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Adaptive Linear Neuron 

(ADALINE) 



A bit of history 

• Bernard Widrow began working in neural networks in the late 

1950s 

• at about the same time that Frank Rosenblatt developed the perceptron 

learning rule 

• In 1960 Widrow, and his graduate student Marcian Hoff 

• introduced the ADALINE (ADAptive LInear NEuron) network, and  

• a learning rule which they called the LMS (Least Mean Square) 

algorithm 

• ADALINE network is very similar to the perceptron 

• except that its transfer function is linear, instead of hard-limiting 

• ADALINE and the perceptron suffer from the same inherent 

limitation: they can only solve linearly separable problems 



A bit of history 

• ADALINE network versus perceptron 

• The LMS algorithm is more powerful than the perceptron learning rule 

• While the perceptron rule is guaranteed to converge to a solution 

that correctly categorizes the training patterns, the resulting 

network can be sensitive to noise, since patterns often lie close to 

the decision boundaries 

• The LMS algorithm minimizes mean square error, and therefore 

tries to move the decision boundaries as far from the training 

patterns as possible 

• Widrow-Hoff learning is an approximate steepest descent algorithm, in 

which the performance index is mean square error 

• ADALINE is important for two reasons 

• First, it is widely used today in many signal processing applications 

• In addition, it is the precursor to the backpropagation algorithm for 

multilayer networks 



ADALINE network 

• The output of ADALINE is: 

a = purelin(Wp+b) = Wp+b 

 



Single ADALINE 

• The output of this ADALINE is: 

a = purelin(n) = purelin(1w
Tp+b) = 1w

Tp+b = w1,1p + w1,2p + b 

 



The induced decision boundary 

• By setting n=0, we get the equation of the line (decision 

boundary) 

• ADALINE can be used to classify objects into two categories 

• However, it can do so only if the objects are linearly separable 



ADALINE performance measure: Mean 

Square Error (MSE) 

• ADALINE error: the difference between the target output and 

the network output 

• Suppose we define x=(1w b)T 

• and include the bias input „1‟ as a component of the input vector 

• Now, instead of α=1w
Tp + b, we have: α= xTz 

• Thus, mean square error: F(x)= E[e2]= E[(t-α)2] = Ε[(t-xTz)2], 

over all sets of input-output, and E denotes expectation 

• We can expand the above as follows: 

F(x)= Ε[(t2-2txTz+xTzzTx)2]= E[t2] – 2xTE[tz] + xTE[zzT]x 

• and in convenient form: 

F(x)= c - 2xTh+xTRx 

where c= E[t2], h= E[tz], and R= E[zzT] 
 vector h gives the cross-correlation between the input vector and its associated 

target, while R is the input correlation matrix. The diagonal elements of this matrix 

are equal to the mean square values of the elements of the input vectors 



Recall Quadratic functions 

• Generic quadratic function: 

F(x)= c + dTx + ½ xTAx 

• Thus, ADALINE‟s MSE is a quadratic function 

where d=-2h and A=2R 

 

• The characteristics of the quadratic function depend 

primarily on the Hessian matrix  

• For example, if the eigenvalues of the Hessian are all positive, then the 

function will have one unique global minimum 

• Here, the Hessian matrix is twice the correlation matrix R, 

and it can be shown that all correlation matrices are either 

positive definite or positive semidefinite, which means that 

they can never have negative eigenvalues 



Recall Quadratic functions 

• We are left with two possibilities: 

• If the correlation matrix has only positive 

eigenvalues, the performance index will have one 

unique global minimum  

• If the correlation matrix has some zero eigenvalues, 

the performance index will either have a weak 

minimum (explanation during the class lecture) or no minimum 

depending on the vector d=-2h 

 

 

 



Investigation of the gradient 

• Let‟s locate the stationary (where gradient equals zero) 

points: 

• grad F(x) = grad[c+dTx + ½ xTAx] = d + Ax            

grad F(x)= -2h + 2Rx 

• Stationary points can be found by setting the above 

equal to zero -2h + 2Rx =  0 

• If the correlation matrix is positive definite there 

will be a unique stationary point, which will be a 

strong minimum: 

x* = R-1h 
• It is worth noting here that the existence of a unique solution 

depends only on the correlation matrix R. Therefore the 

characteristics of the input  vectors determine whether or not a 

unique solution exists 

 

 

 



Least Mean Square (LMS) algorithm: 

The training algorithm of the ADALINE 

• The next step is to design an algorithm to locate the 

minimum point 

• If we could calculate the statistical quantities h and R, we could 

find the minimum point directly 

• If we did not want to calculate the inverse of R, we could use the 

steepest descent algorithm, with the gradient calculated from 

previous slides 

• In general it is not desirable or convenient to calculate h and R 

• For this reason we will use an approximate steepest descent 

algorithm, in which we use an estimated gradient 

• The key insight of Widrow and Hoff was that they could 

estimate the mean square error F(x) by 

 

where the expectation of the squared error has been 

replaced by the squared error at iteration k 

 

 



Least Mean Square (LMS) algorithm: 

The training algorithm of the ADALINE 

• At each iteration we have a gradient estimate of the 

form: 

 
• This is sometimes referred to as the stochastic gradient. When this is used 

in a gradient descent algorithm, it is referred to as “on-line” or incremental 

learning, since the weights are updated as each input is presented to the 

network 

• The first R elements of               are derivatives with 

respect to the network weights , while the (R+1)st 

element is the derivative with respect to the bias. Thus 

 

 

    and 

 

 

 



Least Mean Square (LMS) algorithm: 

