
1

Νευρο-Ασαφής Υπολογιστική
Neuro-Fuzzy Computing

Διδάσκων –
Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ
Πανεπιστήμιο Θεσσαλίας

Διάλεξη 6η



2

Backpropagation



A bit of history
• The first description of an algorithm to train multilayer networks was 

contained in the thesis of Paul Werbos in 1974
• It was not until the mid 1980s that the backpropagation algorithm was 

rediscovered and widely publicized. It was rediscovered independently by 
• David Rumelhart, Geoffrey Hinton, Ronald Williams in 1986

• David Parker in 1985

• Yann Le Cun in 1985  (director of AI Research, Facebook) 

AI Research, Google
Resigned
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Turing Award (called the Nobel Prize of computing) 2018



Nobel Prize in Physics 2024

John J. Hopfield
Born: 15 July 1933, Chicago, IL, USA
Affiliation at the time of  the award: Princeton University, 
Princeton, NJ, USA 

https://www.nobelprize.org/prizes/physics/2024/summary/

“for foundational discoveries and inventions that enable 
machine learning with artificial neural networks”

Geoffrey E. Hinton
Born: 1947, London, UK. 
PhD 1978 from The University of  Edinburgh, UK. 
Affiliation at the time of  the award: Professor at 
University of  Toronto, Canada



Nobel Prize in Chemistry 2024

Demis Hassabis
Born: 27 July 1976, London, United Kingdom
Affiliation at the time of  the award: Google DeepMind, 
London, United Kingdom 

https://www.nobelprize.org/prizes/chemistry/2024/summary/

“one half  awarded to David Baker "for computational 
protein design", the other half  jointly to Demis Hassabis
and John M. Jumper "for protein structure prediction"”

John M. Jumper
Born: 1985, Little Rock, AR, USA
Affiliation at the time of  the award: Google DeepMind, 
London, United Kingdom 



Three layer network

• Recall from previous lecture a multilayer neural network
• To identify the structure of a multilayer network, we will use R-S1-S2-S3, 

where the number of inputs is followed by the number of neurons in each 
layer



The XOR example
• The input/target pairs for the XOR gate are:

• Because the two categories are not linearly separable, a 
single-layer perceptron cannot perform the classification

• A two-layer network can solve the XOR problem
• There are many different multilayer solutions. One solution is 

to use two neurons in the first layer to create two decision 
boundaries
• The first boundary separates p1 from the other patterns, and the second 

boundary separates p4



The XOR example
• Then the second layer is used to combine the two boundaries 

together using an AND operation

• The resulting 2-2-1 neural network is the following



The function approximation example
• In control systems, for example, the objective is to find an 

appropriate feedback function that maps from measured outputs to 
control inputs

• The following example illustrates the flexibility of the multilayer 
perceptron for implementing functions

• Consider the following two-layer 1-2-1 network
• The transfer function for the first layer is log-sigmoid
• the transfer function for the second layer is linear



The function approximation example
• Suppose that the nominal values of the weights and biases for 

this network are:

• The network response for these parameters is shown below, 
which plots the network output a2 as the input p is varied 
over the range [-2, 2]

• Notice that the response 
consists of two steps, one for 
each of the log-sigmoid 
neurons in the first layer. By 
adjusting the network 
parameters we can change 
the shape and location of 
each step



The function approximation example
• The centers of the steps occur where the net input to a neuron 

in the first layer is zero

• The steepness of each step can be adjusted by changing the 
network weights



The function approximation example
• See the effects of 

parameter changes on 
the network response

• The blue curve is the 
nominal response

• The other curves 
correspond to the 
network response 
when one parameter 
at a time is varied 
over the following 
ranges:



The function approximation example
• Plot (a) shows how the network biases in the first (hidden) layer can
• be used to locate the position of the steps
• Plot (b) illustrates how the weights determine the slope of the steps

• The bias in the second (output) layer shifts the entire network response up or 
down, as can be seen in Plot (d)

• It would appear that we could use such networks to 
approximate almost any function, if we had a sufficient 
number of neurons in the hidden layer. 

• In fact, it has been shown that two-layer networks, with 
sigmoid transfer functions in the hidden layer and linear 
transfer functions in the output layer, can approximate 
virtually any function of interest to any degree of accuracy, 
provided sufficiently many hidden units are available [see the 
Universal Approximation Theorem in our textbook]



The Universal Approximation Theorem
• The Universal Approximation Theorem 

(https://www.sciencedirect.com/science/article/pii/0893608089900208) states that a 
feedforward network with a linear output layer and at least one hidden layer 
with any “squashing” activation function (such as the logistic sigmoid 
activation function) can approximate any Borel measurable function from one 
finite-dimensional space to another with any desired non-zero amount of 
error, provided that the network is given enough hidden units. The 
derivatives of the feedforward network can also approximate the derivatives 
of the function arbitrarily well (article mentioned above)

• The concept of Borel measurability is beyond the scope of this course; for our 
purposes it suffices to say that any continuous function on a closed and 
bounded subset of Rn is Borel measurable and therefore may be 
approximated by a neural network. A neural network may also approximate 
any function mapping from any finite dimensional discrete space to another

• While the original theorems were first stated in terms of units with 
activation functions that saturate both for very negative and for very positive 
arguments, universal approximation theorems have also been proved for a 
wider class of activation functions, which includes the now commonly used 
REctified Linear Unit (https://www.sciencedirect.com/science/article/pii/S0893608005801315)



