Nevpo-Aco@nS YTOAOYIGTIKY)
Neuro-Fuzzy Computing

AWdoKkwv —
Anunrprog Katcapog

@ Tp. HMMY

AwdAeln 4

Perceptron’s convergence

b

m - Proof of convergence

= . Suppose that we have n training patterns that belong
to two classes w; and o,
- the patterns of class w, have been multiplied by -1

- If the classes are linearly separable, the learning
algorithm yields a solution weight vector w* with
the property

/
* .
* We can generalize using a non-negative threshold T

, o
wrx; >1T, 1=1,...,n

)

Proof of convergence

* Thus, the learning algorithm becomes

w(k), if w' (k) (k) > T
w(k) + z;(k), if w (kK)xi(k) <T

w(k—l—l)—{

w(1) is arbitrary, and ¢ =1

* We will consider only the indices k for which a

correction takes place during training; thus

wk+1) =w(k) + z;(k)

and

/

w (k)x; (k) < T

B e,
- |

Proof of convergence

= . Convergence of the algorithm means that, after some
finite index k,

w(km) =wlky, +1) =wlk,, +2)=...

The proof 1s as follows:

w(k+ 1) = w(1) + 2(1) +2,(2) + -+ B
Taking the inner product of w* with both sides
w' (k+ Dw* = o' (Dw* + z,(1)w* + z,(2)w* + - - + z,(k)w*

Since each term a:,;(j)w*,j =1,2,...,k1s greater than T,

then w'(k+ D)w* > w'(1)w* + kT

2

. Proof of convergence

v Taking the Cauchy-Schwartz inequality, results in
w'(k+ Dw*]* < Jfw(k + 1)|* [Jw*|]
Which may be written in the following form

/ - %72
k)| = P

Substituting the nominator from previous inequality, we

! W' (Dw* + kT

Jw(k + 1" 2

2

. Proof of convergence

& Now, an alternative line of reasoning leads to a
contradiction regarding | |w(k+1)| |2

From the perceptron updating rule, we have

Jw(j +1)||* = [[w)|* + 20" (5)i(5) + [|z: (5)]]°
w(j +1)[1* = [[w(i)||* = 20" ()zi(§) + ||z ()]

Having in mind that w'(k)x;(k) < T
and letting Q — max”gjz(])HQ

Jw(j + D[] = [[w()|]* <2T+Q

we have that

!;'3,%

ﬂ - Proof of convergence
* Adding these inequalities for j=1,2,...,k yields
[w(k +D|* < [lwIF* + (2T + Q)k

Comparing this relation with the following which we

derived earlier, 1.e., .
° e\|(z(ke+ i)HQ - w' (1) w* + kT)?
N [|w*||2

we see that they establish conflicting bounds on
| |[w(k+1)| |2 for sufficiently large k. In fact, k can be no
larger than k_, which 1s the solution to the equation:

W' (1)w* + k,,, T]?
’w*H2 — ||w(1)H2‘|’ (2T+Q)km
Therefore, k 1s finite. Q.E.D.

Activation functions

A single-input neuron

The scalar input p 1s multiplied by the nputs ~ General Neuron
scalar weight w to form wp, one of the N\ p
terms that 1s sent to the summer

The other input, 1, 1s multiplied by a re—1Y — f >
bias b and then passed to the summer lb

(The bias 1s much like a weight, except that it has a constant A

mput of 1. If you do not want to have a bias in a particular — \ ppT— J/

neuron, it can be omitted.)

The summer output n, often referred to as the net input, goes
into a transfer function f, which produces the scalar neuron

output a. (We may also use the term “activation function” rather than transfer
function and “offset” rather than bias.)

The transfer function is chosen by the designer, and then the
parameters w and b will be adjusted by some learning rule

If we relate this simple model back to the biological neuron, the weight
corresponds to the strength of a synapse, the cell body i1s represented by
the summation and the transfer function, and the neuron output
represents the signal on the axon

&)

. The hard limit transfer function

- A";;
ﬁ

* The hard limit transfer function sets the output of the
neuron to 0 if the function argument is less than 0, or 1 if its
argument 1s greater than or equal to 0

* We will use this function to create neurons that classify
Inputs into two distinct categories

* Observe the effect of the weight and the bias

)

a = hardiim (n)

Hard Limit Transfer Function

-bhAw 0
-1
a = hardlim{(wp+b)

Single-Input hardiim Neuron

5
ﬁ The linear transfer function

. The output of a linear transfer function is equal to its input:

=11
 Neurons with this transfer function are used i1n the
ADALINE networks
))

—b.-"".t'é
T / ; - r

a = purelin(n) a = purelin(wp+b)

Linear Transfer Function Single-Input purelin Neuron

-1

b

. The log-sigmoid transfer function

The log-sigmoid transfer function takes the input (may have
any value between +o and - «) and 1
outputs into the range O to 1, according to: q =

1l +e "™

« It 1s commonly used in multilayer networks that are trained
using backpropagation (in part because it is differentiable)

m”m”irknm. .m“m”m”ifl

-bw 0 gl

-1 -1
a = logsig(n) a = logsig(wp+b)

| og-Sigmoid Transfer Function Single-Input /egsig Neuron

More transfer functions

! MATLAB
Name [nput/Output Relation Icon Function
Hard Limit @=0 < hardlim
a=1 n=z0 ’
i o a=-1 n<0 = :
Symmetrical Hard Limit | 1 hardlims
a=+1 nz0 =
Linear a=n 74 purelin
a=0 n<0
Saturating Linear a=n 0=n<] / satlin
a=1 n=1
Symmetric Saturating @=-1 ned
) TS a=n -1=n=]l / satlins

