seek that A, for which: df(A,)/dA, =0

2.5

* To find A, which satisfies the ot dccssssmes sesis
above, we may use the | I
golden section method, which
gives: A, = 1.12

1.5 Jo |

* Substituting this value of A, th |

/
1into the equation for x,, we
3 20941 1 0.5 F ““_";faf(io)/dio_:() i
get X1 = (053882) since tangent is horizontal
* We continue by checking the Ao=1.12
convergence criterion ... T —

- We may use A, =1 V&, even though the function is non quadratic, but this
would result in more iterations before convergence

Background on Conjugate
Gradient

11

Q}‘
& IIpooeyywon kata Taylor puag ouvaptnong

%VdH’CUY}J.Cl ¢ oepag Taylor pexpl mpetng Kat 6eutepng
taéne yra TV moAuotaotaon ouvaptnon f(x) yupw aro to
onpelo x* (eAdax10To) KAl aIIoTeAoUV YPAUULKI] KAl
TETPAYRVLIKI] IIPOOEYYLON T1C OUVAPTNONGE, AVTLOTOLXA

f(xx) = f(x") + VF(x")(xr — x7)
+ O(||xx — x*|[*)

Fxe) = FX) VI~ X
+ 5ok = X TV () ok —)
+ 0 e = x'|[Y

Y
ﬂ - IIpooeyyion kata Taylor puag cuvaptnong

qOOSI'JVCl}lCl exoupe:

f(xk) = f(x") + V(&) Xk = X7)

Fxi) = FO) VI~ X
+ 5 0ck = x) TV (8 (xk — x)

orIou To ¢, BplokeTal mave oto eubuypappo Tunpa mmou
op1ldeTal armo Ta onpela X, Kay x*

Autn n ouvaptnon ovopadeTal TETPAY®VIKI pop®1n (quadratic

form TV {avaouvavtnoape otnv ekoaideuon g ADALINE) Kdl éXSL Tnv

YEVIKI] HOP@L): 1
f(x)=a+x'b+ §XTHX

Y
ﬁ -~ YmevOupion tne Steepest Descent

= 2e XaOe Bnua, n Steepest Descent mpooeyyidel tnv
AVTLKELIEVIKT) OUVAPTI 0N KAVOVTAC XPN0N TNE IPKTIC
HClpClY(:)YOU (tng mpwtng ££100OoNG TNE IPONYOUHEVNE OLaPAVELAS)
V f(xk)
IV (xk)]|

OrIou To A, Bploketal pe BeAtiotomoinon

Xei11 = Xk — Ak

Eav opwe n ouvaptnon etval TeTpay®viKi 1op@), TOTE:
B va(Xk)Sk
S{HS]{

_ IV EIP
VT f(xx)HV f(xz)

Ap =

2uduyelg oreuOuvoelg

= OPIXMOZXZ. Mia pebodog £xel tnv 1010TnTA TOU

TETPAYRXVIKOU TEPHATLOPOU OTAV CUYKALVEL OTO
BeATioto onpelo X* piag TETPAYRVIKIE AVTIKELIEVIKIG
OUVAPTNONE 0€ YVOOTO IEIEPAOUEVO apLO0 eITaAVAANWERV

OPIXMO2. 'Eva ouvoAo n ypauplkeg ave{apTTOV 1]
PNOEVIK@V OLAVUOPAT®OV Sq, Sg, ..., S, elval cuduyn g IIPog
evav Betika opropevo mivaka H eav s;Hs;=0 V 1<1#j<n

OPIXMOX. Mua peBodog BeAtiotomoinong ovopadetau
nefodoc ouduywv drLeuBuvoewv eav Kata Tnv eQapuoyn
¢ napayel ouluyele oteubuvoelg Kal epappolopevn oe pia
TeTPAY®OVLIKI) popen pe Hessian mivaxka H exel v
1010TNTA TOU TETPAY®VIKOU TEPUATLONOU

ﬁ 2.uduyelg olteubuvoelg

=4 OEQPHMA. Xe xaBe avtikelieviky ouvapTnorn IIou elvau
TETPAYRDVLIKI] LOP@PI] KAl €XEL £Va EAAXL0TO, AV
akoAouBnooupe pra pebodo mou mapayer ouduyele WS IPog
tov Hessilan mivaxka 6iteuBuvoeirg, to eAaxioto Ba evtomotel
o€ n To oAU Brpata, eva yia kabe ouluyn oreubuvon

- OEQPHMA. Eav {(x) elval tetpaywvikn poper), Kat s, Sy,
..., S} 0UVoAo ouduywVv ®g rIpog Tov Hessian mivaka
OleuBuvoswv, ol ommoleg mapayovral e xamola pnebooo,
HEXPL TNV IIPOCEYYLON Xj 1, TOTE:

VH(xy41)8 = 0 Yia j=1,2,...k

2 Ilapad
apaoel a
ﬂ P YH

QIPOBAHMA. Na evrtomotel to eAaxioto tng f(x)=x2;+5x%,-10

AYXH.

