
1

Νεςπο-Ασαυήρ Υπολογιστική

Neuro-Fuzzy Computing

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 9η

2

Batch training in

Backpropagation

Batch training in BP

• What we have described in previous lectures is the online

or incremental training, in which the network weights

and biases are updated after each input is presented

• It is also possible to perform batch training, in which the

complete gradient is computed (after all inputs are

applied to the network) before the weights and biases are

updated

• For example, if each input occurs with equal probability,

the mean square error performance index can be written

• The total gradient of this performance index is

Batch training in BP

• Therefore, the total gradient of the mean square error is the

mean of the gradients of the individual squared errors

• So, in order to implement a batch version of the

backpropagation algorithm,

• we would step through all equations mentioned in slide-27 of

lecture-06 for all of the inputs in the training set

• the individual gradients would be averaged to get the total

gradient

• the update equations for the batch steepest descent algorithm

would then be

5

Drawbacks of

Backpropagation

Drawbacks of BP

• In this lecture we will refer to the basic backpropagation algorithm as

steepest descent backpropagation (SDBP)

• Recall that the LMS algorithm is guaranteed to converge to a solution

that minimizes the mean squared error, so long as the learning rate

is not too large

• This is true because the mean squared error for a single-layer linear network is a

quadratic function. The quadratic function has only a single stationary point.

• SDBP is a generalization of the LMS algorithm. Like LMS, it is also

an approximate steepest descent algorithm for minimizing the mean

squared error

• SDBP is equivalent to the LMS algorithm when used on a single-layer linear

network (proved during a class lecture)

• When applied to multilayer networks, the characteristics of SDBP are

different

• This has to do with the differences between the mean squared error performance

surfaces of single-layer linear networks and multilayer nonlinear networks

• While the performance surface for a single-layer linear network has a single minimum

point and constant curvature, the performance surface for a multilayer network may have

many local minimum points and the curvature can vary widely in different regions

Performance surface example

• To investigate the mean squared error performance surface

for multilayer networks we will employ a simple function

approximation example

• We will use the 1-2-1 network shown below with log-sigmoid

transfer functions in both layers

Performance surface example

• In order to simplify our analysis, we will give the network a

problem for which we know the optimal solution. The function

we will approximate is the response of the same 1-2-1

network, with the following values for the weights and biases:

• The network response for these parameters is shown below,

which plots the network output a2 as the input p is varied

over the range [-2, 2]

Performance surface example

• We want to train our network to approximate the function

displayed in the previous slide figure

• The approximation will be exact when the network

parameters are set to the values given earlier, i.e.,

• This is a very contrived problem, but it illustrates some

important concepts

• Let’s consider the performance index for our problem. We

assume that the function is sampled at the equiprobable

values: p = –2, –1.9, –1.8, …1.9, 2

• The performance index will be the sum of the squared errors

at these 41 points

Performance surface example

• We will vary only two parameters at a time (to be able to draw)

• The figure illustrates the squared error when only w1
1,1 and

w2
1,1 are being adjusted, while the other parameters are set to

their optimal values (from previous slide). Note that the minimum

error will be zero, and it will occur when w1
1,1=10 and w2

1,1=1,

as indicated by the open blue circle in the figure

Performance surface example

• There are several features to notice about this error

surface

• A first feature of this error surface is that is clearly not a

quadratic function. The curvature varies drastically over

the parameter space. For this reason it will be difficult to

choose an appropriate learning rate for the steepest

descent algorithm. In some regions the surface is very flat,

which would allow a large learning rate, while in

other regions the curvature is high, which would require a

small learning rate

• It should be noted that the flat regions of the performance

surface should not be unexpected, given the sigmoid transfer

functions used by the network

• The sigmoid is very flat for large inputs

Performance surface example

• Continued

• A second feature of this error surface is the existence of

more than one local minimum point

• The global minimum point is located at w1
1,1=10 and w2

1,1=1,

along the valley that runs parallel to the w1
1,1 axis

• There is also a local minimum, which is located in the valley

that runs parallel to the w2
1,1 axis. (This local minimum is

actually off the graph at w1
1,1=0.88 and w2

1,1=38.6)

Performance surface example

• This figure illustrates the squared error when w1
1,1 and b1

1 are

being adjusted (the other parameters are set to their optimal values)

• The minimum error will be zero, and it will occur when

w1
1,1=10 and b1

1 =-5 , as indicated by the open blue circle

Performance surface example

• We find that the surface has a very contorted shape, steep in

some regions and very flat in others.

• The standard steepest descent algorithm will have some

trouble with this surface

• For example, if we have an initial guess of w1
1,1=0 and b1

1 = -10, the

gradient will be very close to zero, and the steepest descent algorithm

would effectively stop, even though it is not close to a local minimum

point

Performance surface example

• This figure illustrates the squared error when b1
1 and b1

2 are

being adjusted (the other parameters are set to their optimal values)

• The minimum error is located at b1
1= -5 and b1

2 =5, as

indicated by the open blue circle

Performance surface example

• This surface illustrates an important property of multilayer

networks: they have a symmetry to them

• Here we see that there are two local minimum points and

they both have the same value of squared error.

