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Batch training in 

Backpropagation 



Batch training in BP 

• What we have described in previous lectures is the online 

or incremental training, in which the network weights 

and biases are updated after each input is presented  

• It is also possible to perform batch training, in which the 

complete gradient is computed (after all inputs are 

applied to the network) before the weights and biases are 

updated 

• For example, if each input occurs with equal probability, 

the mean square error performance index can be written 

 
 

• The total gradient of this performance index is 



Batch training in BP 

• Therefore, the total gradient of the mean square error is the 

mean of the gradients of the individual squared errors 

• So, in order to implement a batch version of the 

backpropagation algorithm,  

• we would step through all equations mentioned in slide-27 of 

lecture-06 for all of the inputs in the training set 

• the individual gradients would be averaged to get the total 

gradient 

• the update equations for the batch steepest descent algorithm 

would then be 
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Drawbacks of 

Backpropagation 



Drawbacks of BP 

• In this lecture we will refer to the basic backpropagation algorithm as 

steepest descent backpropagation (SDBP) 

• Recall that the LMS algorithm is guaranteed to converge to a solution 

that minimizes the mean squared error, so long as the learning rate 

is not too large 

• This is true because the mean squared error for a single-layer linear network is a 

quadratic function. The quadratic function has only a single stationary point. 

• SDBP is a generalization of the LMS algorithm. Like LMS, it is also 

an approximate steepest descent algorithm for minimizing the mean 

squared error 

• SDBP is equivalent to the LMS algorithm when used on a single-layer linear 

network (proved during a class lecture) 

• When applied to multilayer networks, the characteristics of SDBP are 

different 

• This has to do with the differences between the mean squared error performance 

surfaces of single-layer linear networks and multilayer nonlinear networks 

• While the performance surface for a single-layer linear network has a single minimum 

point and constant curvature, the performance surface for a multilayer network may have 

many local minimum points and the curvature can vary widely in different regions 

 



Performance surface example 

• To investigate the mean squared error performance surface 

for multilayer networks we will employ a simple function 

approximation example 

• We will use the 1-2-1 network shown below with log-sigmoid 

transfer functions in both layers 

 

 

 

 



Performance surface example 

• In order to simplify our analysis, we will give the network a 

problem for which we know the optimal solution. The function 

we will approximate is the response of the same 1-2-1 

network, with the following values for the weights and biases: 

 

 

• The network response for these parameters is shown below, 

which plots the network output a2  as the input p is varied 

over the range [-2, 2] 

 

 



Performance surface example 

• We want to train our network to approximate the function 

displayed in the previous slide figure 

• The approximation will be exact when the network 

parameters are set to the values given earlier, i.e., 

 

 

 

• This is a very contrived problem, but it illustrates  some 

important concepts 

• Let’s consider the performance index for our problem. We 

assume that the function is sampled at the equiprobable 

values:    p = –2, –1.9, –1.8, …1.9, 2 

• The performance index will be the sum of the squared errors 

at these 41 points 

 

 



Performance surface example 

• We will vary only two parameters at a time (to be able to draw) 

• The figure illustrates the squared error when only w1
1,1 and 

w2
1,1 are being adjusted, while the other parameters are set to 

their optimal values (from previous slide). Note that the minimum 

error will be zero, and it will occur when w1
1,1=10 and w2

1,1=1, 

as indicated by the open blue circle in the figure 

 

 

 

 



Performance surface example 

• There are several features to notice about this error 

surface 

• A first feature of this error surface is that is clearly not a 

quadratic function. The curvature varies drastically over 

the parameter space. For this reason it will be difficult to 

choose an appropriate learning rate for the steepest 

descent algorithm. In some regions the surface is very flat, 

which would allow a large learning rate, while in 

other regions the curvature is high, which would require a 

small learning rate 

 

• It should be noted that the flat regions of the performance 

surface should not be unexpected, given the sigmoid transfer 

functions used by the network 

• The sigmoid is very flat for large inputs 

 