+ H xAton etvar VI(x)= (2x,, 10x,)7T
0
10

* Ag ekxuivnooupe aro to x,=(2 2)T
» Tote, VI(xy)= (4, 20)T

- EmAeyovtag tuxata pia oteubuvon ekKivnong, €0t tThv
80:(1/2, \/3/2)T ou exel | |sq | [=1, Haipvco 0Tl }‘O: -2.4150635

+ Aev etvar Oetiko!!! yiati n sy 6ev etvar 61euBuvon peiwong

o ' 2
* O Hessian eivar: 5

ok x| 0792468250
X1=X0 TAS0™-= | _0.09150634

ZE’ B

D .
- Tlapaodevypa

B 11 xhion e50 eivan VE(x,)= (1.5849365, -0.9150634)T

Beloupe TwpPaA Va UIIOAOYLoOUE TNV eIIopevn oteubuvon
eAaX10TOIIOLN 0N C 1€ TETOLOV TPOIIO WOTE Va elval ouluyng
®g TIPOg TNV S, oe oxeon pe tov Hessian H xau va etvau
povadiaia, 6ndadn va toxvouv: s';Hsy=0 kat sT;s,=1
Eav cupBoAiooupe s;= (s!{,sly) mporUmTEl AIIO TG
IIponyouvpeveg e€1000ELE OTL:

V3

(512 + (s3)° =1

ATIIO T1¢ OUO AUOE1C TOU OUOTHATOE AUTOU, eILAEyoUule
eKelv1 Iou Olvel Oteubuvon pelnong, 6nAadn va oxuvet:

s, Vf(x;) <0

D
[Tapaoevypa

Avutn etvar n s;= (-0.99339927, 0.11470787)T

Aut) elval) emopevn oteubuvon, Kal elval povaolato Kat

ouduyn Tng mIponyovpevng, Kata pnkog tne omnotlag Ha
KivnOoupe pe Brpa A,

Ao tov tuto tng Avapaverag-14, exm ot A;=0.79773385

[Taptnpnote otL To A, elval Oetiko onwg Oa empere agou
Kivoupaote og oteubuvon peloong

H emopevn mpoogyylon eival: X, = x; +A;8;=... = (0 0)T
AuTo etval to BeAtioto kal BpeOnke oe 2 Bpata (etvau
TETAY®VLIKI] 1] AVTIKELIEVIKI) OUVAPTIO1] e 01a0Taon 2)

ﬁ;'g,%
ﬂ - Me0oool culuynv KAloewV

=4 IIpotaBnke apxika amo toug Hestenes & Stiefel (1952) kat
Beckman (1960)

* I'voototepn napaddayn avtn twv Fletcher-Reeves (1964)

* ITlapayel oto Brjpa k tnv 6revBuvon s, n omoia eivatl ypappikog
ouvouaopog tng -Vi(x,) onAadn tng 6tevbuvong tng peylotng
aAAay1g OtV TPEXOUOA IIPOOEYYLON, KAl TOV IIPOIYOUUEVOV
olteulBuvoewv sy, Sy, -+., Si.q

* Ov ouvteleoteg TOU YPAPPLKOU OUVOUAOHOU EIILAEYOVTAL WOTE Ol
rapayopeveg 01eubuvoelg ao mpooeyylon oe ImIPooeyylon va eivat
ouluyelg we mpog tov Hesslan mivaxa Tng avilkKeIevVIKIG
OUVAPTNONG

« TEAIKA mpoxuIrtel 0Tl yla va UIIOAOYLOOUE AUTOUC TOUG
ouvteleoteg Xperadopaote 1ovo TNV tpexovoa kAion VI(x,) kat tnv
arplBwg mponyoupevn VI(xy ;)

Fletcher-Reeves conjugate gradient

Fletcher-Reeves conjugate gradient

ﬁ;'g,%
ﬂ - TTapaAdayeg peBodwv cu{uyemv KAloewV

%Ko}xouﬁoﬁv TOV IIPONYOoUEVo aAdyoplOpo, adlda ora@epouv
OTOV TUMO UMOAOYLO0U TOU Gy,

» MeBo6o¢ tou Daniel (1967)

VT 0xk) VS Ok
si_1V2f(Xk)Sk—-1

» MeBooo¢ tov Crowder & Wolfe (1971)

VEfF(xe) (VI (k) = VF(xk-1))
sp_1(Vf(xk) = Vf(xx-1))

» Me0Oooog tav Polak & Ribiere (1969), Polyak (1969)

VI f(xi)(Vf(xk) = Vf(xp-1))
IV f(xk—1)]||?

