

Νευρο-Ασαφής Υπολογιστική Neuro-Fuzzy Computing

Διδάσκων – Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥΠανεπιστήμιο Θεσσαλίας

Διάλεξη 5η

Adaptive Linear Neuron (ADALINE)

A bit of history

- Bernard Widrow began working in neural networks in the late 1950s
 - at about the same time that Frank Rosenblatt developed the perceptron learning rule
- In 1960 Widrow, and his graduate student Marcian Hoff
 - introduced the ADALINE (ADAptive LInear NEuron) network, and
 - a learning rule which they called the LMS (Least Mean Square) algorithm
- ADALINE network is very similar to the perceptron
 - except that its transfer function is linear, instead of hard-limiting
- ADALINE and the perceptron suffer from the same inherent limitation: *they can only solve linearly separable problems*

A bit of history

- ADALINE network versus perceptron
 - The LMS algorithm is more powerful than the perceptron learning rule
 - While the perceptron rule is guaranteed to converge to a solution that correctly categorizes the training patterns, the resulting network can be sensitive to noise, since patterns often lie close to the decision boundaries
 - The LMS algorithm minimizes mean square error, and therefore tries to move the decision boundaries as far from the training patterns as possible
 - Widrow-Hoff learning is an approximate steepest descent algorithm, in which the performance index is mean square error
 - ADALINE is important for two reasons
 - First, it is widely used today in many signal processing applications
 - In addition, it is the precursor to the *backpropagation* algorithm for multilayer networks

ADALINE network

The output of ADALINE is: a = purelin(Wp+b) = Wp+b

Single ADALINE

- The output of this ADALINE is:
- a = purelin(n) = purelin($_1\mathbf{w}^T\mathbf{p}+\mathbf{b}$) = $_1\mathbf{w}^T\mathbf{p}+\mathbf{b} = w_{1,1}\mathbf{p} + w_{1,2}\mathbf{p} + \mathbf{b}$

The induced decision boundary

- By setting n=0, we get the equation of the line (decision boundary)
- ADALINE can be used to classify objects into two categories
 - However, it can do so only if the objects are linearly separable

ADALINE performance measure: Mean Square Error (MSE)

- ADALINE error: the difference between the target output and the network output
- Suppose we define $\mathbf{x} = (\mathbf{x} \mathbf{b})^{\mathrm{T}}$
 - and include the bias input '1' as a component of the input vector
- Now, instead of $\alpha =_1 \mathbf{w}^T \mathbf{p} + \mathbf{b}$, we have: $\alpha = \mathbf{x}^T \mathbf{z}$
- Thus, mean square error: $F(\mathbf{x}) = E[e^2] = E[(t-\alpha)^2] = E[(t-\mathbf{x}^T\mathbf{z})^2]$, over all sets of input-output, and *E* denotes expectation
- We can expand the above as follows: $F(\mathbf{x}) = E[(t^2 - 2t\mathbf{x}^T\mathbf{z} + \mathbf{x}^T\mathbf{z}\mathbf{z}^T\mathbf{x})^2] = E[t^2] - 2\mathbf{x}^T E[t\mathbf{z}] + \mathbf{x}^T E[\mathbf{z}\mathbf{z}^T]\mathbf{x}$
- and in convenient form:

$$F(\mathbf{x}) = \mathbf{c} - 2\mathbf{x}^{\mathrm{T}}\mathbf{h} + \mathbf{x}^{\mathrm{T}}\mathbf{R}\mathbf{x}$$

where $c = E[t^2]$, h = E[tz], and $R = E[zz^T]$

□ vector **h** gives the cross-correlation between the input vector and its associated target, while **R** is the input correlation matrix. The diagonal elements of this matrix are equal to the mean square values of the elements of the input vectors

Recall Quadratic functions

• Generic quadratic function:

 $F(\mathbf{x}) = \mathbf{c} + \mathbf{d}^{\mathrm{T}}\mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}$

- Thus, ADALINE's MSE is a quadratic function where **d=**-2**h** and **A=**2**R**
- The characteristics of the quadratic function depend primarily on the *Hessian* matrix
 - For example, if the eigenvalues of the Hessian are all positive, then the function will have one unique global minimum
- Here, the Hessian matrix is twice the correlation matrix **R**, and it can be shown that all correlation matrices are either positive definite or positive semidefinite, which means that they can never have negative eigenvalues