 

 



Performance surface example 

• Continued 

• A second feature of this error surface is the existence of 

more than one local minimum point 

• The global minimum point is located at w1
1,1=10 and w2

1,1=1, 

along the valley that runs parallel to the w1
1,1 axis 

• There is also a local minimum, which is located in the valley 

that runs parallel to the w2
1,1 axis. (This local minimum is 

actually off the graph at w1
1,1=0.88 and w2

1,1=38.6) 

 

 



Performance surface example 

• This figure illustrates the squared error when w1
1,1 and b1

1 are 

being adjusted (the other parameters are set to their optimal values) 

• The minimum error will be zero, and it will occur when 

w1
1,1=10 and b1

1 =-5 , as indicated by the open blue circle 

 

 

 



Performance surface example 

• We find that the surface has a very contorted shape, steep in 

some regions and very flat in others.  

• The standard steepest descent algorithm will have some 

trouble with this surface 

• For example, if we have an initial guess of w1
1,1=0 and b1

1 = -10, the 

gradient will be very close to zero, and the steepest descent algorithm 

would effectively stop, even though it is not close to a local minimum 

point 

 



Performance surface example 

• This figure illustrates the squared error when b1
1 and b1

2 are 

being adjusted (the other parameters are set to their optimal values) 

• The minimum error is located at b1
1= -5 and b1

2 =5, as 

indicated by the open blue circle 

 

 



Performance surface example 

• This surface illustrates an important property of multilayer 

networks: they have a symmetry to them 

• Here we see that there are two local minimum points and 

they both have the same value of squared error.  

• The second solution corresponds to the same network being 

turned upside down (i.e., the top neuron in the first layer is 

exchanged with the bottom neuron) 

 

• It is because of this characteristic of neural networks 

that we do not set the initial weights and biases to zero 

• The symmetry causes zero to be a saddle point of the 

performance surface 



Take away lessons 

How to set the initial guess for the SDBP algorithm: 

1. We do not want to set the initial parameters to zero 

• This is because the origin of the parameter space tends to be a 

saddle point for the performance surface 

2. We do not want to set the initial parameters to large 

values 

• This is because the performance surface tends to have very flat 

regions as we move far away from the optimum point 

• Typically we choose the initial weights and biases to be small 

random values. In this way we stay away from a possible saddle 

point at the origin without moving out to the very flat regions of 

the performance surface 

• As we will see in subsequent lectures, it is also useful to try 

several different initial guesses, in order to be sure that the 

algorithm converges to a global minimum point 



Convergence example 

We will now investigate the performance of SDBP. Suppose that only 

w1
1,1 and w2

1,1 are being adjusted  

For the initial condition labeled “a” the 

algorithm does eventually converge to the 

optimal solution, but the convergence is 

slow 

The reason for the slow convergence is the 

change in curvature of the surface over the 

path of the trajectory. After an initial 

moderate slope, the trajectory passes over 

a very flat surface, until it falls into a very 

gently sloping valley 

If we were to increase the learning rate, 

the algorithm would converge faster while 

passing over the initial flat surface, but 

would become unstable when falling into 

the valley, as we will see immediately 



Convergence example 

We will now investigate the performance of SDBP. Suppose that only 

w1
1,1 and w2

1,1 are being adjusted 

Trajectory “b” illustrates how the algorithm 

can converge to a local minimum point. The 

trajectory is trapped in a valley and diverges 

from the optimal solution. If allowed to 

continue the trajectory converges to 

w1
1,1=0.88 and w2

1,1=38.6 

The existence of multiple local minimum 

points is typical of the performance surface 

of multilayer networks. For this reason it is 

best to try several different initial guesses in 

order to ensure that a global minimum has 

been obtained. (Some of the local minimum 

points may have the same value of squared 

error, so we would not expect the algorithm 

to converge to the same parameter values 

for each initial guess.) 