Wl —

WE =

WE =

3
& Drawbacks of basic Conjugate Gradient

&7 This conjugate gradient algorithm cannot be applied
directly to the neural network training task, because the
performance index 1s not quadratic. This affects the
algorithm 1n two ways:

* First, we can not minimize the function along a line, as required
in Step 2
* Second, the exact minimum will not normally be reached in a

finite number of steps, and therefore the algorithm will need to be
reset after some set number of iterations

!;'3,%

. Interval location

&7 Let’s address the linear search first

We need to have a general procedure for locating the
minimum of a function in a specified direction

This will involve two steps:
- 1nterval location
« 1nterval reduction

The purpose of the interval location step 1s to find some
imitial interval that contains a local minimum

The interval reduction step then reduces the size of the
imitial interval until the minimum 1s located to the
desired accuracy

ﬁ - Interval location

&7 We will use a function comparison method to perform the

interval location step, 1llustrated in the following figure

* We begin by evaluating the
performance index at an initial
point, represented by a,. This
point corresponds to the
current values of the network
welghts and biases. In other
words, we are evaluating F(x,)

A F(x)

- The next step 1s to evaluate
the function at a second point,

represented by b,, which is a ay— b,

distance ¢ from the 1nitial as b,

point, along the first search ay by
direction p,. In other words, as b

we are evaluating F(x,+ep,)

« This process stops when the function increases between two consecutive
evaluations. The minimum is bracketed by the two points a; and b;. The
minimum may occur either in the interval [ags,bs] or in the interval [a,,b,].

&)

. Interval reduction

&7 The next step 1s interval reduction, which involves
evaluating the function at points inside the interval [az,b;]

* From the figure below we can see that we will need to evaluate the
function at two internal points (at least) in order to reduce the size

of the interval of uncertainty
The let figure shows that one internal function evaluation does not provide us

with any information on the location of the minimum

However, if we evaluate the function at two points c and d, as in the right
figure, we can reduce the interval of uncertainty

A F(v) A F(x)
> If F(c) > F(d), then the

minimum must occur
In the interval [c, b]

> If F(c) < F(d), then the
minimum must occur

In the interval [a, d] - p T « ¢ d_ b
1 + 1 :)

We are assuming that there is a single (a) Interval is not reduced. (b) Mimimum must occur
minimum located in the initial interval. between ¢ and b

ﬁ»« Interval reduction: Golden section search

. We need to
determine the

locations of points c
and d

* We will use Golden
Section search,
which 1s designed to
reduce the number
of function
evaluations required

« At each iteration
one new function

evaluation 1s
required

T 1S user-set tolerance

T = 0.618
Set ¢y =ay+(l-1)(by—ay), F. = F(c,).

di =b,—(1-t)b,-a)), F; = F(d,).
For k = 1,2, ... repeat

If F.< F,; then

Set g1 = Ags by = dis dyy = ¢
Cro1 = Ay (=01 = ap i)
F,=F.; F. = F(c;,)
else
Set Ags1 = ks bpyr = b5 ¢y = 4y
dryr = by = =0)(Dp g — gy y)
F.=F;; F; = F(d,,)
end

enduntil b, ., —a,,, <tol

& Final adjustments to develop the CGBP

&7 There is one more modification to the conjugate gradient
algorithm that needs to be made before we apply it to
neural network training

* For quadratic functions the algorithm will converge to the
minimum in at most n 1iterations, where n 1s the number
of parameters being optimized

* The mean squared error performance index for multilayer
networks 1s not quadratic, therefore the algorithm would
not normally converge 1n n 1terations

* The development of the conjugate gradient algorithm does
not indicate what search direction to use once a cycle of n
1terations has been completed

* There have been many procedures suggested, but the simplest method is
to reset the search direction to the steepest descent direction (negative of
the gradient) after n iterations

!%3
ﬁ Critique of CGBP

« CGBP algorithm converges in many fewer iterations than
other algorithms

* This 1s a little deceiving, since each iteration of CGBP
requires more computations than these other methods

- there are many function evaluations involved in each iteration of

CGBP

* Even so, CGBP has been shown to be one of the
fastest batch training algorithms for multilayer

networks

* C. Charalambous, “Conjugate gradient algorithm for efficient
training of artificial neural networks,” IEE Proceedings, vol.
139, no. 3, pp. 301-310, 1992

Numerical optimization
techniques applied to
Backpropagation:
Levenberg-Marquardt
algorithm

31

!;'3%
& Levenberg-Marquardt basic algorithm

&7 The Levenberg-Marquardt algorithm 1s a variation of
Newton’s method that was designed for minimizing
functions that are sums of squares of other nonlinear
functions

* This 1s very well suited to neural network training (recall
that their performance index is the mean squared error)

* Newton’s method for optimizing a performance index F(x)
: . —
1s as follows: X1 = Xk — Ak oL

where A‘Izl — V2F(X)’X:Xk;

and gL = VF(X)’X = X}

o)
.

