
1

Νευρο-Ασαφής Υπολογιστική
Neuro-Fuzzy Computing

Διδάσκων –
Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ
Πανεπιστήμιο Θεσσαλίας

Διάλεξη 6η

2

Backpropagation

A bit of history
• The first description of an algorithm to train multilayer networks was

contained in the thesis of Paul Werbos in 1974
• It was not until the mid 1980s that the backpropagation algorithm was

rediscovered and widely publicized. It was rediscovered independently by
• David Rumelhart, Geoffrey Hinton, Ronald Williams in 1986

• David Parker in 1985

• Yann Le Cun in 1985 (director of AI Research, Facebook)

AI Research, Google
Resigned

P. J. Werbos, “Beyond regression: New tools for prediction and analysis in the behavioral sciences,” Ph.D. Thesis, Harvard University,
Cambridge, MA, 1974. Also published as The Roots of Backpropagation, New York: John Wiley & Sons, 1994.
D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.
D. B. Parker, “Learning-logic: Casting the cortex of the human brain in silicon,” Technical Report TR-47, Center for Computational
Research in Economics and Management Science, MIT, Cambridge, MA, 1985.
Y. Le Cun, “Une procedure d’apprentissage pour reseau a seuil assymetrique,” Cognitiva, vol. 85, pp. 599–604, 1985.

Turing Award (called the Nobel Prize of computing) 2018

Nobel Prize in Physics 2024

John J. Hopfield
Born: 15 July 1933, Chicago, IL, USA
Affiliation at the time of the award: Princeton University,
Princeton, NJ, USA

https://www.nobelprize.org/prizes/physics/2024/summary/

“for foundational discoveries and inventions that enable
machine learning with artificial neural networks”

Geoffrey E. Hinton
Born: 1947, London, UK.
PhD 1978 from The University of Edinburgh, UK.
Affiliation at the time of the award: Professor at
University of Toronto, Canada

Nobel Prize in Chemistry 2024

Demis Hassabis
Born: 27 July 1976, London, United Kingdom
Affiliation at the time of the award: Google DeepMind,
London, United Kingdom

https://www.nobelprize.org/prizes/chemistry/2024/summary/

“one half awarded to David Baker "for computational
protein design", the other half jointly to Demis Hassabis
and John M. Jumper "for protein structure prediction"”

John M. Jumper
Born: 1985, Little Rock, AR, USA
Affiliation at the time of the award: Google DeepMind,
London, United Kingdom

Three layer network

• Recall from previous lecture a multilayer neural network
• To identify the structure of a multilayer network, we will use R-S1-S2-S3,

where the number of inputs is followed by the number of neurons in each
layer

The XOR example
• The input/target pairs for the XOR gate are:

• Because the two categories are not linearly separable, a
single-layer perceptron cannot perform the classification

• A two-layer network can solve the XOR problem
• There are many different multilayer solutions. One solution is

to use two neurons in the first layer to create two decision
boundaries
• The first boundary separates p1 from the other patterns, and the second

boundary separates p4

The XOR example
• Then the second layer is used to combine the two boundaries

together using an AND operation

• The resulting 2-2-1 neural network is the following

The function approximation example
• In control systems, for example, the objective is to find an

appropriate feedback function that maps from measured outputs to
control inputs

• The following example illustrates the flexibility of the multilayer
perceptron for implementing functions

• Consider the following two-layer 1-2-1 network
• The transfer function for the first layer is log-sigmoid
• the transfer function for the second layer is linear

The function approximation example
• Suppose that the nominal values of the weights and biases for

this network are:

• The network response for these parameters is shown below,
which plots the network output a2 as the input p is varied
over the range [-2, 2]

• Notice that the response
consists of two steps, one for
each of the log-sigmoid
neurons in the first layer. By
adjusting the network
parameters we can change
the shape and location of
each step

The function approximation example
• The centers of the steps occur where the net input to a neuron

in the first layer is zero

• The steepness of each step can be adjusted by changing the
network weights

The function approximation example
• See the effects of

parameter changes on
the network response

• The blue curve is the
nominal response

• The other curves
correspond to the
network response
when one parameter
at a time is varied
over the following
ranges:

The function approximation example
• Plot (a) shows how the network biases in the first (hidden) layer can
• be used to locate the position of the steps
• Plot (b) illustrates how the weights determine the slope of the steps

• The bias in the second (output) layer shifts the entire network response up or
down, as can be seen in Plot (d)

• It would appear that we could use such networks to
approximate almost any function, if we had a sufficient
number of neurons in the hidden layer.

• In fact, it has been shown that two-layer networks, with
sigmoid transfer functions in the hidden layer and linear
transfer functions in the output layer, can approximate
virtually any function of interest to any degree of accuracy,
provided sufficiently many hidden units are available [see the
Universal Approximation Theorem in our textbook]

The Universal Approximation Theorem
• The Universal Approximation Theorem

(https://www.sciencedirect.com/science/article/pii/0893608089900208) states that a
feedforward network with a linear output layer and at least one hidden layer
with any “squashing” activation function (such as the logistic sigmoid
activation function) can approximate any Borel measurable function from one
finite-dimensional space to another with any desired non-zero amount of
error, provided that the network is given enough hidden units. The
derivatives of the feedforward network can also approximate the derivatives
of the function arbitrarily well (article mentioned above)

• The concept of Borel measurability is beyond the scope of this course; for our
purposes it suffices to say that any continuous function on a closed and
bounded subset of Rn is Borel measurable and therefore may be
approximated by a neural network. A neural network may also approximate
any function mapping from any finite dimensional discrete space to another