Convergence example 

The progress of the algorithm can also be seen below where it is shown 

the squared error versus the iteration number. The curve on the left 

corresponds to trajectory “a” and the curve on the right corresponds to trajectory “b.”  

These curves are typical of SDBP, with long periods of little progress 

and then short periods of rapid advance 

 

 

 

 

 

 

• We can see that the flat sections correspond to times when the 

algorithm is traversing a flat section of the performance surface 

• During these periods we would like to increase the learning rate, in order to speed 

up convergence.  

• However, if we increase the learning rate the algorithm will become unstable 

when it reaches steeper portions of the performance surface 

 



Convergence example: lessons learned 

• This effect is illustrated here [The trajectory shown here corresponds to 

trajectory “a” except that a larger learning rate was used] 

• The algorithm converges faster at first, but when the trajectory 

reaches the narrow valley that contains the minimum point the 

algorithm begins to diverge 

• This suggests that it would be useful to vary the learning rate 

• We could increase the learning rate on flat surfaces and then decrease the learning 

rate as the slope increased 

 

 

 



Convergence example: lessons learned 

• Another way to improve convergence would be to smooth 

out the trajectory 

• Note in previous figure that when the algorithm begins 

to diverge it is oscillating back and forth across a narrow 

valley 

• If we could filter the trajectory, by averaging the updates 

to the parameters, this might smooth out the oscillations 

and produce a stable trajectory 
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Heuristic modifications of 

Backpropagation: 

Momentum 



The effect of low-pass filtering 

• This is a modification based on our previous observation 

that convergence might be improved if we could smooth 

out the oscillations in the trajectory 

• We can do this with a low-pass filter 

• Before we apply momentum to a neural network 

application, let’s investigate a simple example to 

illustrate the smoothing effect. Consider the following 

first-order filter: 

y(k) = γy(k-1) + (1-γ) w(k) 

     where w(k) is the input to the filter y(k) is the output of   

     the filter, and γ is the momentum coefficient that must  

     satisfy: 0 ≤ γ < 1 

 



The effect of low-pass filtering 

• The effect of this filter is shown below. [Τhe input to the filter was 

taken to be the sine wave: w(k)= 1+sin(2πk/16) ] 

• Τhe oscillation of the output is less than the oscillation in the input  

• Αs γ is increased, the oscillation in the filter output is reduced (but 

output is slower to respond). The average filter output is the same as the 

average filter input 



Momentum Backpropagation (MOBP) 

• Recall the parameter updates for SDBP: 

 

 

 

 

• When the momentum filter is added to the parameter 

changes, we obtain the following equations for the 

momentum modification to backpropagation (MOBP): 



Momentum Backpropagation (MOBP) 

• If we now apply these equations to the example at the beginning of 

this lecture, we obtain the results shown below  

• This trajectory corresponds to the same initial condition and learning 

rate as in figure of slide 21, but with a momentum coefficient of 0.8 

 

 

 

 

 

 

 

• We can see that the algorithm is now stable. By the use of momentum 

we have been able to use a larger learning rate, while maintaining 

the stability of the algorithm 

• Another feature of momentum is that it tends to accelerate 

convergence when the trajectory is moving in a consistent direction 

If you look carefully at the 

trajectory, you can see why the 

procedure is given the name 

momentum.  

It tends to make the trajectory 

continue in the same direction. 

The larger the value of γ, the more 

“momentum” the trajectory has. 
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Heuristic modifications of 

Backpropagation: 

Nestorov’s Momentum 



Nestorov’s Accelerated Gradient Descent 

• First, we define the following sequences: 

 

 

 

 

 

• Apparently γs0.  