&7 If we assume that F(x) 1s a sum of squares function
N

F(x) = ’Uf(x) =V

Levenberg-Marquardt basic algorithm

H(x)v(x)

then the j-th element f he gradlent would be
(%Z

F(x)]; = =2 u(
[v () J axj Z Vg (9333
* The gradient can therefore be ertten 1n matrix form

VF(x) = 2J7 (x)v(x)

where the Jacobian matrix 1s:

- Ov; () ovq () Ovq () 7]
ox ox T Ox
8’02 X) 8’1)2 X.) 8’02 (Lx)
Bz Bz c e Dz
J(X) _ T1 To T
vy (x) v (x) ovpn (x)
_ Oxq O0xo T 0x, _

)
& - Levenberg-Marquardt basic algorithm

&7 Next we wish to find Hessian matrix. The k,J element
would be:

[VQF(X)] k. = axkawj — 9 Z { ag;k 6‘0@() 4 ’Ui(X) g;:a(j;) }

1=1 g
* The Hessian can be expressed in matrix form:

V?F(x):QJT()J (x)+28(x)
where Z x) V20, (x

1=1

» If we assume that S(x) is small, the we can approximate

V2F(x) = 2J* (x)J (x)

Y
ﬁ - Levenberg-Marquardt basic algorithm

&2 So, the Newton method evolves into the Gauss-Newton
method:

Xk+1 — Xk — [QJT(Xk)J(Xk) _12JT(Xk)V(Xk)
Xk+1 = Xk — [JT(XR)J(Xk) _IJT(Xk)V(Xk)

* One problem with the Gauss-Newton method 1s that the
matrix H=J%J may not be invertible

* This can be overcome by using the following modification
to the approximate Hessian matrix: G=H+ul

* (Figure out why this matrix can be made invertible)

!;'3%
& Levenberg-Marquardt basic algorithm

&7 This lead to the Levenberg-Marquardt algorithm:
Xpr1 = Xg — (I ()T (xx) + T 71T (1) v ()

cor Axy = — I (xp) I (x1) + pad] I (x5) vi(xg)

* The algorithm begins with 1, set to some small value (e.g., 0.01)

« If a step does not yield a smaller value for F(x), then the step 1s repeated with
1, multiplied by some factor 6>1 (e.g., 6=10)

- Eventually F(x) should decrease, since we would be taking a small step in the
direction of steepest descent

- If a step does produce a smaller value for F(x), then p, 1s divided by 0 for the
next step, so that the algorithm will approach Gauss-Newton, which should
provide faster convergence

* The algorithm provides a nice compromise between the speed of Newton’s
method and the guaranteed convergence of steepest descent

& Training with Levenberg-Marquardt

&7 The performance index for multilayer network training is
the mean squared error

* If each target occurs with equal probability, the mean
squared error 1s proportional to the sum of squared errors
over the @ targets in the training set:

Q N

Q Q sV
F(x) = Z(tq = aq)T(tq —a,) = Zegeq = ZZ(ej,q)2 = Z(Ué)2

g=1 g=1 j=1 i=1

* This 1s equivalent to the performance index for which
Levenberg-Marquardt was designed

* It should be a straightforward matter to adapt the
algorithm for network training, but it turns out that it
does require some care 1in working out the details

3
& Training with Levenberg-Marquardt

=4 The key step 1n the Levenberg-Marquardt algorithm 1s the
computation of the Jacobian matrix

* To perform this computation we will use a variation of the
backpropagation algorithm

* To create the Jacobian matrix we need to compute the
derivatives of the errors, instead of the derivatives of the
squared errors (as we did for the standard backpropagation)

- .-“E..
o 2
v

Jacobian calculation

&Y Recall Jacobian’s form from (slide 33)

* Error vector: vl =[vvg...on] =

[61’16271 ...€gM 161 Foomo eSM,Q]

[1 1

* Parameter vector: x" = [z122...2,] = [w] w1, ..

N=Q x SM and n=S!}(R+1)+S2(S* + 1)+...+SM(SM-1 + 1)

1 1
‘wsl,Rb bslwll b]

861,1
1
8w1’1

882,1

861,1
1
8w1’2

862,1

861’1
b1
862,1

Bb!

