

Νευρο-Ασαφής Υπολογιστική Neuro-Fuzzy Computing

Διδάσκων – Δημήτριος Κατσαρός

@ Τμ. ΗΜΜΥΠανεπιστήμιο Θεσσαλίας

Διάλεξη 3η

Steepest descent

The algorithm (1/3)

<u>Αλγόριθμος 4.2, Μέθοδος της μεγαλύτερης αλλαγής, Cauchy</u>

Еστω μία πραγματική συνάρτηση $f \in C^1$ στο $E \subseteq \Re^n$. Για τη εύρεση ενός σημείου \mathbf{x}^* το οποίο δίνει τοπικό ελάχιστο μέσα στο Eεπιλέγουμε μία αρχική προσέγγιση $\mathbf{x}_0 \in E$ και δημιουργούμε μία ακολουθία σημείων $\{\mathbf{x}_k\}$ η οποία συγκλίνει στο βέλτιστο σημείο. Για να πάμε από το σημείο \mathbf{x}_k στο \mathbf{x}_{k+1} ακολουθούμε την εξής διαδικασία: **Βήμα 1:** Υπολογίζουμε τη κλίση $\nabla f(\mathbf{x}_k)$

<u>**Βήμα 2:</u> Υπολογίζουμε τη διεύθυνση μετάβασης** $\mathbf{s}_{k} = -\frac{\nabla f(\mathbf{x}_{k})}{\|\nabla f(\mathbf{x}_{k})\|}$ </u>

The algorithm (23)

<u>Βήμα 3:</u> Λύουμε το πρόβλημα Minimize $f(\mathbf{x}_k + \lambda_k \mathbf{s}_k)$ για να βρούμε 2.20 το βήμα λ. Η λύση μπορεί να βρεθεί $\alpha) A\pi \delta \tau \eta v \frac{d f\left(\mathbf{x}_{k} - \lambda_{k} \frac{\nabla f(\mathbf{x}_{k})}{\|\nabla f(\mathbf{x}_{k})\|}\right)}{d\lambda_{k}} = 0$ β) Από την εφαρμογή κάποιας μονοδιάστατης μεθόδου (π.χ. χρυσών τομών)

Summary of gradient descent

- The gradient of a function is a vector perpendicular to the contour of f(x) that passes from x₀, and defines the direction of maximum local increase of f(x) at this point (steepest ascent direction)
- Thus looking for the optimal x*, while having an approximation x_k , imposes us to search along the direction which is opposite to the direction of $-\nabla f(x_k)$
- Unit vector along this direction is: $\frac{-\nabla f(x_k)}{||\nabla f(x_k)||}$
- Therefore, each step is: $x_{k+1} = x_k + \lambda_k s_k$, i.e.,

$$x_{k+1} = x_k + \lambda_k \Big(-\frac{\nabla f(x_k)}{||\nabla f(x_k)||} \Big) = x_k - \lambda_k \Big(\frac{\nabla f(x_k)}{||\nabla f(x_k)||} \Big)$$

An example of gradient descent

- We wish to find the minimum of $f(x) = x_1^2 + 5x_2^2 + x_3^2 4$
- Let us, start with the initial guess $x_0 = (2,2,2)^T$
- The gradient is: $\nabla f(x) = \begin{pmatrix} 2x_1 \\ 10x_2 \\ 2x_3 \end{pmatrix}$
- Thus, $||\nabla f(x)|| = \sqrt{\nabla^T f(x)} \nabla f(x) = 2\sqrt{x_1^2 + 25x_2^2 + x_3^2}$
- At $x_0 = (2,2,2)^T$, the above equation yields: $2\sqrt{108}$
- Direction of descending: $\frac{-\nabla f(x_0)}{||\nabla f(x_0)||} = -\frac{1}{2\sqrt{108}} \begin{pmatrix} 4\\20\\4 \end{pmatrix} = -\frac{1}{\sqrt{108}} \begin{pmatrix} 2\\10\\2 \end{pmatrix}$ • Thus, $x_1 = (2, 2, 2)^T - \lambda_0 \frac{1}{\sqrt{108}} (2, 10, 2)^T$ $x_1 = \left(2 - \frac{2\lambda_0}{\sqrt{108}}, 2 - \frac{10\lambda_0}{\sqrt{108}}, 2 - \frac{2\lambda_0}{\sqrt{108}}\right)$

An example of gradient descent

• Recall,
$$f(x) = x_1^2 + 5x_2^2 + x_3^2 - 4$$

• Thus
$$f(x_1) = \left(2 - \frac{2\lambda_0}{\sqrt{108}}\right)^2 + 5\left(2 - \frac{10\lambda_0}{\sqrt{108}}\right)^2 + \left(2 - \frac{2\lambda_0}{\sqrt{108}}\right)^2 - 4$$

• i.e., $f(x_1) = 2\left(2 - \frac{2\lambda_0}{\sqrt{108}}\right)^2 + 5\left(2 - \frac{10\lambda_0}{\sqrt{108}}\right)^2 - 4$

- What is the optimal λ_0 ;
 - Take the derivative of the previous equation relative to λ_0 and set to 0

$$\frac{df(x_1)}{d\lambda_0} = 4\left(2 - \frac{2\lambda_0}{\sqrt{108}}\right)\left(-\frac{2}{\sqrt{108}}\right) + 10\left(2 - \frac{10\lambda_0}{\sqrt{108}}\right)\left(-\frac{10}{\sqrt{108}}\right) = 0$$

which leads to: $\frac{254}{\sqrt{108}}\lambda_0 = 54 \implies \lambda_0 \approx 2.21$