• The algorithm is defined by the following equations with 

arbitrary initial point x1=y1: 
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Heuristic modifications of 

Backpropagation: 

Variable learning rate 



Variable learning rate Backpropagation 

• We suggested earlier that we might be able to speed up convergence 

if we increase the learning rate on flat surfaces and then decrease 

the learning rate when the slope increases 

• Recall that the mean squared error performance surface for single-

layer linear networks is always a quadratic function, and the 

Hessian matrix is therefore constant. The maximum stable learning 

rate for the steepest descent algorithm is two divided by the 

maximum eigenvalue of the Hessian matrix 

• The error surface for the multilayer network is not a quadratic 

function. The shape of the surface can be very different in different 

regions of the parameter space 

• Perhaps we can speed up convergence by adjusting the learning rate 

during the course of training 

• The trick will be to determine when to change the learning rate and 

by how much 



Variable learning rate Backpropagation 

The rules of the variable learning rate backpropagation algorithm 

(VLBP) are: 

1. If the squared error (over the entire training set) increases by more 

than some set percentage ζ (typically one to five percent) after a 

weight update, then the weight update is discarded, the learning 

rate is multiplied by some factor 0<ρ<1, and the momentum 

coefficient γ (if it is used) is set to zero 

2. If the squared error decreases after a weight update, then the weight 

update is accepted and the learning rate is multiplied by some factor 

η>1. If has been previously set to zero, it is reset to its original value 

3. If the squared error increases by less than ζ, then the weight update 

is accepted but the learning rate is unchanged. If γ has been 

previously set to zero, it is reset to its original value 

• There are different approaches for varying the learning rate. We will 

describe a straightforward batching procedure 



VLBP example 

• We apply VLBP to the previous function approximation problem. The 

figure below displays the trajectory for the algorithm using the same 

initial guess, initial learning rate and momentum coefficient. The new 

parameters were assigned the values 

η = 1.05       ρ = 0.7       ζ = 4% 

 Notice how the learning rate, and therefore the 

step size, tends to increase when the trajectory is 

traveling in a straight line with constantly 

decreasing error 

This effect can also be seen below, which shows 

the squared error and the learning rate versus 

iteration number 



VLBP example 

• When the trajectory reaches a narrow valley, the learning rate 

is rapidly decreased 

• Otherwise the trajectory would have become oscillatory, and the error 

would have increased dramatically 

• For each potential step where the error would have increased 

by more than 4% the learning rate is reduced and the 

momentum is eliminated, which allows the trajectory to make 

the quick turn to follow the valley toward the minimum point 

• The learning rate then increases again, which accelerates the 

convergence 

• The learning rate is reduced again when the trajectory 

overshoots the minimum point when the algorithm has almost 

converged 

• This process is typical of a VLBP trajectory 



Variations on VLBP 

There are variations on this variable learning rate algorithm 

• Jacobs proposed the delta-bar-delta learning rule according to 

which: 

• Each network parameter (weight or bias) has its own learning rate 

• The algorithm increases the learning rate for a network parameter if the 

parameter change has been in the same direction for several iterations 

• If the direction of the parameter change alternates, then the learning rate 

is reduced 

• The SuperSAB algorithm of Tollenaere is similar to the delta-

bar-delta rule 

• it has more complex rules for adjusting the learning rates 

• Another heuristic modification to SDBP is the Quickprop 

algorithm of Fahlman 

• It assumes that the error surface is parabolic and concave upward around 

the minimum point and that the effect of each weight can be considered 

independently 
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Drawbacks of heuristic modifications to 

SDBP 

• The heuristic modifications to SDBP can often provide much 

faster convergence for some problems. However, there are two 

main drawbacks to these methods: 

• The first is that the modifications require that several 

parameters be set (e.g., ζ, ρ, and γ), while the only parameter 

required for SDBP is the learning rate. Some of the more 

complex heuristic modifications can have five or six parameters 

to be selected. Often the performance of the algorithm is 

sensitive to changes in these parameters. The choice of 

parameters is also problem dependent 

• The second drawback to these modifications to SDBP is that 

they can sometimes fail to converge on problems for which 

SDBP will eventually find a solution 

• Both of these drawbacks tend to occur more often when using 

the more complex algorithms 


