
Νευρο-Ασαφής Υπολογιστική
Neuro-Fuzzy Computing

Διδάσκων –
Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ
Πανεπιστήμιο Θεσσαλίας

Διάλεξη 09η Συμπληρωματική: Critique of activation functions

A critique of some very
popular activation functions

Sigmoid
A smooth, S-shaped curve maps the input to a value [0…1]
 Properties

 Output Range: The output of the sigmoid function is bounded between 0 and 1. When the input
is large and positive, the output approaches 1. Similarly, when the input is large and negative,
the output approaches 0

 Non-linearity: The sigmoid function introduces non-linearity to the network’s decision-making
process. This non-linear property allows neural networks to model complex relationships
between inputs and outputs

 Smoothness: The sigmoid function is a smooth and differentiable function which facilitates
efficient gradient-based optimization algorithms during the training of neural networks.

 Limitations
 Vanishing Gradients: The gradients of the sigmoid function become very small for large input

values, leading to the problem of vanishing gradients. This can hinder the learning process,
especially in deep neural networks

 Output Saturation: The sigmoid function saturates at the extremes (0 and 1), meaning that
when the input is very positive or negative, the output becomes close to 0 or 1, respectively. This
saturation can slow down learning as the network becomes less sensitive to changes in the input.

 Comments. Due to these limitations, alternative activation functions like
ReLU, Leaky ReLU, and variants have gained popularity, especially in deep
learning architectures. However, the sigmoid function still finds applications in
specific scenarios, such as the output layer of binary classification models

ReLU (1/2)
The Rectified Linear Unit (ReLU) is a widely used activation
function particularly for deep learning models. It is known for
its simplicity and effectiveness in overcoming the limitations
of other activation functions like the sigmoid and tanh
functions
 Properties

 Non-linearity: Like other activation functions, ReLU introduces non-linearity to the network,
enabling it to learn and model complex relationships in the data. It allows neural networks to
approximate any non-linear function.

 Sparsity: ReLU encourages sparsity in neural networks. Since it outputs 0 for negative inputs,
ReLU neurons can be completely inactive for specific inputs. This sparsity can lead to more
efficient and concise representations of the data.

 Avoiding Vanishing Gradient: ReLU helps alleviate the vanishing gradient problem
encountered in deep neural networks. The derivative of ReLU is either 0 or 1, which prevents the
gradients from vanishing as the network gets deeper. This property facilitates more effective
backpropagation and faster training

 Computational Efficiency: The ReLU function is computationally efficient to evaluate
compared to more complex tasks like the sigmoid and tanh. It involves simple thresholding and
avoids costly exponential calculations.

ReLU (2/2)

 Limitations
 Dead Neurons: ReLU neurons can sometimes become “dead” or non-responsive,

where the neuron’s output is always 0 for any input. Once a neuron dies, it no longer
contributes to the learning process. This issue can be addressed using variants of
ReLU, such as Leaky ReLU or Parametric ReLU (PReLU).

 Output Saturation: ReLU saturates at the upper bound, outputting the input
value for any positive input. This saturation can cause the neuron to lose sensitivity
to large positive values, limiting its ability to learn further from those inputs

 Comments. Due to its simplicity and effectiveness, ReLU is widely used in
deep learning architectures, particularly in convolutional neural networks
(CNNs). It has performed excellently in various computer vision and natural
language processing tasks.

tanh (1/2)
It is similar to the sigmoid function but is centered around
zero and ranges between -1 and 1.
 Properties

 Non-linearity: Like other activation functions, tanh introduces non-linearity to the
network, enabling it to learn and model complex relationships in the data. It allows
neural networks to approximate any non-linear function.

 Symmetry: The tanh function is symmetric around the origin (0, 0). It produces
negative outputs for negative inputs and positive outputs for positive inputs,
resulting in a smooth S-shaped curve.

 Output Range: The output of the tanh function is bounded between -1 and 1. When
the input is large and positive, the output approaches 1. Similarly, when the input is
large and negative, the output approaches -1.