Recall Quadratic functions

- We are left with two possibilities:
 - If the correlation matrix has only positive eigenvalues, the performance index will have one unique global minimum
 - If the correlation matrix has some zero eigenvalues, the performance index will either have a *weak minimum* (explanation during the class lecture) or no minimum depending on the vector d=-2h

Investigation of the gradient

- Let's locate the *stationary* (where gradient equals zero) points:
 - grad $F(\mathbf{x}) = \operatorname{grad}[c+\mathbf{d}^{\mathrm{T}}\mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}] = \mathbf{d} + \mathbf{A}\mathbf{x} \rightarrow$ grad $F(\mathbf{x}) = -2\mathbf{h} + 2\mathbf{R}\mathbf{x}$
 - Stationary points can be found by setting the above equal to zero -2h + 2Rx = 0
- If the correlation matrix is positive definite there will be a unique stationary point, which will be a *strong minimum*:

$\mathbf{x}^* = \mathbf{R}^{-1}\mathbf{h}$

• It is worth noting here that the existence of a unique solution depends only on the correlation matrix \mathbf{R} . Therefore the characteristics of the input vectors determine whether or not a unique solution exists

- The next step is to design an algorithm to locate the minimum point
 - If we could calculate the statistical quantities ${\bf h}$ and ${\bf R},$ we could find the minimum point directly
 - If we did not want to calculate the inverse of \mathbf{R} , we could use the steepest descent algorithm, with the gradient calculated from previous slides
 - In general it is not desirable or convenient to calculate ${\bf h}$ and ${\bf R}$
 - For this reason we will use an approximate steepest descent algorithm, in which we use an estimated gradient
- The key insight of Widrow and Hoff was that they could estimate the mean square error $F(\mathbf{x})$ by

$$\hat{F}(x) = (t(k) - a(k))^2 = e^2(k)$$

where the expectation of the squared error has been replaced by the squared error at iteration k

At each iteration we have a gradient estimate of the form:

$$\hat{\nabla}F(x) = \nabla e^2(k)$$

- This is sometimes referred to as the *stochastic gradient*. When this is used in a gradient descent algorithm, it is referred to as "on-line" or incremental learning, since the weights are updated as each input is presented to the network
- The first R elements of $\nabla e^2(k)$ are derivatives with respect to the network weights, while the (R+1)st element is the derivative with respect to the bias. Thus

$$[\nabla e^2(k)]_j = \frac{\partial e^2(k)}{\partial w_{1,j}} = 2e(k)\frac{\partial e(k)}{\partial w_{1,j}} \quad \text{for} \quad j = 1, 2, \dots, R$$

and

$$[\nabla e^2(k)]_{R+1} = \frac{\partial e^2(k)}{\partial b} = 2e(k)\frac{\partial e(k)}{\partial b}$$

Now consider the partial derivative terms at the ends of these equations. First evaluate the partial derivative of e(k) with respect to the weight $w_{1,i}$:

$$\frac{\partial e(k)}{\partial w_{1,j}} = \frac{\partial (t(k) - \alpha(k))}{\partial w_{1,j}} = \frac{\partial}{\partial w_{1,j}} \Big(t(k) - ({}_1w^T p(k) + b) \Big)$$

$$= \frac{\partial}{\partial w_{1,j}} \left[t(k) - \left(\sum_{i=1}^{R} w_{1,i} p_i(k) + b \right) \right]$$

where $p_i(k)$ is the *i*-th element of the input vector at the *k*-th iteration. This simplifies to

$$=\frac{\partial e(k)}{\partial w_{1,j}}=-p_j(k)$$

• Similarly,

 Notice that p_j(k) and 1 are the elements of the input vector z, so the gradient of the squared error at iteration k can be written as:

$$\hat{\nabla}F(x) = \nabla e^2(k) = -2e(k)z(k)$$

• This approximation to grad $F(\mathbf{x})$ can be used in the steepest descent algorithm. The steepest descent, with constant learning rate, is

$$x_{k+1} = x_k - \alpha \nabla F(x)|_{x=x_k}$$

• By substitution from previous slide, we get

$$x_{k+1} = x_k + 2\alpha e(k)z(k)$$

• or
$$_1w(k+1) = _1w(k) + 2\alpha e(k)p(k)$$

• and
$$b(k+1) = b(k) + 2\alpha e(k)$$

- These last two equations make up the least mean square (LMS) algorithm
- This is also referred to as the *delta rule* or the *Widrow-Hoff learning algorithm*