• Therefore: $x_1 = (1.575, -0.127, 1.575)^T$

An example of gradient descent

k	x_k^T	λ_k	$\nabla^T f(x_k)$	$f(x_k)$
0	(2,2,2)	2.2100	(4, 20, 4)	24
1	$(1,575,-0.127,\ 1.575)$	1.7807	(3.15, -1.27, 3.15)	1.042
2	(0.364, 0.361, 0.364)	0.5100	(0.728, 3.61, 0.728)	-3.08
3	(0.265, -0.13, 0.265)	0.1824	(0.53, -1.3, 0.53)	-3.775
4	(0.190, 0.032, 0.190)	0.1550	(0.38,0.32,0.38)	-3.923
5	(0.090, -0.04, 0.090)	0.0610	$(0.\overline{18}, -0.4, 0.18)$	-3.976
6	(0.060, 0.010, 0.060)		(0.12,0.1,0.12)	-3.999

- It holds that $x^* = (0,0,0)^T$ and
- opt value $f(x^*) = -4$

The Perceptron network

Back to single-node perceptron

The reward-punishment concept

- Given two training sets belong to two classes ω_1 and $\omega_2,$ respectively
- let w(1) represent the initial weight vector, which may be arbitrary chosen
- c, is a <u>positive</u> constant (should it be?)
- Then, at the k-th training step, we execute:
- If $x(k) \in \omega_1$ and $w'(k)x(k) \leq 0$, replace w(k) by w(k+1)=w(k) + cx(k)
- If $x(k) \in \omega_2$ and $w'(k)x(k) \ge 0$, replace w(k) by w(k+1)=w(k) - cx(k)
- Otherwise,

w(k+1)=w(k)

• Convergence occurs when perceptron produces correct output for each and every input

Workout training example

- Train a single-node perceptron to learn the following two-class case:
 - learning rate c=1, threshold=0, and w(1)=(0 0 0)'

Recall the Gradient (Steepest) Descent for finding (a/the) minimum of a function

• Recall that the gradient of a function f with respect to a vector $y=(y_1, y_2, ..., y_n)$ ' is defined as

$$grad \ f(y) = \frac{df(y)}{dy} = \begin{pmatrix} \frac{\partial f}{\partial y_1} \\ \frac{\partial f}{\partial y_2} \\ \vdots \\ \frac{\partial f}{\partial y_n} \end{pmatrix}$$

• It points to the direction of the maximum rate of increase of the function f, when the argument increases

Recall the Gradient (Steepest) Descent for finding (a/the) minimum of a function

- We will consider functions with a unique minimum
- Consider the criterion function $J(w,x) = (|w^\prime x| w^\prime x)$
- Apparently, its minimum is J(w,x)=0
- Thus, we increment w in the direction of negative gradient of J(w,x)
- If we let w(k) represent the value of w at the kth step, the gradient descent can be written:

$$w(k+1) = w(k) - c \left\{ \frac{\partial J(w, x)}{\partial w} \right\}_{w=w(k)}$$

Perceptron algorithm as a case of Gradient Descent-based optimization

• Let the criterion function be

$$J(w, x) = \frac{1}{2}(|w'x| - w'x)$$

It holds that $\frac{\partial J}{\partial w} = \frac{1}{2}[(x \ sgn(w'x) - x)]$

- Substituting the last equation into the last equation of the previous slide, we get: $w(k+1) = w(k) + \frac{c}{2} \{x(k) - x(k) \ sgn(w'(k)x(k))\}$
- From the definition of the sign (sgn) function: $w(k+1) = w(k) + c \begin{cases} 0, & \text{if } w'(k)x(k) > 0\\ x(k), & \text{if } w'(k)x(k) \le 0 \end{cases}$

Decision boundary and the perpendicular vector

Decision boundary and vectors

• Consider the following neural network:

- So, a = hardlim(n) = hardlim(Wp+b) = hardlim(w_{1,1} p₁ + w_{1,2} p₂ + b)
- The decision boundary is determined by those net inputs that satisfy: $w_{1,1} p_1 + w_{1,2} p_2 + b = 0$
- <u>The weights define a decision boundary, and</u> <u>vector W is perpendicular to that boundary</u>

Basic geometric concepts

- > A line L is defined: $Ax + By + \Gamma = 0$, $|A| + |B| \neq 0$ It holds that:
 - This line is parallel to vector $\delta_1(B, -A)$
 - This line is perpendicular to vector $\delta_2(A, B)$

PROOF

- Condition for parallelism
 - + If B = 0, then L // y'y axis, and $\delta_1(0,$ -A) // y'y axis. Thus, L // δ_1
 - If $B \neq 0$, then $slope_{\delta 1}$ = -A/B and $slope_L$ = -A/B. Thus, L // δ_1
- Condition for perpendicularity
 - We know that if dot product(δ_1, δ_2)=0, then $\delta_1 \perp \delta_2$
 - Indeed, $\delta_1 \bullet \delta_2 = B * A + (-A) * B = 0$

Basic geometric concepts: Example

➤ Consider the line: 3x - 4y + 12 = 0
➤ So, A= 3, B= -4, and Γ= 12

