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Διάλεξη 09η Συμπληρωματική: Critique of activation functions



A critique of some very 
popular activation functions



Sigmoid
A smooth, S-shaped curve maps the input to a value [0…1]
 Properties

 Output Range: The output of the sigmoid function is bounded between 0 and 1. When the input 
is large and positive, the output approaches 1. Similarly, when the input is large and negative, 
the output approaches 0

 Non-linearity: The sigmoid function introduces non-linearity to the network’s decision-making 
process. This non-linear property allows neural networks to model complex relationships 
between inputs and outputs

 Smoothness: The sigmoid function is a smooth and differentiable function which facilitates 
efficient gradient-based optimization algorithms during the training of neural networks.

 Limitations
 Vanishing Gradients: The gradients of the sigmoid function become very small for large input 

values, leading to the problem of vanishing gradients. This can hinder the learning process, 
especially in deep neural networks

 Output Saturation: The sigmoid function saturates at the extremes (0 and 1), meaning that 
when the input is very positive or negative, the output becomes close to 0 or 1, respectively. This 
saturation can slow down learning as the network becomes less sensitive to changes in the input.

 Comments. Due to these limitations, alternative activation functions like 
ReLU, Leaky ReLU, and variants have gained popularity, especially in deep 
learning architectures. However, the sigmoid function still finds applications in 
specific scenarios, such as the output layer of binary classification models



ReLU (1/2)
The Rectified Linear Unit (ReLU) is a widely used activation 
function particularly for deep learning models. It is known for 
its simplicity and effectiveness in overcoming the limitations 
of other activation functions like the sigmoid and tanh
functions
 Properties

 Non-linearity: Like other activation functions, ReLU introduces non-linearity to the network, 
enabling it to learn and model complex relationships in the data. It allows neural networks to 
approximate any non-linear function.

 Sparsity: ReLU encourages sparsity in neural networks. Since it outputs 0 for negative inputs, 
ReLU neurons can be completely inactive for specific inputs. This sparsity can lead to more 
efficient and concise representations of the data.

 Avoiding Vanishing Gradient: ReLU helps alleviate the vanishing gradient problem 
encountered in deep neural networks. The derivative of ReLU is either 0 or 1, which prevents the 
gradients from vanishing as the network gets deeper. This property facilitates more effective 
backpropagation and faster training

 Computational Efficiency: The ReLU function is computationally efficient to evaluate 
compared to more complex tasks like the sigmoid and tanh. It involves simple thresholding and 
avoids costly exponential calculations.



ReLU (2/2)

 Limitations
 Dead Neurons: ReLU neurons can sometimes become “dead” or non-responsive, 

where the neuron’s output is always 0 for any input. Once a neuron dies, it no longer 
contributes to the learning process. This issue can be addressed using variants of 
ReLU, such as Leaky ReLU or Parametric ReLU (PReLU).

 Output Saturation: ReLU saturates at the upper bound, outputting the input 
value for any positive input. This saturation can cause the neuron to lose sensitivity 
to large positive values, limiting its ability to learn further from those inputs

 Comments. Due to its simplicity and effectiveness, ReLU is widely used in 
deep learning architectures, particularly in convolutional neural networks 
(CNNs). It has performed excellently in various computer vision and natural 
language processing tasks.



tanh (1/2)
It is similar to the sigmoid function but is centered around 
zero and ranges between -1 and 1.
 Properties

 Non-linearity: Like other activation functions, tanh introduces non-linearity to the 
network, enabling it to learn and model complex relationships in the data. It allows 
neural networks to approximate any non-linear function.

 Symmetry: The tanh function is symmetric around the origin (0, 0). It produces 
negative outputs for negative inputs and positive outputs for positive inputs, 
resulting in a smooth S-shaped curve.

 Output Range: The output of the tanh function is bounded between -1 and 1. When 
the input is large and positive, the output approaches 1. Similarly, when the input is 
large and negative, the output approaches -1.

 Zero-Centred: Unlike the sigmoid function, which is centred around 0.5, the tanh
function is centred around zero. This can be advantageous in some cases, such as 
when the input data is zero-centred or when the model benefits from negative and 
positive activations.



tanh (2/2)

 Limitations
 The tanh function shares some similarities with the sigmoid function, but it has a 

steeper gradient, which makes it more sensitive to changes in the input. 
 However, like the sigmoid function, it can still suffer from the vanishing gradient 

problem for very large/small input values.
 Comments. The tanh function is used in various neural network 

architectures, particularly in recurrent neural networks (RNNs) and long 
short-term memory (LSTM) networks, where its zero-centred property and 
non-linear characteristics can be beneficial. However, in recent years, the 
popularity of the ReLU and its variants has increased, mainly due to their 
simplicity and better performance in deep learning models.



softmax (1/2)
The softmax function is an activation function commonly 
used in the output layer of a neural network for multi-class 
classification problems. It takes a vector of real numbers as 
input and normalizes it into a probability distribution, where 
the sum of the probabilities equals 1
 Properties

 Probability Distribution: The softmax function transforms the input values into a 
probability distribution, where each value represents the probability of the 
corresponding class. The output values are positive and sum up to 1, making it 
suitable for multi-class classification problems.

