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Perceptron’s convergence 



Proof of convergence 

• Suppose that we have n training patterns that belong 

to two classes ω1 and ω2 

• the patterns of class ω2 have been multiplied by -1 

• If the classes are linearly separable, the learning 

algorithm yields a solution weight vector w* with 

the property 

 

 

• We can generalize  using a non-negative threshold T 

 

 



Proof of convergence 

• Thus, the learning algorithm becomes 

 

 

 

 

• We will consider only the indices k for which a 

correction takes place during training; thus 

 



Proof of convergence 

• Convergence of the algorithm means that, after some 

finite index km 

 

 

The proof is as follows: 

 

Taking the inner product of w* with both sides 

 

 

Since each term                                       is greater than T,  

then 

 

 

 

 

 



Proof of convergence 

Taking the Cauchy-Schwartz inequality, results in 

 

 

Which may be written in the following form 

 

 

 

Substituting the nominator from previous inequality, we 

get 



Proof of convergence 

Now, an alternative line of reasoning leads to a 

contradiction regarding ||w(k+1)||2 

From the perceptron updating rule, we have 

 

 

or 

 

 

Having in mind that                             

and letting                                   we have that 

 

 



Proof of convergence 

Adding these inequalities for j=1,2,…,k yields 

 

 

Comparing this relation with the following which we 

derived earlier, i.e., 

 

 

we see that they establish conflicting bounds on 

||w(k+1)||2  for sufficiently large k. In fact, k can be no 

larger than km which is the solution to the equation: 

 

 

Therefore, k is finite.                                               Q.E.D. 
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Activation functions 



A single-input neuron 

• The scalar input p is multiplied by the 

scalar weight w to form wp, one of the 

terms that is sent to the summer 

• The other input, 1, is multiplied by a 

bias b and then passed to the summer 
(The bias is much like a weight, except that it has a constant 

input of 1. If you do not want to have a bias in a particular 

neuron, it can be omitted.) 

• The summer output n, often referred to as the net input, goes 

into a transfer function f, which produces the scalar neuron 

output a. (We may also use the term “activation function” rather than transfer 

function and “offset” rather than bias.) 

• The transfer function is chosen by the designer, and then the 

parameters w and b will be adjusted by some learning rule 

• If we relate this simple model back to the biological neuron, the weight 

corresponds to the strength of a synapse, the cell body is represented by 

the summation and the transfer function, and the neuron output 

represents the signal on the axon 



The hard limit transfer function 

• The hard limit transfer function sets the output of the 

neuron to 0 if the function argument is less than 0, or 1 if its 

argument is greater than or equal to 0 

• We will use this function to create neurons that classify 

inputs into two distinct categories 

• Observe the effect of the weight and the bias 



The linear transfer function 

• The output of a linear transfer function is equal to its input: 

 

 

• Neurons with this transfer function are used in the 

ADALINE networks 



The log-sigmoid transfer function 

• The log-sigmoid transfer function takes the input (may have 

any value between + and - ) and                              

outputs into the range 0 to 1, according to: 

 

• It is commonly used in multilayer networks that are trained 

using backpropagation (in part because it is differentiable) 



More transfer functions 



More transfer functions 



Derivatives of  functions: hardlim 



Derivatives of  functions: purelin 



Derivatives of  functions: logsig 



Derivatives of  functions: tansig 



Derivatives of  functions: poslin (ReLU) 



Derivatives of  functions: Leaky-ReLU 



Derivatives of  functions: Swish 



Popular activation functions 



Multiple-input neuron 

• The net input is n=w1,1,p1 + w1,2p2 

+... +w1,RpR + b 

• In matrix form: n=Wp+b, where 

matrix W for the single neuron 

case has only one row 

• The neuron output can be written 

as: α= f(Wp+b) 

• Notation: The first index indicates 

the particular neuron destination 

for that weight. The second index 

indicates the source of the signal 

fed to the neuron 

• Thus, the indices in w1,2 say that this 

weight represents the connection to the 

first (and only) neuron from the second 

source 

Abbreviated notation 



A layer of neurons 

• A single-layer network of S neurons 

• each of the R inputs is connected to each 

of the neurons, and  

• the weight matrix now has S rows 

• You might ask if all the neurons in a 

layer must have the same transfer 

function. The answer is NO 

 

 

• W= 

 

 

 

Abbreviated notation 



Multiple layers of neurons 

• Now consider a network with several layers. Each layer has its own 

weight matrix W, its own bias vector b, a net input vector n and an 

output vector a 

• We may use superscripts to identify the layers. Specifically, we 

append the number of the layer as a  superscript to the names for 

each of these variables  



Multiple layers of neurons: Abbreviated notation 



Perceptron for multiple classes 

• Using the perceptron (training) rule to solve (during class 

lecture) the following classification problem: 

• Use hardlim as the activation function 

 

• and start with:  



Perceptron for multiple classes 

• Graphical illustration of the input 



Perceptron for multiple classes 

• Graphical illustration of the input 



Perceptron for multiple classes 

• The solution neural network is as follows: 



Perceptron for multiple classes 

• The solution decision boundaries 