8€SM’1

b1
86172
obT

b

ﬂ - Jacobian calculation

£ The terms in this Jacobian matrix can be computed by a
simple modification to the backpropagation algorithm

- Standard backpropagation calculates terms like:
OF(x) Oeje,

833‘1 - 83’51
* For the elements of the Jacobian matrix that are needed
for the Levenberg-Marquardt algorithm we need to

calculate terms like:

J]

c%h 86k,q
h,l — & —
al’l 8:1:1

* In our derivation of standard backpropagation:
OF OF On’ OF

L m
m m m () m
awi’j on 8wi’j on;

where s

b
& Marquardt sensitivity

v The backpropagation process computed the sensitivities through a
recurrence relationship from the last layer backward to the first layer

* We can use the same concept to compute the terms needed
for the Jacobian matrix if we define Marquardt sensitivity:

§,m . a’Uh . 86 k.q
= —
“ oni" onl
where h=(q-1)SM + k ’ ’
* We can compute the elements of the Jacobian
ovy, dey, oey, on;" . on;" - _
J = — = q — k| t9q — m X tq — m X m 1
. Or; Ow; oOnf, Ow %6,k ow™ b i
* or if x; 1s a bias
dup, degq Oeyq 8”% ~m 8”% ~m
J]n, = o = An ’ - ’

T Bz b onm B v ” gpm T ik

t,q

!;'3,%
& Marquardt sensitivity

g Marquardt sensitivities can be computed through the same recurrence
relations as the standard sensitivities with one modification at the final
layer

* For the Marquardt sensitivities at the final layer we have:

M vy, ek q Oftr,g — ai‘f’q) B _a@%q _ {f,M(nM) for 1 =k

» 1,9
S. p— p— b—
,h M M M M -
on’ 8ni7q (%,i,q 8ni,q 0 for i #£ k

* Therefore when the input p, has been applied to the
network and the corresponding network an output has
been computed, the Levenberg-Marquardt backpropagation
1s 1nitialized with: _ .

Sé\/f —_FM (néw)
where FM(nM)is define as in standard backpropagation

* The columns can also be backpropagated together using

oam ' miom m+I\T am-+1
S = F'™(n)(WmHHTs?

& Marquardt sensitivity

=7 The total Marquardt sensitivity matrices for each layer are
then created by augmenting the matrices computed for
each 1nput:

§m — [émégw..wég}

* Note that for each input that is presented to the network
we will backpropagate SM sensitivity vectors

« This 1s because we are computing the derivatives of each individual
error, rather than the derivative of the sum of squares of the errors.

» For every input applied to the network there will be S
errors (one for each element of the network output)

* For each error there will be one row of the Jacobian matrix

- After the sensitivities have been backpropagated, the
Jacobilan matrix is computed using equation of slide 41

2
& Levenberg-Marquardt backpropagation
g
1. Present all inputs to the network and compute the
corresponding outputs and the errors e =t -aM . Compute

the sum of squared errors over all inputs, F(x) (slide 37)

2. Compute the Jacobian matrix. Calculate the sensitivities
with the recurrence relations (equations in slide 42).
Augment the individual matrices into the Marquardt
sensitivities. Compute the elements of the Jacobian
matrix with equations in slide 41

3. Solve equation in slide 36 to obtain Ax,

4. Recompute the sum of squared errors using x,+Ax,. If this
new sum of squares is smaller than that computed in
Step-1, then divide p by 0, let x,.,=x;,+Ax, and go back to
Step-1. If the sum of squares is not reduced, then multiply
11 by 0 and go back to Step-3

ﬁ Critique of LM BP

. Even given the large number of computations, however, the
LMBP algorithm appears to be the fastest neural network
training algorithm for moderate numbers of network
parameters

- M. T. Hagan and M. Menhaj, “Training feedforward networks with

the Marquardt algorithm,” IEEE Transactions on Neural
Networks, vol. 5, no. 6, 1994.

* The key drawback of the LMBP algorithm is the storage
requirement: The algorithm must store the approximate
Hessian matrix JTeJ

* This 1s an nxn matrix, where n is the number of parameters (weights and
biases)

* Recall that the other methods discussed need only store the gradient,
which 1s an n-dimensional vector

* When the number of parameters is very large, it may be impractical to
use the Levenberg-Marquardt algorithm

Recent approaches:
First-order and second-
order optimizers

46

First-order optimizers

47

!;'3,%

ZE“ N

Adagrad (oLt 2010 & JMLR 2011)

gt = OwF'(as, f(pt, W))

St

|
w
L.

|
o

Wi — W1

The operations are applied coordinate wise

€ 1s an additive constant that ensures that we do not divide by 0

Accumulating squared gradients in s, means that s, grows essentially
at linear rate (somewhat slower than linearly in practice, since the
gradients initially diminish). This leads to O(1/+/t) learning rate,
albeit adjusted on a per coordinate basis. For convex problems this is
perfectly adequate