Linear

a =1 n>

More transfer functions

! MATLAB
Name [nput/Output Relation Icon Function
. : | :
Log-Sigmoid a = e f logsig
+ &
Hyperbolic Tangent e —e " :
Sigmoid TR f tansig
e + &
a=0 n<0
Positive Linear . oslin
a=n 0=n postu
. a = 1 neuron with max n -
Competitive C compet

a = (0 all other neurons

Derivatives of functions: hardlim

1.0

I.IIIIIIIIIIIIIIII)

| . Step Function
104 2 Derivative

Derivatives of functions: purelin

(.IIIIIIIII.I.q..@

o]

*
IIIIIIIIII‘_"III>

*

| W Linear Function

1 I Derivative

b 4

Derivatives of functions: logsig

“-‘-.--‘I--l:}

L} Sigmoid
I Derivative *

Derivatives of functions: tansig

o+ B Hyperbolic Tanjant

.

Ceanannn=**"" 104 I Derivative

W

Derivatives of functions: poslin (ReLU)

Derivatives of functions: Leaky-RelLU

ACTIVATION
FUNCTION

Leaky RelLU flx) = {

EQUATION

0.01 forx <0
x forx=0

o7

1_0 III.IIII:-‘IIII)

| M Leaky RelU
1 04 B Derivative

b 4

Derivatives of functions: Swish

ACTIVATION
FUNCTION

EQUATION

B =0for f(x)=x

Swish Function f(x) =2xa(fx) = 5 P E5) = e () (—o0,)

W Sswish .
| Derivative B

25

20

15

10

05

00

0.5

Popular activation functions

Sgmoid
Tanh
RelLU

Leaky Rel L}

Swash

v The net input 1s Nn=wj 1,p; + Wy 9Py
+...+tw;gpr + b

* In matrix form: n=Wp+b, where
matrix W for the single neuron
case has only one row

* The neuron output can be written
as: a= f(Wp+b)

* Notation: The first index indicates
the particular neuron destination
for that weight. The second index
indicates the source of the signal
fed to the neuron

* Thus, the indices in w, ; say that this
weight represents the connection to the
first (and only) neuron from the second
source

. Multiple-input neuron

Inputs Multiple-Input Neuron

r N7

—/ \

1

A\

a I

a=f(Wp+b)

Abbreviated notation

Input Multiple-Input Neuron
r N A\
P a
W
RX1 1m\‘ ; TX1
1x1
=P b N
R 1x1
__/ \ J

a=f(Wp+b)

N

ﬁ A layer of neurons N)

m a

Y >

Wi

&7 A single-layer network of S neurons P T
+ each of the R inputs 1s connected to each », b .
of the neurons, and ¥ —»
* the weight matrix now has S rows ” +bz L
* You might ask if all the neurons in a Pr o] N g BN
layer must have the same transfer [
: : .
function. The answer is NO C L y
a=f(Wp+b)
W Wy e Wy g Abbreviated notation
we W " Input Layer of S Neurons
« W= | >0 52 Tk ShYe N
' ' ; p a
Ws 1 Ws 2 oo WgR| =P W -\ —>
SXR n
/,@m’ f
1=¥ b
R Sx1 S
__/ \ J

a=f(Wp+b)

%)
ﬁ - Multiple layers of neurons

Now consider a network with several layers. Each layer has its own
welght matrix W, its own bias vector b, a net input vector n and an
output vector a

- We may use superscripts to identify the layers. Specifically, we
append the number of the layer as a superscript to the names for
each of these variables

Inputs First Layer Second Layer Third Layer
r N0 A
1 ai
— i
1, a*,
—. i
”151 (:(353
—|. >
blsl
J
al = f1(Wip+b!) a2 = f2(W2al+b2) a3 = £ 3 (W3a2+b3)

a3 = £3 (W31 2(W2f 1 (Wip+Db1)+b2)+b3)

MU.ltlple layeI‘S Of Neurons: Abbreviated notation

First Layer Second Layer Third Layer
N N A\
al a’ a3
wi — W2 —P W2 —
S1x1 , $2x 1 $2x 1
S‘KR\C_DLI’ f1 ' .*sﬂxﬂ\@i’ £2 ’ 53}:52\‘ n° £3 '
Sy 1 52x1 53x
hl—/' 1P hj b hﬂf
R 51:':1 511 5211 53:':1 53
—/ \ RN RN J

al =f1(Wip+b!)

a2 =f2(W2al+h2)

a3 = f3 (Wia2+b?)

a3 = £3 (W3 £2(W2f 1 (Wip+Db!)+b?) +b?)

)

& ~ Perceptron for multiple classes
. Using the perceptron (training) rule to solve (during class

lecture) the following classification problem:
* Use hardlim as the activation function

* and start with: W) = L‘} ﬂ h(0) = m

class 1:-:| p, = ! Py = ! L._n:*lass 2: | P; = : Py = 2 Lﬁ

| 1 2| | | 1 0| |
class 3:< ps = = P = -2 |:-? class 4:) p- = -1 . Ps = -2 |
T2 1] = 2]

Perceptron for multiple classes

Perceptron for multiple classes

sg Perceptron for multiple classes

* The solution neural network 1s as follows:

Input Hard Limit Layer
r N '
P _ﬂ’
W
2x1 2x1
2:-:2\ - J:
2x1
1= b %
2 2x1 2
\/ \ J

a = hardlim(Wp+b)

Perceptron for multiple classes