The Backpropagation algorithm
• In abbreviated notation

• For multilayer networks the output of one layer becomes the input 
to the following layer. The equations that describe this operation are

where M is the number of layers in the network
The neurons in the first layer receive external inputs:

a0 = p
which provides the starting point for the above equation. The 
outputs of the neurons in the last layer are considered the 
network outputs                  a = aM



Performance index
• The backpropagation algorithm for multilayer networks is a 

generalization of the LMS algorithm, and both algorithms use the 
same performance index: mean square error

• The algorithm is provided with a set of examples of proper network 
behavior :      {p1, t1} {p2, t2} … {pQ, tQ}

• The algorithm should adjust the network parameters in order to 
minimize the mean square error:

F(x) = E[e2] = E[(t-α)2]
where is the vector of network weights and biases. If the network 
has multiple outputs this generalizes to:

F(x) = E[eTe] = E[(t-α)T(t-a)]
• As with the LMS algorithm, we will approximate the mean square 

error by
F(x) = (t(k)-a(k))T(t(k)-a(k)) = eT(k)e(k)

where the expectation of the squared error has been replaced by 
the squared error at iteration k



Performance index
• The steepest descent algorithm for the approximate mean square 

error (stochastic gradient descent) is

where α is the learning rate

• So far, this development is identical to that for the LMS algorithm
• Now we come to the difficult part – the computation of the partial 

derivatives



Chain rule
• For a single-layer linear network (the ADALINE) these partial 

derivatives are conveniently computed
• Recall the rule: W(k+1) = W(k) + 2αe(k)pT(k)

• For the multilayer network the error is not an explicit function of 
the weights in the hidden layers, therefore these derivatives are not 
computed so easily

• Because the error is an indirect function of the weights in the 
hidden layers, we will use the chain rule of calculus to calculate the 
derivatives

• To review the chain rule, suppose that we have a function f that is 
an explicit function only of the variable n. We want to take the 
derivative of with respect to a third variable w. The chain rule is 
then

• For example: f(n)= en and n=2w, so that f(n(w))= e2w, then:



Chain rule
• We will use this concept to find the derivatives

• The second term in each of these equations can be easily computed, 
since the net input to layer m is an explicit function of the weights 
and bias in that layer:

• Therefore:

• If we now define:



Chain rule
• (the sensitivity of to changes in the i-th element of the net input at 

layer), then the following equations

• can be simplified to

• We can now express the approximate steepest descent algorithm as



Chain rule
• In matrix form this becomes

where:



Backpropagating the sensitivities
• It now remains for us to compute the sensitivities sm, which requires 

another application of the chain rule
• It is this process that gives us the term backpropagation, because it 

describes a recurrence relationship in which the sensitivity at layer 
m is computed from the sensitivity at layer m+1

• To derive the recurrence relationship for the sensitivities, we will 
use the following Jacobian matrix:



Backpropagating the sensitivities
• Next we want to find an expression for this matrix. Consider the i, j 

element of the matrix:

• Thus, the Jacobian matrix can be written: 

where:



Backpropagating the sensitivities
• We can now write out the recurrence relation for the sensitivity by 

using the chain rule in matrix form:

• Now we can see where the backpropagation algorithm derives its 
name. The sensitivities are propagated backward through the 
network from the last layer to the first layer

sM  sM-1  …  s2  s1



The final step
• It is worth emphasizing that the backpropagation algorithm uses 

the same approximate steepest descent technique that we used in 
the LMS algorithm. The only complication is that in order to 
compute the gradient we need to first backpropagate the 
sensitivities. The beauty of backpropagation is that we have a very 
efficient implementation of the chain rule

• We still have one more step to make in order to complete the 
backpropagation algorithm. We need the starting point, sM, for the 
recurrence relation. This is obtained at the final layer:

• Now since

• We can write:                                                  or 

• in matrix from



Summary of backpropagation algorithm
• The first step is to propagate the input forward through the network: 

• The next step is to propagate the sensitivities backward through the 
network:

• Finally, the weights and biases are updated using the approximate 
steepest descent rule:
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Practice on ADALINE



Tapped delay line

• ADALINE has been much more 
widely used than the perceptron 
network. In fact, it is safe to say 
that it is one of the most widely 
used neural networks in practical 
applications

• One of the major application areas 
of the ADALINE has been 
adaptive filtering, where it is still 
used extensively

• In order to use the ADALINE 
network as an adaptive filter, we 
need to introduce a new building 
block, the tapped delay line. A 
tapped delay line with R outputs is 
shown here



Adaptive filter: Tapped delay line+ADALINE

• If we combine a tapped 
delay line with an 
ADALINE network, we can 
create an adaptive filter

• You might have recognized 
this network as a finite 
impulse response (FIR) 
filter



Exercise-03
Consider the adaptive filter ADALINE shown here. The purpose of this filter is 
to predict the next value of the input signal from the two previous values. 
Suppose that the input signal is a stationary random process, with 
autocorrelation function given by

Cy(n) = E[y(k)y(k+n)]
Cy(0) = 3, Cy(1) = -1, Cy(2) = -1

 Sketch the contour plot of the performance index (mean square error)
 What is the maximum stable value of the learning rate (α) for the LMS 

algorithm?