• The second solution corresponds to the same network being

turned upside down (i.e., the top neuron in the first layer is

exchanged with the bottom neuron)

• It is because of this characteristic of neural networks

that we do not set the initial weights and biases to zero

• The symmetry causes zero to be a saddle point of the

performance surface

Take away lessons

How to set the initial guess for the SDBP algorithm:

1. We do not want to set the initial parameters to zero

• This is because the origin of the parameter space tends to be a

saddle point for the performance surface

2. We do not want to set the initial parameters to large

values

• This is because the performance surface tends to have very flat

regions as we move far away from the optimum point

• Typically we choose the initial weights and biases to be small

random values. In this way we stay away from a possible saddle

point at the origin without moving out to the very flat regions of

the performance surface

• As we will see in subsequent lectures, it is also useful to try

several different initial guesses, in order to be sure that the

algorithm converges to a global minimum point

Convergence example

We will now investigate the performance of SDBP. Suppose that only

w1
1,1 and w2

1,1 are being adjusted

For the initial condition labeled “a” the

algorithm does eventually converge to the

optimal solution, but the convergence is

slow

The reason for the slow convergence is the

change in curvature of the surface over the

path of the trajectory. After an initial

moderate slope, the trajectory passes over

a very flat surface, until it falls into a very

gently sloping valley

If we were to increase the learning rate,

the algorithm would converge faster while

passing over the initial flat surface, but

would become unstable when falling into

the valley, as we will see immediately

Convergence example

We will now investigate the performance of SDBP. Suppose that only

w1
1,1 and w2

1,1 are being adjusted

Trajectory “b” illustrates how the algorithm

can converge to a local minimum point. The

trajectory is trapped in a valley and diverges

from the optimal solution. If allowed to

continue the trajectory converges to

w1
1,1=0.88 and w2

1,1=38.6

The existence of multiple local minimum

points is typical of the performance surface

of multilayer networks. For this reason it is

best to try several different initial guesses in

order to ensure that a global minimum has

been obtained. (Some of the local minimum

points may have the same value of squared

error, so we would not expect the algorithm

to converge to the same parameter values

for each initial guess.)

Convergence example

The progress of the algorithm can also be seen below where it is shown

the squared error versus the iteration number. The curve on the left

corresponds to trajectory “a” and the curve on the right corresponds to trajectory “b.”

These curves are typical of SDBP, with long periods of little progress

and then short periods of rapid advance

• We can see that the flat sections correspond to times when the

algorithm is traversing a flat section of the performance surface

• During these periods we would like to increase the learning rate, in order to speed

up convergence.

• However, if we increase the learning rate the algorithm will become unstable

when it reaches steeper portions of the performance surface

Convergence example: lessons learned

• This effect is illustrated here [The trajectory shown here corresponds to

trajectory “a” except that a larger learning rate was used]

• The algorithm converges faster at first, but when the trajectory

reaches the narrow valley that contains the minimum point the

algorithm begins to diverge

• This suggests that it would be useful to vary the learning rate

• We could increase the learning rate on flat surfaces and then decrease the learning

rate as the slope increased

Convergence example: lessons learned

• Another way to improve convergence would be to smooth

out the trajectory

• Note in previous figure that when the algorithm begins

to diverge it is oscillating back and forth across a narrow

valley

• If we could filter the trajectory, by averaging the updates

to the parameters, this might smooth out the oscillations

and produce a stable trajectory

23

Heuristic modifications of

Backpropagation:

Momentum

The effect of low-pass filtering

• This is a modification based on our previous observation

that convergence might be improved if we could smooth

out the oscillations in the trajectory

• We can do this with a low-pass filter

• Before we apply momentum to a neural network

application, let’s investigate a simple example to

illustrate the smoothing effect. Consider the following

first-order filter:

y(k) = γy(k-1) + (1-γ) w(k)

 where w(k) is the input to the filter y(k) is the output of

 the filter, and γ is the momentum coefficient that must

 satisfy: 0 ≤ γ < 1

The effect of low-pass filtering

• The effect of this filter is shown below. [Τhe input to the filter was

taken to be the sine wave: w(k)= 1+sin(2πk/16)]

• Τhe oscillation of the output is less than the oscillation in the input

• Αs γ is increased, the oscillation in the filter output is reduced (but

output is slower to respond). The average filter output is the same as the

average filter input

Momentum Backpropagation (MOBP)

• Recall the parameter updates for SDBP:

• When the momentum filter is added to the parameter

changes, we obtain the following equations for the

momentum modification to backpropagation (MOBP):

Momentum Backpropagation (MOBP)

• If we now apply these equations to the example at the beginning of

this lecture, we obtain the results shown below

• This trajectory corresponds to the same initial condition and learning

rate as in figure of slide 21, but with a momentum coefficient of 0.8

• We can see that the algorithm is now stable. By the use of momentum

we have been able to use a larger learning rate, while maintaining

the stability of the algorithm

• Another feature of momentum is that it tends to accelerate

convergence when the trajectory is moving in a consistent direction

If you look carefully at the

trajectory, you can see why the

procedure is given the name

momentum.