• While the original theorems were first stated in terms of units with
activation functions that saturate both for very negative and for very positive
arguments, universal approximation theorems have also been proved for a
wider class of activation functions, which includes the now commonly used
REctified Linear Unit (https://www.sciencedirect.com/science/article/pii/S0893608005801315)

The Backpropagation algorithm
• In abbreviated notation

• For multilayer networks the output of one layer becomes the input
to the following layer. The equations that describe this operation are

where M is the number of layers in the network
The neurons in the first layer receive external inputs:

a0 = p
which provides the starting point for the above equation. The
outputs of the neurons in the last layer are considered the
network outputs a = aM

Performance index
• The backpropagation algorithm for multilayer networks is a

generalization of the LMS algorithm, and both algorithms use the
same performance index: mean square error

• The algorithm is provided with a set of examples of proper network
behavior : {p1, t1} {p2, t2} … {pQ, tQ}

• The algorithm should adjust the network parameters in order to
minimize the mean square error:

F(x) = E[e2] = E[(t-α)2]
where is the vector of network weights and biases. If the network
has multiple outputs this generalizes to:

F(x) = E[eTe] = E[(t-α)T(t-a)]
• As with the LMS algorithm, we will approximate the mean square

error by
F(x) = (t(k)-a(k))T(t(k)-a(k)) = eT(k)e(k)

where the expectation of the squared error has been replaced by
the squared error at iteration k

Performance index
• The steepest descent algorithm for the approximate mean square

error (stochastic gradient descent) is

where α is the learning rate

• So far, this development is identical to that for the LMS algorithm
• Now we come to the difficult part – the computation of the partial

derivatives

Chain rule
• For a single-layer linear network (the ADALINE) these partial

derivatives are conveniently computed
• Recall the rule: W(k+1) = W(k) + 2αe(k)pT(k)

• For the multilayer network the error is not an explicit function of
the weights in the hidden layers, therefore these derivatives are not
computed so easily

• Because the error is an indirect function of the weights in the
hidden layers, we will use the chain rule of calculus to calculate the
derivatives

• To review the chain rule, suppose that we have a function f that is
an explicit function only of the variable n. We want to take the
derivative of with respect to a third variable w. The chain rule is
then

• For example: f(n)= en and n=2w, so that f(n(w))= e2w, then:

Chain rule
• We will use this concept to find the derivatives

• The second term in each of these equations can be easily computed,
since the net input to layer m is an explicit function of the weights
and bias in that layer:

• Therefore:

• If we now define:

Chain rule
• (the sensitivity of to changes in the i-th element of the net input at

layer), then the following equations

• can be simplified to

• We can now express the approximate steepest descent algorithm as

Chain rule
• In matrix form this becomes

where:

Backpropagating the sensitivities
• It now remains for us to compute the sensitivities sm, which requires

another application of the chain rule
• It is this process that gives us the term backpropagation, because it

describes a recurrence relationship in which the sensitivity at layer
m is computed from the sensitivity at layer m+1

• To derive the recurrence relationship for the sensitivities, we will
use the following Jacobian matrix:

Backpropagating the sensitivities
• Next we want to find an expression for this matrix. Consider the i, j

element of the matrix:

• Thus, the Jacobian matrix can be written:

where:

Backpropagating the sensitivities
• We can now write out the recurrence relation for the sensitivity by

using the chain rule in matrix form:

• Now we can see where the backpropagation algorithm derives its
name. The sensitivities are propagated backward through the
network from the last layer to the first layer

sM  sM-1  …  s2  s1

The final step
• It is worth emphasizing that the backpropagation algorithm uses

the same approximate steepest descent technique that we used in
the LMS algorithm. The only complication is that in order to
compute the gradient we need to first backpropagate the
sensitivities. The beauty of backpropagation is that we have a very
efficient implementation of the chain rule

• We still have one more step to make in order to complete the
backpropagation algorithm. We need the starting point, sM, for the
recurrence relation. This is obtained at the final layer:

• Now since

• We can write: or

• in matrix from

Summary of backpropagation algorithm
• The first step is to propagate the input forward through the network:

• The next step is to propagate the sensitivities backward through the
network:

• Finally, the weights and biases are updated using the approximate
steepest descent rule:

28

Practice on ADALINE

Tapped delay line

• ADALINE has been much more
widely used than the perceptron
network. In fact, it is safe to say
that it is one of the most widely
used neural networks in practical
applications

• One of the major application areas
of the ADALINE has been
adaptive filtering, where it is still
used extensively

• In order to use the ADALINE
network as an adaptive filter, we
need to introduce a new building
block, the tapped delay line. A
tapped delay line with R outputs is
shown here

Adaptive filter: Tapped delay line+ADALINE

• If we combine a tapped
delay line with an
ADALINE network, we can
create an adaptive filter

• You might have recognized
this network as a finite
impulse response (FIR)
filter

Exercise-03
Consider the adaptive filter ADALINE shown here. The purpose of this filter is
to predict the next value of the input signal from the two previous values.
Suppose that the input signal is a stationary random process, with
autocorrelation function given by

Cy(n) = E[y(k)y(k+n)]
Cy(0) = 3, Cy(1) = -1, Cy(2) = -1

 Sketch the contour plot of the performance index (mean square error)
 What is the maximum stable value of the learning rate (α) for the LMS

algorithm?