- The preceding results can be modified to handle the case where we have multiple outputs, and therefore multiple neurons
- To update the *i*-th row of the weight matrix use $_{i}\mathbf{w}(\mathbf{k+1}) = _{i}\mathbf{w}(\mathbf{k}) + 2\alpha e_{i}(\mathbf{k})\mathbf{p}(\mathbf{k})$

where $e_i(\mathbf{k})$ is the *i*-th element of the error at iteration \mathbf{k}

• To update the *i*-th element of the bias, we use

 $b_i(\mathbf{k+1}) = \mathbf{b}_i(\mathbf{k}) + 2\alpha e_i(\mathbf{k})$

The LMS algorithm can be written in matrix notation as follows:

$$\mathbf{W}(\mathbf{k+1}) = \mathbf{W}(\mathbf{k}) + 2\mathbf{\alpha}\mathbf{e}(\mathbf{k})\mathbf{p}^{\mathrm{T}}(\mathbf{k})$$

and

$$\mathbf{b}(\mathbf{k+1}) = \mathbf{b}(\mathbf{k}) + 2\alpha \mathbf{e}(\mathbf{k})$$

- What about the convergence of the LMS algorithm? (next lecture)
- Are there any bounds (e.g., maximum value) on the learning rate? (next lecture)

Exercise-01: Example execution of LMS

Target output for oranges: -1 Target output for apples: 1 **W**(0)= [0 0 0] learning rate= 2

Problem: Which vector is the solution (convergence vector)?

Exercise. Suppose that we have the following input/target pairs: $\begin{cases} \mathbf{p}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, t_1 = 1 \end{cases}, \begin{cases} \mathbf{p}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, t_2 = -1 \end{cases}$

These patterns occur with *equal probability*, and they are used to train an ADALINE network with no bias.

What does the mean square error (MSE) performance surface look like?

Solution. We need to calculate the various terms of the quadratic function.

- Recall that: $F(\mathbf{x}) = \mathbf{c} 2\mathbf{x}^{\mathrm{T}}\mathbf{h} + \mathbf{x}^{\mathrm{T}}\mathbf{R}\mathbf{x}$
- Therefore, we need to calculate: c, ${\bf h}$ and ${\bf R}$

These patterns occur with *equal probability*, so the respective targets occur with equal probability.

Thus the expected value of the square of the targets is:

$$E[t^2] = (1)^2(0.5) + (-1)^2(0.5) = 1.$$

In a similar way, the cross-correlation between the input and the target can be calculated:

$$\mathbf{h} = E[t\mathbf{z}] = (0.5)(1) \begin{bmatrix} 1\\1 \end{bmatrix} + (0.5)(-1) \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix}$$

The input correlation matrix \mathbf{R} is

$$\mathbf{R} = \mathbf{E}[\mathbf{z}\mathbf{z}^{\mathrm{T}}] = \mathbf{p}_1 \mathbf{p}_1^{\mathrm{T}}(0.5) + \mathbf{p}_2 \mathbf{p}_2^{\mathrm{T}}(0.5) =>$$

$$\mathbf{R} = (0.5) \left[\left[\begin{array}{c} 1\\1 \end{array} \right] \left[1 \ 1 \right] + \left[\begin{array}{c} 1\\-1 \end{array} \right] \left[1 \ -1 \right] \right] \left[1 \ -1 \right] \right] = \left[\begin{array}{c} 1&0\\0&1 \end{array} \right]$$

Therefore the MSE index is: $F(\mathbf{x}) = \mathbf{c} - 2\mathbf{x}^{\mathrm{T}}\mathbf{h} + \mathbf{x}^{\mathrm{T}}\mathbf{R}\mathbf{x} = = 1 - 2 [w_{1,1} \ w_{1,2}] \begin{bmatrix} 0 \\ 1 \end{bmatrix} + [w_{1,1} \ w_{1,2}] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} w_{1,1} \\ w_{1,2} \end{bmatrix} = = 1 - 2w_{1,2} + w_{1,1}^2 + w_{1,2}^2$

