
1

Νεςπο-Ασαυήρ Υπολογιστική

Neuro-Fuzzy Computing

Διδάσκων –

 Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥ

 Πανεπιστήμιο Θεσσαλίαρ

Διάλεξη 4η

2

Perceptron’s convergence

Proof of convergence

• Suppose that we have n training patterns that belong

to two classes ω1 and ω2

• the patterns of class ω2 have been multiplied by -1

• If the classes are linearly separable, the learning

algorithm yields a solution weight vector w* with

the property

• We can generalize using a non-negative threshold T

Proof of convergence

• Thus, the learning algorithm becomes

• We will consider only the indices k for which a

correction takes place during training; thus

Proof of convergence

• Convergence of the algorithm means that, after some

finite index km

The proof is as follows:

Taking the inner product of w* with both sides

Since each term is greater than T,

then

Proof of convergence

Taking the Cauchy-Schwartz inequality, results in

Which may be written in the following form

Substituting the nominator from previous inequality, we

get

Proof of convergence

Now, an alternative line of reasoning leads to a

contradiction regarding ||w(k+1)||2

From the perceptron updating rule, we have

or

Having in mind that

and letting we have that

Proof of convergence

Adding these inequalities for j=1,2,…,k yields

Comparing this relation with the following which we

derived earlier, i.e.,

we see that they establish conflicting bounds on

||w(k+1)||2 for sufficiently large k. In fact, k can be no

larger than km which is the solution to the equation:

Therefore, k is finite. Q.E.D.

9

Activation functions

A single-input neuron

• The scalar input p is multiplied by the

scalar weight w to form wp, one of the

terms that is sent to the summer

• The other input, 1, is multiplied by a

bias b and then passed to the summer
(The bias is much like a weight, except that it has a constant

input of 1. If you do not want to have a bias in a particular

neuron, it can be omitted.)

• The summer output n, often referred to as the net input, goes

into a transfer function f, which produces the scalar neuron

output a. (We may also use the term “activation function” rather than transfer

function and “offset” rather than bias.)

• The transfer function is chosen by the designer, and then the

parameters w and b will be adjusted by some learning rule

• If we relate this simple model back to the biological neuron, the weight

corresponds to the strength of a synapse, the cell body is represented by

the summation and the transfer function, and the neuron output

represents the signal on the axon

The hard limit transfer function

• The hard limit transfer function sets the output of the

neuron to 0 if the function argument is less than 0, or 1 if its

argument is greater than or equal to 0

• We will use this function to create neurons that classify

inputs into two distinct categories

• Observe the effect of the weight and the bias

The linear transfer function

• The output of a linear transfer function is equal to its input:

• Neurons with this transfer function are used in the

ADALINE networks

The log-sigmoid transfer function

• The log-sigmoid transfer function takes the input (may have

any value between + and -) and

outputs into the range 0 to 1, according to:

• It is commonly used in multilayer networks that are trained

using backpropagation (in part because it is differentiable)

More transfer functions

More transfer functions

Derivatives of functions: hardlim

Derivatives of functions: purelin

Derivatives of functions: logsig

Derivatives of functions: tansig

Derivatives of functions: poslin (ReLU)

Derivatives of functions: Leaky-ReLU

Derivatives of functions: Swish

Popular activation functions

Multiple-input neuron

• The net input is n=w1,1,p1 + w1,2p2

+... +w1,RpR + b

• In matrix form: n=Wp+b, where

matrix W for the single neuron

case has only one row

• The neuron output can be written

as: α= f(Wp+b)

• Notation: The first index indicates

the particular neuron destination

for that weight. The second index

indicates the source of the signal

fed to the neuron

• Thus, the indices in w1,2 say that this

weight represents the connection to the

first (and only) neuron from the second

source

Abbreviated notation

A layer of neurons

• A single-layer network of S neurons

• each of the R inputs is connected to each

of the neurons, and

• the weight matrix now has S rows

• You might ask if all the neurons in a

layer must have the same transfer

function. The answer is NO

• W=

Abbreviated notation

Multiple layers of neurons

• Now consider a network with several layers. Each layer has its own

weight matrix W, its own bias vector b, a net input vector n and an

output vector a

• We may use superscripts to identify the layers. Specifically, we

append the number of the layer as a superscript to the names for

each of these variables

Multiple layers of neurons: Abbreviated notation

Perceptron for multiple classes

• Using the perceptron (training) rule to solve (during class

lecture) the following classification problem:

• Use hardlim as the activation function

• and start with:

Perceptron for multiple classes

• Graphical illustration of the input

Perceptron for multiple classes

• Graphical illustration of the input

Perceptron for multiple classes

• The solution neural network is as follows:

Perceptron for multiple classes

• The solution decision boundaries

