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Practice on multi-layer 

neural networks and 

backpropagation I 



Exercise-07 

Show that backpropagation reduces to the LMS algorithm for 

a single-layer linear network (ADALINE). 

SOLUTION 

The sensitivity calculation for a single-layer linear network: 

 

 

The weight update is: 

This is identical to the LMS algorithm. 



Exercise-08 

For the network shown below, the initial weights and biases 

are the following: 

 

An input/target pair is given: ( (p= -1),(t= 1) ) 

Learning rate:α=1. Perform one iteration of backpropagation 

 

 



Exercise-08 Solution 

The output of the first layer is then: 

 

The output of the second layer is then: 

 

The error is: 

 



Exercise-08 Solution 

We can now perform the backpropagation. The starting 

point is found at the second layer 

The first layer sensitivity is then computed by 

backpropagating the sensitivity from the second layer 

Finally, weight update takes place as follows: 



Exercise-09 

Apply (one step of) backpropagation in the following 1-2-1 

neural network in order to approximate the following 

function:  

 

 



Exercise-09 

Apparently we need several training points (input-target), 

but for our single step let us work with p=1 and initial 

weights and biases the following: 

 

Generally initial weights and biases are chosen to be small 

random values. We will explain why in subsequent lectures. 

 

Learning rate= α=0.1 



Exercise-09 Solution 

The output of the first layer is then: 

 

The output of the second layer is then: 

 

The error is: 

 



Exercise-09 Solution 

The next stage of the algorithm is to backpropagate the 

sensitivities. But before of that, we will need the derivatives 

of the transfer functions. 

For the first layer: 

 

For the second layer: 

 



Exercise-09 Solution 

We can now perform the backpropagation. The starting 

point is found at the second layer 

The first layer sensitivity is then computed by 

backpropagating the sensitivity from the second layer 



Exercise-09 Solution 

The final stage of the algorithm is to update the weights: 
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Some issues related to the 

practical implementation of 

backpropagation 



Choice of network architecture 

We want to approximate the following functions: 

 

 

where i takes on the values 1, 2, 4 and 8.  

As i is increased, the function becomes more complex, 

because we will have more periods of the sine wave over the 

interval. 

For this we will use a 1-3-1 network, where the transfer 

function for the first layer is log-sigmoid and the transfer 

function for the second layer is linear.  

Thus, this type of two-layer network can produce a response 

that is a sum of three log-sigmoid functions 



Choice of network architecture 

The response of the network after it has been trained to 

approximate g(p) for i=1,2,4,8. The final network responses 

are shown by the blue lines 

 
We can see that for i=4 the 1-3-1 

network reaches its maximum 

capability. 

When i>4 the network is not 

capable of producing an accurate 

approximation of g(p).  

In the bottom right graph of 

Figure, we can see how the 1-3-1 

network attempts to approximate 

g(p) for i=8. The mean square error 

between the network response and 

g(p) is minimized, but the network 

response is only able to match a 

small part of the function 



Choice of network architecture 

Now, we will approach the problem from a slightly different 

perspective: we will pick one function g(p) and then use 

larger and larger networks until we are able to accurately 

represent the function. For g(p) we will use 

 

 

To approximate this function we will use two-layer networks, 

where the transfer function for the first layer is log-sigmoid 

and the transfer function for the second layer is linear 

 

Again, the response of this network is a superposition of 

sigmoid functions. 



Choice of network architecture 

Here we see network response as the number of neurons in 

the first layer (hidden layer) is increased. Unless there are at 

least five neurons in the hidden layer the network cannot 

accurately represent g(p). 

 



Generalization 

In most cases the multilayer network is trained with a finite 

number of examples of proper network behavior. 

This training set is normally representative of a much larger 

class of possible input/output pairs. It is important that the 

network successfully generalize what it has learned to the 

total population. 

Suppose that the training set is obtained by sampling the 

following function: 

 

 

at the points p=-2, -1.6, -1.2,…,1.6, 2. (There are a total of 11 

input/target pairs.) 



Generalization 

We see the response of a 1-2-1 network that has been trained 

on this data. The black line represents g(p), the blue line 

represents the network response, and the „+‟ symbols 

indicate the training set. 

We can see that the network response is an accurate 

representation of g(p)  

If we were to find the response of 

the network at a value of p that was 

not contained in the training set 

(e.g., p=-0.2), the network would 

still produce an output close to g(p).  

 

This network generalizes well. 



Generalization 

Now consider this figure, which shows the response of a 1-9-1 

network that has been trained on the same data set.  

Note that the network response accurately models g(p) at all 

of the training points.  

However, if we compute the network 

response at a value of p not contained in 

the training set (e.g., p=-0.2) the 

network might produce an output far 

from the true response.  

This network does not generalize well. 

 
The 1-9-1 network has too much flexibility 

for this problem; it has a total of 28 

adjustable parameters (18 weights and 10 

biases), and yet there are only 11 data points 

in the training set. The 1-2-1 network has 

only 7 parameters. 



Generalization 

For a network to be able to generalize, it should have fewer 

parameters than there are data points in the training set.  

 

In neural networks, as in all modeling problems, we want to 

use the simplest network that can adequately represent the 

training set. Don‟t use a bigger network when a smaller 

network will work (a concept often referred to as Ockham‟s 

Razor). 

 

An alternative to using the simplest network is to stop the 

training before the network overfits (see subsequent lectures) 



Choice of hyperparameter 

Hyper-

parameter 

Increases 

capacity 

when … 

Reason Caveats 

Number of 

hidden 

units 

increased Increasing the number of 

hidden units increases the 

representational capacity 

of the model 

Increasing the 

number 

of hidden units 

increases 

both the time and 

memory 

cost of essentially 

every operation 

on the model 

Learning rate tuned 

optimally 

An improper learning rate, 

whether too high or too 

low, results in a model 

with low effective capacity 

due to optimization failure 



Choice of hyperparameter 

Hyper-

parameter 

Increases 

capacity 

when … 

Reason Caveats 

Convolution 

kernel 

width 

increased Increasing the 

kernel width 

increases the 

number of 

parameters 

in the model 

A wider kernel results in 

a narrower output 

dimension, 

reducing model capacity 

unless you use implicit 

zero padding to reduce 

this effect. Wider 

kernels require more 

memory 

for parameter storage 

and increase runtime, but 

a narrower output reduces 

memory cost 



Choice of hyperparameter 

Hyper-

parameter 

Increases 

capacity 

when … 

Reason Caveats 

Implicit zero 

padding 

increased Adding implicit zeros before 

convolution keeps the 

representation size large 

Increased time and 

memory 

cost of most 

operations 

Weight decay 

coefficient 

decreased Decreasing the weight decay 

coefficient frees the 

model parameters to become 

larger 

Dropout rate decreased Dropping units less often 

gives the units more 

opportunities 

to “conspire” with 

each other to fit the training 

set 