In deep learning, though, we might want to decrease the learning
rate rather more slowly. This led to a number of Adagrad variants

b

ﬂ - Adagrad (oLt 2010 & JMLR 2011)

g’ Adagrad relies on only first order information, but has some
properties of second order methods

While there is the hand tuned global learning rate, each dimension has its own
dynamic rate. Since this dynamic rate grows with the inverse of the gradient
magnitudes, large gradients have smaller learning rates and small gradients have
large learning rates

This has the nice property, as in second order methods, that the progress along each
dimension evens out over time. This is very beneficial for training deep neural networks
since the scale of the gradients in each layer is often different by several orders of
magnitude, so the optimal learning rate should take that into account. Additionally, this
accumulation of gradient in the denominator has the same effects as annealing, reducing
the learning rate over time

Since the magnitudes of gradients are factored out in ADAGRAD, this method can
be sensitive to initial conditions of the parameters and the corresponding
gradients

If the initial gradients are large, the learning rates will be low for the remainder of
training. This can be combatted by increasing the global learning rate, making the
ADAGRAD method sensitive to the choice of learning rate. Also, due to the continual
accumulation of squared gradients in the denominator, the learning rate will continue to
decrease throughout training, eventually decreasing to zero and stopping training
completely. ADADELTA was created to overcome the sensitivity to the hyperparameter
selection as well as to avoid the continual decay of the learning rates

RMSPTOP (Lecture 6.5 — Coursera: NN and ML 2012)

v' One of the key 1ssues in Adagrad is that the learning rate decreases

at a predefined schedule of effectively O(1/+/t). While this is
generally appropriate for convex problems, it might not be ideal for
nonconvex ones, such as those encountered in deep learning. Yet, the
coordinate-wise adaptivity of Adagrad is highly desirable as a
preconditioner

We need to decouple rate scheduling from coordinate-adaptive
learning rates. The issue is that Adagrad accumulates the squares of
the gradient g, into a state vector s, = s, ;+g%. As a result s, keeps on
growing without bound due to the lack of normalization, essentially
linearly as the algorithm converges

One way of fixing this problem would be to use s,/t. For reasonable
distributions of g, this will converge. Unfortunately it might take a
very long time until the limit behavior starts to matter since the
procedure remembers the full trajectory of values. An alternative is
to use a leaky average in the same way we used in the momentum
method, i.e., s, <y s,;+ (1-y) g? for some parameter y>0

RMSPTOp (Lecture 6.5 — Coursera: NN and ML 2012)

vsi—1 + (1 —7)g;
Q

\/St—I—G

0!
~
|

E
|

Wi 1 gt

The constant € > 0 is typically set to 10-° to ensure that we do not
suffer from division by zero or overly large step sizes

Q,ﬁ)

ii e |

Adadelta (arxiv.org 2012)

v’ Adadelta 1s a variant of AdaGrad. The main difference lies in the fact

that it decreases the amount by which the learning rate is adaptive
to coordinates. Moreover, traditionally it referred to as not having a

learning rate since it uses the amount of change itself as calibration
for future change

Adadelta uses two state variables, s, to store a leaky average of the
second moment of the gradient and Aw, to store a leaky average of
the second moment of the change of parameters in the model itself

¢ = ysi-1 + (1 —7)g;

Wy

AWt

Wi_1 — g’t, rescaled gradient: g’t —

9
=vAw;_1 + (1 —v)g’;

ﬁiﬁb

Adam acir 2015)

9‘ Adaptive Moment Estimation (Adam) uses exponential weighted

moving averages (also known as leaky averaging) to obtain an
estimate of both the momentum and also the second moment of the
gradient. That is, i1t uses the state variables

vi = Bivi1 + (1 — B1)g:
St = 528;5_1 + (1 — /82)g1?

Here £, and [, are nonnegative weighting parameters. Common
choices for them are £,=0.9 and £, =0.999. That is, the variance
estimate moves much more slowly than the momentum term. Note
that if we initialize v, = s, = 0 we have a significant amount of bias
initially towards Smaller values. This can be addressed by using the

fact that Yf_, B = B

normalized state variables are given by:

. Correspondingly the

b

2 -
-

4

Adam acir 2015)

We can now write out the update equations. First, we rescale the
gradient in a manner very much akin to that of RMSProp to obtain:

/
8+~ =
\V St + €
Unlike RMSProp the update uses the momentum 7; rather than the
gradient itself. Moreover, there is a slight cosmetic difference as the

rescaling happens using 1/ (\/STt +€) instead of 1/,/S; +€. The former
works arguably slightly better in practice, hence the deviation from
RMSProp. Typically we pick e=106 for a good trade-off between
numerical stability and fidelity