 Sensitivity to Input Differences: The softmax function amplifies the differences 
between the input values, which means that larger input values will correspond to 
higher probabilities. This property allows the neural network to make more 
confident predictions for higher-score classes.

 Differentiability: The softmax function is differentiable, which is crucial for 
backpropagation and gradient-based optimization algorithms used during the 
training process of neural networks.



softmax (2/2)

 Limitations
 It is important to note that the softmax function is sensitive to outliers and large 

input values, which can lead to numerical instability. This issue can be mitigated by 
subtracting the maximum input value from each input vector element, known as 
“logit shifting” or “logit scaling,” before applying the softmax function. This helps 
prevent numerical overflow or underflow.

 Comments. The softmax function is typically used in the final layer of a 
neural network for multi-class classification tasks, where the goal is to assign 
an input to one of several possible classes. The class with the highest 
probability outputted by the softmax function is usually considered the 
predicted class. Overall, the softmax function is a fundamental tool in multi-
class classification tasks, enabling the neural network to provide a 
probabilistic interpretation of its predictions.



LReLU (1/2)
The Leaky ReLU is a variant of the ReLU activation function 
that addresses the “dead ReLU” problem. The Leaky ReLU
introduces a small slope for negative inputs, allowing the 
neurons to have a non-zero output even when the input is 
negative. This helps mitigate the “dead” or non-responsive 
neurons in regular ReLU. 
Parameter a is a small positive constant (usually a small 
fraction like 0.01). If x is positive, the function behaves like a 
regular ReLU, outputting x . However, if x is negative, the 
function returns ax instead of 0.



LReLU (2/2)
 Properties

 Non-linearity: Similar to ReLU, the Leaky ReLU introduces non-linearity to the 
network, enabling it to learn and model complex relationships in the data.

 Avoiding Dead Neurons: Introducing a non-zero slope for negative inputs helps 
mitigate the problem of dead or non-responsive neurons encountered in regular 
ReLU. With a small positive slope, even neurons that receive negative inputs can 
still contribute to the learning process.

 Continuous and Piecewise Linear: The Leaky ReLU function is continuous and 
piecewise linear, meaning it has a defined derivative for all values. This property 
facilitates backpropagation and efficient gradient-based optimization algorithms 
during the training process.

 Comments. The choice between ReLU and Leaky ReLU depends on the 
problem and the characteristics of the data. Leaky ReLU is often preferred 
over regular ReLU when the risk of dead neurons is high or when having a 
more diverse range of activations is desirable by allowing negative values. 
Other variants of ReLU, such as Parametric ReLU (PReLU) which generalizes 
the concept of Leaky ReLU by allowing the a parameter to be learned during 
the training process rather than being predefined. This enables the network to 
determine the slope based on the data adaptively. Leaky ReLU is a popular 
choice in neural networks, especially in scenarios where regular ReLU may 
lead to dead neurons or a broader range of activation values is desired.



PReLU (1/2)
Parametric ReLU (PReLU) is an activation function that 
extends the Rectified Linear Unit (ReLU) functionality by 
introducing a learnable parameter a. In PReLU, the slope a
for negative inputs is not fixed but is learned during the 
training process.
 Properties

 Non-linearity: Similar to ReLU and Leaky ReLU, PReLU introduces non-linearity 
to the network, enabling it to model complex relationships in the data.

 Adaptive Slope: The main advantage of PReLU over Leaky ReLU is its ability to 
learn the optimal slope for each neuron. This adaptability can improve the flexibility 
and expressiveness of the network.

 Mitigating Dead Neurons: By allowing negative values to pass through with an 
adaptive slope, PReLU helps prevent the issue of dead or non-responsive neurons 
encountered in regular ReLU.



PReLU (2/2)

 Comments. The choice between ReLU, Leaky ReLU, and PReLU depends on 
the specific problem and the characteristics of the data. PReLU is often used 
when there is a concern about dead neurons or when it is desirable to have a 
learnable slope that can better capture the nuances of the data. It’s worth 
noting that PReLU introduces additional parameters to be learned, which 
increases the model’s complexity and computational requirements. 
Consequently, PReLU might be more suitable for larger datasets and more 
complex models. PReLU has been successfully applied in various deep learning 
architectures, including convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs), and has demonstrated improved performance in 
specific scenarios compared to other activation functions.