The Hessian matrix of F(x), which is equal to 2**R**, has both eigenvalues at 2. Therefore, the contours are circular. To find the center of the contours (the minimum point), we need to solve:

$$\mathbf{x}^{\star} = \mathbf{R}^{-1}\mathbf{h} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Thus, we have a minimum at $w_{1,1}=0$, $w_{1,2}=1$

The resulting MSE surface is shown below (plot done online with https://academo.org/demos/contour-plot/):

Appendix: strong, global, weak minimum

Appendix: Hessian

In the next lecture, an example of quadratic function optimization with Steepest Descent using Hessian. Differs from what we have presented in λ_k . Now it is:

$$\lambda_k = \frac{||\nabla f(x_k)||^3}{\nabla^T f(x_k) \mathbf{H} \nabla f(x_k)}$$

Analysis of convergence

- Note that in the LMS algorithm, \mathbf{x}_{k+1} is a function only of z(k-1), z(k-2), ...
- If we assume that successive input vectors are statistically independent, then **x** is independent of **z**. We will show in the following development that for stationary input processes meeting this condition, the expected value of the weight vector will converge to

$\mathbf{x}^* = \mathbf{R}^{-1} \mathbf{h}$

- This is the minimum mean square error
- Recall the LMS algorithm

$$\mathbf{x}_{k+1} = \mathbf{x}_k + 2\alpha e(k)\mathbf{z}(k)$$

• Taking expectations

$$E(\mathbf{x}_{k+1}) = E(\mathbf{x}_{k}) + 2\alpha E[e(k)\mathbf{z}(k)]$$

Analysis of convergence

• Substitute t(k)- $\mathbf{x}_k^T \mathbf{z}(k)$ for the error to give

 $E[\mathbf{x}_{k+1}] = E[\mathbf{x}_{k}] + 2\alpha \{ E[t(k)\mathbf{z}(k)] - E[(\mathbf{x}_{k}^{T}\mathbf{z}(k))\mathbf{z}(k)] \}$

- Finally, substitute $\mathbf{z}^T(k)\mathbf{x}_k$ for $\mathbf{x}_k{}^T\mathbf{z}(k)$ and rearrange terms to give

 $E[\mathbf{x}_{k+1}] = E[\mathbf{x}_{k}] + 2\alpha \{ E[t_k \mathbf{z}(k)] - E[\mathbf{z}(k)\mathbf{z}^{T}(k)\mathbf{x}_{k}] \}$

• Since \mathbf{x}_k is independent of $\mathbf{z}(k)$

 $E[\mathbf{x}_{k+1}] = E[\mathbf{x}_k] + 2\alpha \{\mathbf{h} \cdot \mathbf{R} E[\mathbf{x}_k]\}$

• This can be written as

 $E[\mathbf{x}_{k+1}] = [\mathbf{I} - 2\alpha \mathbf{R}] E[\mathbf{x}_k] + 2\alpha \mathbf{h}$

- This dynamic system will be stable if all of the eigenvalues of $[I 2\alpha R]$ fall inside the unit circle
- It is known that the eigenvalues of $[I 2\alpha R]$ will be $1-2\alpha \lambda_i$, where the λ_i are the eigenvalues of R.

Analysis of convergence

• Therefore the system will be stable if

 $1-2\alpha\lambda_i \ge -1$

- Since $\lambda_i{>}0,\,1{-}2\alpha\lambda_i$ is always less than 1. The condition on stability is therefore

 $\alpha < 1/\lambda_i$, for all i

• or

 $0 < \alpha < 1/\lambda_{max}$

• If this condition on stability is satisfied, the steady state solution is

 $E[\mathbf{x}_{ss}] = [\mathbf{I} \cdot 2\alpha \mathbf{R}] E[\mathbf{x}_{ss}] + 2\alpha \mathbf{h}$

• or

$$E[\mathbf{x}_{ss}] = \mathbf{R}^{-1}\mathbf{h} = \mathbf{x}^*$$