
1

Νεςπο-Ασαυήρ Υπολογιστική

Neuro-Fuzzy Computing

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 5η

2

Adaptive Linear Neuron

(ADALINE)

A bit of history

• Bernard Widrow began working in neural networks in the late

1950s

• at about the same time that Frank Rosenblatt developed the perceptron

learning rule

• In 1960 Widrow, and his graduate student Marcian Hoff

• introduced the ADALINE (ADAptive LInear NEuron) network, and

• a learning rule which they called the LMS (Least Mean Square)

algorithm

• ADALINE network is very similar to the perceptron

• except that its transfer function is linear, instead of hard-limiting

• ADALINE and the perceptron suffer from the same inherent

limitation: they can only solve linearly separable problems

A bit of history

• ADALINE network versus perceptron

• The LMS algorithm is more powerful than the perceptron learning rule

• While the perceptron rule is guaranteed to converge to a solution

that correctly categorizes the training patterns, the resulting

network can be sensitive to noise, since patterns often lie close to

the decision boundaries

• The LMS algorithm minimizes mean square error, and therefore

tries to move the decision boundaries as far from the training

patterns as possible

• Widrow-Hoff learning is an approximate steepest descent algorithm, in

which the performance index is mean square error

• ADALINE is important for two reasons

• First, it is widely used today in many signal processing applications

• In addition, it is the precursor to the backpropagation algorithm for

multilayer networks

ADALINE network

• The output of ADALINE is:

a = purelin(Wp+b) = Wp+b

Single ADALINE

• The output of this ADALINE is:

a = purelin(n) = purelin(1w
Tp+b) = 1w

Tp+b = w1,1p + w1,2p + b

The induced decision boundary

• By setting n=0, we get the equation of the line (decision

boundary)

• ADALINE can be used to classify objects into two categories

• However, it can do so only if the objects are linearly separable

ADALINE performance measure: Mean

Square Error (MSE)

• ADALINE error: the difference between the target output and

the network output

• Suppose we define x=(1w b)T

• and include the bias input „1‟ as a component of the input vector

• Now, instead of α=1w
Tp + b, we have: α= xTz

• Thus, mean square error: F(x)= E[e2]= E[(t-α)2] = Ε[(t-xTz)2],

over all sets of input-output, and E denotes expectation

• We can expand the above as follows:

F(x)= Ε[(t2-2txTz+xTzzTx)2]= E[t2] – 2xTE[tz] + xTE[zzT]x

• and in convenient form:

F(x)= c - 2xTh+xTRx

where c= E[t2], h= E[tz], and R= E[zzT]
 vector h gives the cross-correlation between the input vector and its associated

target, while R is the input correlation matrix. The diagonal elements of this matrix

are equal to the mean square values of the elements of the input vectors

Recall Quadratic functions

• Generic quadratic function:

F(x)= c + dTx + ½ xTAx

• Thus, ADALINE‟s MSE is a quadratic function

where d=-2h and A=2R

• The characteristics of the quadratic function depend

primarily on the Hessian matrix

• For example, if the eigenvalues of the Hessian are all positive, then the

function will have one unique global minimum

• Here, the Hessian matrix is twice the correlation matrix R,

and it can be shown that all correlation matrices are either

positive definite or positive semidefinite, which means that

they can never have negative eigenvalues

Recall Quadratic functions

• We are left with two possibilities:

• If the correlation matrix has only positive

eigenvalues, the performance index will have one

unique global minimum

• If the correlation matrix has some zero eigenvalues,

the performance index will either have a weak

minimum (explanation during the class lecture) or no minimum

depending on the vector d=-2h

Investigation of the gradient

• Let‟s locate the stationary (where gradient equals zero)

points:

• grad F(x) = grad[c+dTx + ½ xTAx] = d + Ax

grad F(x)= -2h + 2Rx

• Stationary points can be found by setting the above

equal to zero -2h + 2Rx = 0

• If the correlation matrix is positive definite there

will be a unique stationary point, which will be a

strong minimum:

x* = R-1h
• It is worth noting here that the existence of a unique solution

depends only on the correlation matrix R. Therefore the

characteristics of the input vectors determine whether or not a

unique solution exists

Least Mean Square (LMS) algorithm:

The training algorithm of the ADALINE

• The next step is to design an algorithm to locate the

minimum point

• If we could calculate the statistical quantities h and R, we could

find the minimum point directly

• If we did not want to calculate the inverse of R, we could use the

steepest descent algorithm, with the gradient calculated from

previous slides

• In general it is not desirable or convenient to calculate h and R

• For this reason we will use an approximate steepest descent

algorithm, in which we use an estimated gradient

• The key insight of Widrow and Hoff was that they could

estimate the mean square error F(x) by

where the expectation of the squared error has been

replaced by the squared error at iteration k

Least Mean Square (LMS) algorithm:

The training algorithm of the ADALINE

• At each iteration we have a gradient estimate of the

form:

• This is sometimes referred to as the stochastic gradient. When this is used

in a gradient descent algorithm, it is referred to as “on-line” or incremental

learning, since the weights are updated as each input is presented to the

network

• The first R elements of are derivatives with

respect to the network weights , while the (R+1)st

element is the derivative with respect to the bias. Thus

 and

Least Mean Square (LMS) algorithm:

The training algorithm of the ADALINE

Now consider the partial derivative terms at the ends of

these equations. First evaluate the partial derivative of

e(k) with respect to the weight w1,j:

where pi(k) is the i-th element of the input vector at the k-

th iteration. This simplifies to

Least Mean Square (LMS) algorithm:

The training algorithm of the ADALINE

• Similarly,

• Notice that pj(k) and 1 are the elements of the input

vector z, so the gradient of the squared error at iteration

k can be written as:

• This approximation to grad F(x) can be used in

the steepest descent algorithm. The steepest

descent, with constant learning rate, is

Least Mean Square (LMS) algorithm:

The training algorithm of the ADALINE

• By substitution from previous slide, we get

• or

• and

• These last two equations make up the least mean square

(LMS) algorithm

• This is also referred to as the delta rule or the Widrow-

Hoff learning algorithm

Least Mean Square (LMS) algorithm:

The training algorithm of the ADALINE

• The preceding results can be modified to handle the case

where we have multiple outputs, and therefore multiple

neurons

• To update the i-th row of the weight matrix use

iw(k+1) = iw(k) + 2αei(k)p(k)

where ei(k) is the i-th element of the error at iteration k

• To update the i-th element of the bias, we use

bi(k+1) = bi(k) + 2αei(k)

The LMS algorithm

The LMS algorithm can be written in matrix notation as

follows:

W(k+1) = W(k) + 2αe(k)pT(k)

and

b(k+1) = b(k) + 2αe(k)

 What about the convergence of the LMS algorithm? (next

lecture)

 Are there any bounds (e.g., maximum value) on the

learning rate? (next lecture)

Exercise-01: Example execution of LMS

Target output for oranges: -1

Target output for apples: 1

W(0)= [0 0 0]

learning rate= 2

Problem: Which vector is the solution (convergence vector)?

orange apple

Exercise-02: Investigation of MSE surface

Exercise. Suppose that we have the following input/target

pairs:

These patterns occur with equal probability, and they are

used to train an ADALINE network with no bias.

 What does the mean square error (MSE) performance

surface look like?

Solution. We need to calculate the various terms of the

quadratic function.

Recall that: F(x)= c - 2xTh+xTRx

Therefore, we need to calculate: c, h and R

Exercise-02: Investigation of MSE surface

These patterns occur with equal probability, so the

respective targets occur with equal probability.

Thus the expected value of the square of the targets is:

E[t2] = (1)2(0.5) + (-1)2(0.5) = 1.

In a similar way, the cross-correlation between the input

and the target can be calculated:

The input correlation matrix R is

R = E[zzT] = p1p1
T(0.5) + p2p2

T (0.5) =>

Exercise-02: Investigation of MSE surface

Therefore the MSE index is:

F(x)= c - 2xTh+xTRx =

The Hessian matrix of F(x), which is equal to 2R, has both

eigenvalues at 2. Therefore, the contours are circular. To

find the center of the contours (the minimum point), we need

to solve:

Thus, we have a minimum at

Exercise-02: Investigation of MSE surface

The resulting MSE surface is shown below (plot done online with

https://academo.org/demos/contour-plot/):

Appendix: strong, global, weak minimum

Appendix: Hessian

In the next lecture, an example of quadratic function optimization with Steepest

Descent using Hessian. Differs from what we have presented in λk. Now it is:

Analysis of convergence

• Note that in the LMS algorithm, xk+1 is a function only of z(k-

1), z(k-2), …

• If we assume that successive input vectors are statistically

independent, then x is independent of z. We will show in the

following development that for stationary input processes

meeting this condition, the expected value of the weight

vector will converge to

x*= R-1h

• This is the minimum mean square error

• Recall the LMS algorithm

xk+1 = xk + 2αe(k)z(k)

• Taking expectations

E(xk+1) = E(xk) + 2αE[e(k)z(k)]

Analysis of convergence

• Substitute t(k)-xk
Tz(k) for the error to give

E[xk+1] = E[xk] + 2α{E[t(k)z(k)]- E[(xk
Tz(k))z(k)]}

• Finally, substitute zT(k)xk for xk
Tz(k) and rearrange terms to

give

E[xk+1] = E[xk] + 2α{E[tkz(k)]- E[z(k)zT(k)xk]}

• Since xk is independent of z(k)

E[xk+1] = E[xk] + 2α{h-RE[xk]}

• This can be written as

E[xk+1] = [I – 2αR] E[xk] + 2αh

• This dynamic system will be stable if all of the eigenvalues of

[I – 2αR] fall inside the unit circle

• It is known that the eigenvalues of [I – 2αR] will be 1-2αλi,

where the λi are the eigenvalues of R.

Analysis of convergence

• Therefore the system will be stable if

1-2αλi > -1

• Since λi>0, 1-2αλi is always less than 1. The condition on

stability is therefore

α < 1/λi, for all i

• or

0 < α < 1/λmax

• If this condition on stability is satisfied, the steady state

solution is

E[xss] = [I-2αR] E[xss] + 2αh

• or

E[xss] = R-1h = x*