Now we have all the pieces in place to compute updates. That is:

W; =W o’
Reviewing the design of Adam its inspiration is clear. Momentum and scale are clearly visible in
the state variables. Their rather peculiar definition forces us to debias terms (this could be fixed by
a slightly different initialization and update condition). Second, the combination of both terms is

pretty straightforward, given RMSProp. Last, the explicit learning rate a allows us to control he
step length to address issues of convergence

Second-order optimizers

55

- .-“E..
o 2

Introduction

v’ Choosing the right hyper-parameter for optimizing a NN training
has become dark-art

« Even the choice of the optimizer is a hyper-parameter

Task (A NLP Recommendation
System
Optimizer choice SGD AdamW Adagrad

* First order methods only use gradient information and do not
consider the curvature properties of the loss landscape, thereby
leading to their suboptimal behaviour

* Second order methods, on the other hand, are specifically designed to
capture and exploit the curvature of the loss landscape and to
incorporate both gradient and Hessian information

Introduction

The main idea underlying second order methods involves
preconditioning the gradient vector before using it for weight update.
The preconditioner automatically rotates and rescales the gradient
vector. This has a very intuitive motivation related to the curvature of
the loss function landscape

For a general problem, different parameter dimensions exhibit
different curvature properties

For example, the loss could be very flat in one dimension and very sharp in another.
As a result, the step size taken by the optimizer should be different for these
dimensions, and we would prefer to take bigger steps for the flatter directions and
relatively smaller steps for the sharper directions
Second order methods capture this curvature difference, by
normalizing different dimensions through rotation and scaling of the
gradient vector before the weight update. Nonetheless, this comes at a
cost

Despite the theoretically faster convergence rate of second order
methods, they are rarely used for training NN models. This is due in
part to their high computational cost

Introduction

1000 -

—1000 A

Loss Landscape

Output: ¢ ,
Layer N 7 _
: ==
, e
/
Layer N-1 |+
\
.'|L £
\
\
Layer 2 3\
'1
Layerl '
\

Input: =

& Quasi-Newton methods: BFGS

v° The Broyden—-Fletcher-Goldfarb—-Shanno (BFGS)
algorithm attempts to bring some of the advantages of
Newton’s method without the computational burden. In that
respect, BFGS 1s similar to the conjugate gradient method

However, BFGS takes a more direct approach to the
approximation of Newton’s update. Recall that Newton’s
update 1s given by:

W' =W, - H'VyFW)
The primary computational difficulty in applying Newton’s
update i1s the calculation of the inverse Hessian H™!. The
approach adopted by quasi-Newton methods (of which the
BFGS algorithm is the most prominent) is to approximate the

inverse with a matrix M, that is iteratively refined by low rank
updates to become a better approximation of H™!

Quasi-Newton methods: BFGS

Once the inverse Hessian approximation M, is updated, the direction
of descent p, is determined by p, = M,g,. A line search is performed in
this direction to determine the size of the step ¢ taken in this
direction. The final update to the parameters is given by:

+ W(k+1) = W(K) + p,e’
Like the method of conjugate gradients, the BFGS algorithm iterates
a series of line searches with the direction incorporating second-order
information. However unlike conjugate gradients, the success of the

approach 1s not heavily dependent on the line search finding a point
very close to the true minimum along the line

Thus, relative to conjugate gradients, BFGS has the advantage that
1t can spend less time refining each line search. On the other hand,
the BFGS algorithm must store the inverse Hessian matrix, M, that
requires O(n%) memory, making BFGS impractical for most modern
deep learning models that typically have millions of parameters

See however the Limited memory BFGS (L-BFGS)

!;'3,%

. &

&E. ‘w -

Quasi-Newton methods: L-BFGS

L-BFGS method has a desirable linear computational and memory
complexity

It approximates the Hessian as a series sum of first order
information from prior iterations

These approaches do not directly use the Hessian operator

While this approach works well for many optimization problems, it
does not work well for many machine learning problems

One reason for this is that L-BFGS method requires full batch gradients, as
stochastic gradients can lead to drastic errors in the approximation

This 1s one of the main challenges with Quasi-Newton methods applied to
machine learning problems
One of the reasons that second order methods have not been
successful yet for ML, as opposed to other domains such as scientific
computing, is due to the stochastic nature of the problem

Such stochastic noise leads to an erroneous approximation of the
Hessian, leading to suboptimal descent directions

Quasi-Newton methods critique

SGD 1s more robust to such noise since we can efficiently
Incorporate moving averages and momentum

Ideally, if there was a way to apply the same moving
average method to the Hessian, then that would help
smooth out local curvature noise to get a better
approximation to the non-noisy curvature of the loss
landscape

However, such an approximation i1s challenging since the
Hessian 1s a matrix that cannot be explicitly formed to be
averaged, whereas 1t 1s easy to form the gradient vector

But ...