ELU (1/2)
The Exponential Linear Unit (ELU) aims to overcome some of 
the limitations of the ReLU, such as the dying ReLU problem 
and the saturation of negative values. ELU introduces a 
differentiable function that smoothly saturates negative 
inputs and gives negative values a non-zero output. a  0
 Properties

 Non-linearity: Like other activation functions, ELU introduces non-linearity to the 
network, enabling it to model complex relationships in the data.

 Smooth Saturation: The ELU function smoothly saturates negative inputs, 
avoiding the abrupt saturation of ReLU. This helps to alleviate the issue of dead or 
non-responsive neurons encountered in ReLU.

 Continuity and Differentiability: ELU is a continuous and differentiable 
function, allowing for efficient backpropagation and gradient-based optimization 
algorithms during training.

 Negative Output: ELU allows negative values to have a non-zero output, which 
can be helpful in cases where capturing negative activations is essential for the task.

 Exponential Decay: The negative values in the ELU function decay exponentially 
as x approaches negative infinity, providing a more robust and well-behaved 
response to extreme negative inputs.



ELU (2/2)

 Comments. It’s important to note that ELU introduces additional 
computational complexity compared to ReLU and other more straightforward 
activation functions due to the exponential function. However, the improved 
performance and mitigated limitations make it a popular choice, especially in 
deep learning architectures. ELU has been used in various applications and 
has shown promising results in reducing overfitting, improving learning 
efficiency, and achieving better generalization compared to ReLU, particularly 
in deep neural networks. When choosing an activation function, it is vital to 
consider the specific problem and the characteristics of the data and 
experiment with different options to find the most suitable activation function 
for optimal performance.



GELU (1/2)
The Gaussian Error Linear Unit (GELU) is an activation 
function that aims to combine the desirable properties of the 
Gaussian distribution and the rectifier function. It provides a 
smooth approximation to the rectifier while preserving the 
desirable properties of both functions.
 Properties

 Non-linearity: GELU introduces non-linearity to the network, allowing it to model 
complex relationships in the data.

 Smoothness: GELU is a smooth function that transitions from negative to positive 
inputs. It is differentiable everywhere, facilitating backpropagation and gradient-
based optimization.

 Gaussian Approximation: GELU approximates a Gaussian cumulative 
distribution function (CDF). This approximation allows GELU to exhibit similar 
behaviour to the rectifier function while providing smoother gradients.

 Saturation: GELU saturates at the upper and lower bounds, preventing significant 
activations. This can be beneficial for the stability and convergence of neural 
networks.



GELU (2/2)

 Comments. GELU has gained popularity in deep learning models, 
particularly in natural language processing tasks and transformer 
architectures. It has shown improved convergence speed and generalization 
performance compared to other activation functions, such as ReLU. However, 
it is worth noting that GELU introduces additional computational complexity 
due to trigonometric and exponential operations. Therefore, it might have a 
slight impact on the overall computational efficiency of the model. When 
choosing an activation function, it is essential to consider the specific 
requirements of the problem and experiment with different options to find the 
most suitable activation function for optimal performance.



Pure linear (1/2)
The Linear activation function, also known as the identity 
function, is one of the simplest activation functions used in 
neural networks. It applies a linear transformation to the 
input, meaning the output equals the input without any non-
linear mapping.
 Properties

 Linearity: As the name suggests, the Linear activation function introduces 
linearity to the network. It performs a simple scaling of the input without 
introducing any non-linear transformations.

 No Activation: Unlike other activation functions that introduce non-linearities to 
capture complex relationships, the Linear activation function does not alter the 
input values. It is essentially a pass-through function.

 Limited Representation Power: Since the Linear activation function does not 
introduce non-linearity, it has limited representation power. Neural networks with 
only linear activation functions can only learn linear relationships between the input 
and output.

 Gradient Stability: The gradient of the Linear activation function is constant and 
does not depend on the input. This can be advantageous in some cases, as it ensures 
stable gradients during backpropagation.



Pure linear (2/2)

 Comments. The Linear activation function is often used in the output layer of 
regression problems, where the goal is to predict continuous values. It allows 
the neural network to directly output values without any transformation. 
However, non-linear activation functions are typically used for most other 
tasks, such as classification or complex pattern recognition. Non-linear 
activation functions enable neural networks to learn and represent more 
complex relationships in the data. It’s important to note that even though 
individual layers of a neural network may use linear activation functions, 
stacking multiple linear layers does not increase the model’s representative 
capacity beyond that of a single linear layer. To model complex relationships, 
non-linear activation functions are essential in intermediate layers of the 
network.