 Zero-Centred: Unlike the sigmoid function, which is centred around 0.5, the tanh
function is centred around zero. This can be advantageous in some cases, such as
when the input data is zero-centred or when the model benefits from negative and
positive activations.

tanh (2/2)

 Limitations
 The tanh function shares some similarities with the sigmoid function, but it has a

steeper gradient, which makes it more sensitive to changes in the input.
 However, like the sigmoid function, it can still suffer from the vanishing gradient

problem for very large/small input values.
 Comments. The tanh function is used in various neural network

architectures, particularly in recurrent neural networks (RNNs) and long
short-term memory (LSTM) networks, where its zero-centred property and
non-linear characteristics can be beneficial. However, in recent years, the
popularity of the ReLU and its variants has increased, mainly due to their
simplicity and better performance in deep learning models.

softmax (1/2)
The softmax function is an activation function commonly
used in the output layer of a neural network for multi-class
classification problems. It takes a vector of real numbers as
input and normalizes it into a probability distribution, where
the sum of the probabilities equals 1
 Properties

 Probability Distribution: The softmax function transforms the input values into a
probability distribution, where each value represents the probability of the
corresponding class. The output values are positive and sum up to 1, making it
suitable for multi-class classification problems.

 Sensitivity to Input Differences: The softmax function amplifies the differences
between the input values, which means that larger input values will correspond to
higher probabilities. This property allows the neural network to make more
confident predictions for higher-score classes.

 Differentiability: The softmax function is differentiable, which is crucial for
backpropagation and gradient-based optimization algorithms used during the
training process of neural networks.

softmax (2/2)

 Limitations
 It is important to note that the softmax function is sensitive to outliers and large

input values, which can lead to numerical instability. This issue can be mitigated by
subtracting the maximum input value from each input vector element, known as
“logit shifting” or “logit scaling,” before applying the softmax function. This helps
prevent numerical overflow or underflow.

 Comments. The softmax function is typically used in the final layer of a
neural network for multi-class classification tasks, where the goal is to assign
an input to one of several possible classes. The class with the highest
probability outputted by the softmax function is usually considered the
predicted class. Overall, the softmax function is a fundamental tool in multi-
class classification tasks, enabling the neural network to provide a
probabilistic interpretation of its predictions.

LReLU (1/2)
The Leaky ReLU is a variant of the ReLU activation function
that addresses the “dead ReLU” problem. The Leaky ReLU
introduces a small slope for negative inputs, allowing the
neurons to have a non-zero output even when the input is
negative. This helps mitigate the “dead” or non-responsive
neurons in regular ReLU.
Parameter a is a small positive constant (usually a small
fraction like 0.01). If x is positive, the function behaves like a
regular ReLU, outputting x . However, if x is negative, the
function returns ax instead of 0.

LReLU (2/2)
 Properties

 Non-linearity: Similar to ReLU, the Leaky ReLU introduces non-linearity to the
network, enabling it to learn and model complex relationships in the data.

 Avoiding Dead Neurons: Introducing a non-zero slope for negative inputs helps
mitigate the problem of dead or non-responsive neurons encountered in regular
ReLU. With a small positive slope, even neurons that receive negative inputs can
still contribute to the learning process.

 Continuous and Piecewise Linear: The Leaky ReLU function is continuous and
piecewise linear, meaning it has a defined derivative for all values. This property
facilitates backpropagation and efficient gradient-based optimization algorithms
during the training process.

 Comments. The choice between ReLU and Leaky ReLU depends on the
problem and the characteristics of the data. Leaky ReLU is often preferred
over regular ReLU when the risk of dead neurons is high or when having a
more diverse range of activations is desirable by allowing negative values.
Other variants of ReLU, such as Parametric ReLU (PReLU) which generalizes
the concept of Leaky ReLU by allowing the a parameter to be learned during
the training process rather than being predefined. This enables the network to
determine the slope based on the data adaptively. Leaky ReLU is a popular
choice in neural networks, especially in scenarios where regular ReLU may
lead to dead neurons or a broader range of activation values is desired.

PReLU (1/2)
Parametric ReLU (PReLU) is an activation function that
extends the Rectified Linear Unit (ReLU) functionality by
introducing a learnable parameter a. In PReLU, the slope a
for negative inputs is not fixed but is learned during the
training process.
 Properties

 Non-linearity: Similar to ReLU and Leaky ReLU, PReLU introduces non-linearity
to the network, enabling it to model complex relationships in the data.

 Adaptive Slope: The main advantage of PReLU over Leaky ReLU is its ability to
learn the optimal slope for each neuron. This adaptability can improve the flexibility
and expressiveness of the network.

 Mitigating Dead Neurons: By allowing negative values to pass through with an
adaptive slope, PReLU helps prevent the issue of dead or non-responsive neurons
encountered in regular ReLU.

PReLU (2/2)

 Comments. The choice between ReLU, Leaky ReLU, and PReLU depends on
the specific problem and the characteristics of the data. PReLU is often used
when there is a concern about dead neurons or when it is desirable to have a
learnable slope that can better capture the nuances of the data. It’s worth
noting that PReLU introduces additional parameters to be learned, which
increases the model’s complexity and computational requirements.
Consequently, PReLU might be more suitable for larger datasets and more
complex models. PReLU has been successfully applied in various deep learning
architectures, including convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), and has demonstrated improved performance in
specific scenarios compared to other activation functions.