It tends to make the trajectory

continue in the same direction.

The larger the value of γ, the more

“momentum” the trajectory has.

28

Heuristic modifications of

Backpropagation:

Nestorov’s Momentum

Nestorov’s Accelerated Gradient Descent

• First, we define the following sequences:

• Apparently γs0.

• The algorithm is defined by the following equations with

arbitrary initial point x1=y1:

30

Heuristic modifications of

Backpropagation:

Variable learning rate

Variable learning rate Backpropagation

• We suggested earlier that we might be able to speed up convergence

if we increase the learning rate on flat surfaces and then decrease

the learning rate when the slope increases

• Recall that the mean squared error performance surface for single-

layer linear networks is always a quadratic function, and the

Hessian matrix is therefore constant. The maximum stable learning

rate for the steepest descent algorithm is two divided by the

maximum eigenvalue of the Hessian matrix

• The error surface for the multilayer network is not a quadratic

function. The shape of the surface can be very different in different

regions of the parameter space

• Perhaps we can speed up convergence by adjusting the learning rate

during the course of training

• The trick will be to determine when to change the learning rate and

by how much

Variable learning rate Backpropagation

The rules of the variable learning rate backpropagation algorithm

(VLBP) are:

1. If the squared error (over the entire training set) increases by more

than some set percentage ζ (typically one to five percent) after a

weight update, then the weight update is discarded, the learning

rate is multiplied by some factor 0<ρ<1, and the momentum

coefficient γ (if it is used) is set to zero

2. If the squared error decreases after a weight update, then the weight

update is accepted and the learning rate is multiplied by some factor

η>1. If has been previously set to zero, it is reset to its original value

3. If the squared error increases by less than ζ, then the weight update

is accepted but the learning rate is unchanged. If γ has been

previously set to zero, it is reset to its original value

• There are different approaches for varying the learning rate. We will

describe a straightforward batching procedure

VLBP example

• We apply VLBP to the previous function approximation problem. The

figure below displays the trajectory for the algorithm using the same

initial guess, initial learning rate and momentum coefficient. The new

parameters were assigned the values

η = 1.05 ρ = 0.7 ζ = 4%

 Notice how the learning rate, and therefore the

step size, tends to increase when the trajectory is

traveling in a straight line with constantly

decreasing error

This effect can also be seen below, which shows

the squared error and the learning rate versus

iteration number

VLBP example

• When the trajectory reaches a narrow valley, the learning rate

is rapidly decreased

• Otherwise the trajectory would have become oscillatory, and the error

would have increased dramatically

• For each potential step where the error would have increased

by more than 4% the learning rate is reduced and the

momentum is eliminated, which allows the trajectory to make

the quick turn to follow the valley toward the minimum point

• The learning rate then increases again, which accelerates the

convergence

• The learning rate is reduced again when the trajectory

overshoots the minimum point when the algorithm has almost

converged

• This process is typical of a VLBP trajectory

Variations on VLBP

There are variations on this variable learning rate algorithm

• Jacobs proposed the delta-bar-delta learning rule according to

which:

• Each network parameter (weight or bias) has its own learning rate

• The algorithm increases the learning rate for a network parameter if the

parameter change has been in the same direction for several iterations

• If the direction of the parameter change alternates, then the learning rate

is reduced

• The SuperSAB algorithm of Tollenaere is similar to the delta-

bar-delta rule

• it has more complex rules for adjusting the learning rates

• Another heuristic modification to SDBP is the Quickprop

algorithm of Fahlman

• It assumes that the error surface is parabolic and concave upward around

the minimum point and that the effect of each weight can be considered

independently

Variations on VLBP: Bibliography

 R. A. Jacobs, “Increased rates of convergence through

learning rate adaptation,” Neural Networks, vol. 1, no. 4,

pp. 295–308, 1988.

 T. Tollenaere, “SuperSAB: Fast adaptive back propagation

with good scaling properties,” Neural Networks, vol. 3, no.

5, pp. 561–573, 1990.

 S. E. Fahlman, “Faster-learning variations on back-

propagation: An empirical study,” In D. Touretsky, G.

Hinton & T. Sejnowski, eds., Proceedings of the 1988

Connectionist Models Summer School, San Mateo, CA:

Morgan Kaufmann, pp. 38–51, 1988.

Drawbacks of heuristic modifications to

SDBP

• The heuristic modifications to SDBP can often provide much

faster convergence for some problems. However, there are two

main drawbacks to these methods:

• The first is that the modifications require that several

parameters be set (e.g., ζ, ρ, and γ), while the only parameter

required for SDBP is the learning rate. Some of the more

complex heuristic modifications can have five or six parameters

to be selected. Often the performance of the algorithm is

sensitive to changes in these parameters. The choice of

parameters is also problem dependent

• The second drawback to these modifications to SDBP is that

they can sometimes fail to converge on problems for which

SDBP will eventually find a solution

• Both of these drawbacks tend to occur more often when using

the more complex algorithms