~E~
I IR

& - AdaHessian aaa1 2021 summary

meneric update formula for the first-order methods, where 7, is the learning
rate, m, and v, denote the first and second moment terms, and g, is the gradient
of a mini-batch at t-th iteration: r

Or11 =0 ——

Ut
Optimizer m, v,
SGD with momentum Blmt—l + (1 — ﬁl)gt 1
t
Adagrad g > g
i+1
t — —;
Adam (0= 51) Yy 1 (1-5) Y0, B 'sie:
1—f 1—-755
RMSProp g, \/52%2_1 + (1 - B2)gis
t t—1 —ir (s s
AdaHessian 1—F1) Z@:tl i 8 (1— 52)22:1 3 Dz()Dg)
1 -5y 1— 5%

& AdaHess1an aaa1 2021

&7 Problems that exhibit this behaviour (1.e., curvature 1s
generally different across different directions/layers) are
1ll-conditioned

* The role of the Hessian is to automatically normalize this
111-conditionedness by stretching and contracting different
directions to accommodate for the curvature differences
(full Newton method also rotates the gradient vector
along with adjusting the step size)

* There are two major problems with this approach:

* The first problem is that a naive use of the Hessian preconditioner
comes at the prohibitively high cost of applying Hessian inverse to
the gradient vector at every iteration (H* g term)

* The second and more challenging problem is that local Hessian
(curvature) information can be very misleading for a noisy loss
landscape

ﬁ - AdaHessian @aai1 2021

" A simple example is illustrated below, where we plot a simple
parabola with a small sinusoidal noise as the loss landscape (shown
in green). As one can see, the local Hessian (curvature) information is
completely misleading, as it computes the curvature of the sinusoidal
noise instead of global Hessian information for the parabola

Without Second Order Momentum
8 1 mmtem YWith Second Order Momentum

&

- AdaHessian: Diagonal approximation

The most simple and computationally efficient approach is to
approximate the Hessian as a diagonal operator:

Aw =diag(H)1g=D g

The Hessian diagonal D can be efficiently computed using the
Hutchinson’s method

Another important advantage, besides computational
efficiency, of using the Hessian diagonal is that we can
compute its moving average to resolve the local noisy Hessian
as mentioned earlier

This allows us to smooth out noisy local curvature information,
and to obtain estimates that use global Hessian information
instead

We incorporate both spatial averaging and momentum
(temporal averaging) to smooth out this noisy Hessian estimate
as described next

!;'3,%

2.‘..\
([]

- AdaHessian: Spatial averaging

The Hessian diagonal can vary significantly for each single
parameter dimension of the problem

- It was found helpful to perform spatial averaging of Hessian

diagonal and use the average to smooth out spatial variations

* We can perform a simple spatial averaging on the Hessian

diagonal as follows:

S D[ib+ k]
b Y

where D® is the spatially averaged Hessian diagonal, D[i]

(D®1]) refers to the 1-th element of D (D®), b is the spatially

average block size, and d is the number of model parameters
divisible by b

D) [ib + j] =

forlgjgbgg—l

b
m - AdaHessian: Momentum

We can easily apply momentum to Hessian diagonal since it 1s
a vector instead of a quadratically large matrix

- If \bar{D}, is the Hessian diagonal with momentum, then:

B, /0 =f)5 8D, D"
1}

where 0<b2<1 1s the second momentum hyperparameter

This 1s exactly the same as the momentum in Adam or
RMSProp except that we are using the spatial averaging
Hessian diagonal instead of the gradient

& AdaHessian: Momentum example

* To 1llustrate the importance of Hessian momentum, we
provide a simple example in 1D (as shown 1n an earlier
slide) by considering:

f(x) = x2+ 0.1 sin(20 T x)

* The method without the second order momentum gets
trapped at a local minima even with more than 1000
1terations (orange trajectory)

* On the contrary, the optimization converges within 7
iterations with Hessian momentum (blue trajectory)

b
m - AdaHessian algorithm

=4 Require: Initial parameter: 6,
* Require: Learning rate: n
- Require: Exponential decay rates: 5, £,

Require: Block size: b

Require: Hessian Power: £ (=1)
Set: my=0, v,=0
for 1=1,2,,... do [[Training iterations

g, = current step gradient

D, = current step estimated diagonal Hessian

Compute D®),

Update \bar{D},

Update m,, v, //See equations in the AdaHessian summary slide
6,=06,,—n mJu,