ELU (1/2)
The Exponential Linear Unit (ELU) aims to overcome some of
the limitations of the ReLU, such as the dying ReLU problem
and the saturation of negative values. ELU introduces a
differentiable function that smoothly saturates negative
inputs and gives negative values a non-zero output. a 0
 Properties

 Non-linearity: Like other activation functions, ELU introduces non-linearity to the
network, enabling it to model complex relationships in the data.

 Smooth Saturation: The ELU function smoothly saturates negative inputs,
avoiding the abrupt saturation of ReLU. This helps to alleviate the issue of dead or
non-responsive neurons encountered in ReLU.

 Continuity and Differentiability: ELU is a continuous and differentiable
function, allowing for efficient backpropagation and gradient-based optimization
algorithms during training.

 Negative Output: ELU allows negative values to have a non-zero output, which
can be helpful in cases where capturing negative activations is essential for the task.

 Exponential Decay: The negative values in the ELU function decay exponentially
as x approaches negative infinity, providing a more robust and well-behaved
response to extreme negative inputs.

ELU (2/2)

 Comments. It’s important to note that ELU introduces additional
computational complexity compared to ReLU and other more straightforward
activation functions due to the exponential function. However, the improved
performance and mitigated limitations make it a popular choice, especially in
deep learning architectures. ELU has been used in various applications and
has shown promising results in reducing overfitting, improving learning
efficiency, and achieving better generalization compared to ReLU, particularly
in deep neural networks. When choosing an activation function, it is vital to
consider the specific problem and the characteristics of the data and
experiment with different options to find the most suitable activation function
for optimal performance.

GELU (1/2)
The Gaussian Error Linear Unit (GELU) is an activation
function that aims to combine the desirable properties of the
Gaussian distribution and the rectifier function. It provides a
smooth approximation to the rectifier while preserving the
desirable properties of both functions.
 Properties

 Non-linearity: GELU introduces non-linearity to the network, allowing it to model
complex relationships in the data.

 Smoothness: GELU is a smooth function that transitions from negative to positive
inputs. It is differentiable everywhere, facilitating backpropagation and gradient-
based optimization.

 Gaussian Approximation: GELU approximates a Gaussian cumulative
distribution function (CDF). This approximation allows GELU to exhibit similar
behaviour to the rectifier function while providing smoother gradients.

 Saturation: GELU saturates at the upper and lower bounds, preventing significant
activations. This can be beneficial for the stability and convergence of neural
networks.

GELU (2/2)

 Comments. GELU has gained popularity in deep learning models,
particularly in natural language processing tasks and transformer
architectures. It has shown improved convergence speed and generalization
performance compared to other activation functions, such as ReLU. However,
it is worth noting that GELU introduces additional computational complexity
due to trigonometric and exponential operations. Therefore, it might have a
slight impact on the overall computational efficiency of the model. When
choosing an activation function, it is essential to consider the specific
requirements of the problem and experiment with different options to find the
most suitable activation function for optimal performance.

Pure linear (1/2)
The Linear activation function, also known as the identity
function, is one of the simplest activation functions used in
neural networks. It applies a linear transformation to the
input, meaning the output equals the input without any non-
linear mapping.
 Properties

 Linearity: As the name suggests, the Linear activation function introduces
linearity to the network. It performs a simple scaling of the input without
introducing any non-linear transformations.

 No Activation: Unlike other activation functions that introduce non-linearities to
capture complex relationships, the Linear activation function does not alter the
input values. It is essentially a pass-through function.

 Limited Representation Power: Since the Linear activation function does not
introduce non-linearity, it has limited representation power. Neural networks with
only linear activation functions can only learn linear relationships between the input
and output.

 Gradient Stability: The gradient of the Linear activation function is constant and
does not depend on the input. This can be advantageous in some cases, as it ensures
stable gradients during backpropagation.

Pure linear (2/2)

 Comments. The Linear activation function is often used in the output layer of
regression problems, where the goal is to predict continuous values. It allows
the neural network to directly output values without any transformation.
However, non-linear activation functions are typically used for most other
tasks, such as classification or complex pattern recognition. Non-linear
activation functions enable neural networks to learn and represent more
complex relationships in the data. It’s important to note that even though
individual layers of a neural network may use linear activation functions,
stacking multiple linear layers does not increase the model’s representative
capacity beyond that of a single linear layer. To model complex relationships,
non-linear activation functions are essential in intermediate layers of the
network.