The training algorithm of the ADALINE 

Now consider the partial derivative terms at the ends of 

these equations. First evaluate the partial derivative of 

e(k) with respect to the weight w1,j: 

 

 

     

 

 

where pi(k) is the i-th element of the input vector at the k-

th iteration. This simplifies to 

 



Least Mean Square (LMS) algorithm: 

The training algorithm of the ADALINE 

• Similarly,  

 

• Notice that pj(k) and 1 are the elements of the input 

vector z, so the gradient of the squared error at iteration 

k can be written as: 

     

 

• This approximation to grad F(x) can be used in 

the steepest descent algorithm. The steepest 

descent, with constant learning rate, is 

 



Least Mean Square (LMS) algorithm: 

The training algorithm of the ADALINE 

• By substitution from previous slide, we get 

 

 

• or 

 

• and  

 

• These last two equations make up the least mean square 

(LMS) algorithm 

• This is also referred to as the delta rule or the Widrow-

Hoff learning algorithm 

 

 

 

 



Least Mean Square (LMS) algorithm: 

The training algorithm of the ADALINE 

• The preceding results can be modified to handle the case 

where we have multiple outputs, and therefore multiple 

neurons 

• To update the i-th row of the weight matrix use 

iw(k+1) = iw(k) + 2αei(k)p(k) 

where ei(k) is the i-th element of the error at iteration k 

• To update the i-th element of the bias, we use 

bi(k+1) = bi(k) + 2αei(k) 

 

 

 

 

 



The LMS algorithm 

The LMS algorithm can be written in matrix notation as 

follows: 

 

W(k+1) = W(k) + 2αe(k)pT(k) 

and 

b(k+1) = b(k) + 2αe(k) 

 

 What about the convergence of the LMS algorithm? (next 

lecture) 

 Are there any bounds (e.g., maximum value) on the 

learning rate? (next lecture) 

 



Exercise-01: Example execution of LMS 

Target output for oranges: -1 

Target output for apples:    1 

W(0)= [0 0 0] 

learning rate= 2 

 

Problem: Which vector is the solution (convergence vector)? 

orange apple 



Exercise-02: Investigation of MSE surface 

Exercise. Suppose that we have the following input/target 

pairs: 

 

 

These patterns occur with equal probability, and they are 

used to train an ADALINE network with no bias.  

 What does the mean square error (MSE) performance 

surface look like? 
 

Solution. We need to calculate the various terms of the 

quadratic function. 

Recall that: F(x)= c - 2xTh+xTRx 

Therefore, we need to calculate: c, h and R 



Exercise-02: Investigation of MSE surface 

These patterns occur with equal probability, so the 

respective targets occur with equal probability. 

Thus the expected value of the square of the targets is: 

E[t2] = (1)2(0.5) + (-1)2(0.5) = 1. 

In a similar way, the cross-correlation between the input 

and the target can be calculated: 

 

 

The input correlation matrix R is 

R = E[zzT] = p1p1
T(0.5) + p2p2

T (0.5) =>  

 



Exercise-02: Investigation of MSE surface 

Therefore the MSE index is:  

F(x)= c - 2xTh+xTRx =  

 

 

 

The Hessian matrix of F(x), which is equal to 2R, has both 

eigenvalues at 2. Therefore, the contours are circular. To 

find the center of the contours (the minimum point), we need 

to solve: 

 

 

 

Thus, we have a minimum at 



Exercise-02: Investigation of MSE surface 

The resulting MSE surface is shown below (plot done online with 

https://academo.org/demos/contour-plot/): 



Appendix: strong, global, weak minimum 



Appendix: Hessian 

In the next lecture, an example of quadratic function optimization with Steepest 

Descent using Hessian. Differs from what we have presented in λk. Now it is: 



Analysis of convergence 

• Note that in the LMS algorithm, xk+1 is a function only of z(k-

1), z(k-2), …  

• If we assume that successive input vectors are statistically 

independent, then x is independent of z. We will show in the 

following development that for stationary input processes 

meeting this condition, the expected value of the weight 

vector will converge to 

x*= R-1h 

• This is the minimum mean square error 

• Recall the LMS algorithm 

xk+1 = xk + 2αe(k)z(k) 

• Taking expectations 

E(xk+1) = E(xk) + 2αE[e(k)z(k)] 

 



Analysis of convergence 

• Substitute t(k)-xk
Tz(k) for the error to give  

E[xk+1] = E[xk] + 2α{E[t(k)z(k)]- E[(xk
Tz(k))z(k)]} 

• Finally, substitute zT(k)xk for xk
Tz(k) and rearrange terms to 

give 

E[xk+1] = E[xk] + 2α{E[tkz(k)]- E[z(k)zT(k)xk]} 

• Since xk is independent of z(k) 

E[xk+1] = E[xk] + 2α{h-RE[xk]} 

• This can be written as 

E[xk+1] = [I – 2αR] E[xk] + 2αh 

• This dynamic system will be stable if all of the eigenvalues of 

[I – 2αR] fall inside the unit circle 

• It is known that the eigenvalues of [I – 2αR] will be 1-2αλi, 

where the λi are the eigenvalues of R. 

 

 

 



Analysis of convergence 

• Therefore the system will be stable if 

1-2αλi > -1 

• Since λi>0, 1-2αλi is always less than 1. The condition on 

stability is therefore 

α < 1/λi,  for all i 

• or 

0 < α < 1/λmax 

• If this condition on stability is satisfied, the steady state 

solution is 

E[xss] = [I-2αR] E[xss] + 2αh 

• or 

E[xss] = R-1h = x* 

 

 

 

 


