Nєиро-Абаюи́я Үлодоүıбтьки́ Neuro-Fuzzy Computing

$\Delta 1 \delta \alpha ́ \sigma \kappa \omega v$ -
$\Delta \eta \mu \eta ́ \tau \rho 1 \circ \varsigma$ K $\alpha \tau \sigma \alpha \rho o ́ \varsigma$
@ T μ. HMMY
Паveлıбтท́ $\mu \iota 0$ ©єбба入ías
$\Delta \mathrm{ló} \lambda \varepsilon \xi \xi \mathbf{3 \eta}$

Steepest descent

The algorithm (1/3)

The algorithm (23)

 то $\beta \dot{\mu} \mu \alpha \lambda_{k}$. H λ vín $\mu \pi$ ореí v α ß $\beta \varepsilon \theta \varepsilon i ́$

 тонळ́v)

The algorithm (3/3)

 ঠı α орєтıка́ $\alpha v \alpha к и к \lambda \not ́ v о и \mu \varepsilon . ~$

Summary of gradient descent

- The gradient of a function is a vector perpendicular to the contour of $f(x)$ that passes from x_{0}, and defines the direction of maximum local increase of $f(x)$ at this point (steepest ascent direction)
- Thus looking for the optimal x^{*}, while having an approximation x_{k}, imposes us to search along the direction which is opposite to the direction of $-\nabla f\left(x_{k}\right)$
- Unit vector along this direction is: $\frac{-\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}$
- Therefore, each step is: $\mathrm{x}_{\mathrm{k}+1}=\mathrm{x}_{\mathrm{k}}+\lambda_{\mathrm{k}} \mathrm{s}_{\mathrm{k}}$, i.e.,

$$
x_{k+1}=x_{k}+\lambda_{k}\left(-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}\right)=x_{k}-\lambda_{k}\left(\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}\right)
$$

An example of gradient descent

- We wish to find the minimum of $f(x)=x_{1}{ }^{2}+5 x_{2}{ }^{2}+x_{3}{ }^{2}-4$
- Let us, start with the initial guess $x_{0}=(2,2,2)^{T}$
- The gradient is: $\nabla f(x)=\left(\begin{array}{c}2 x_{1} \\ 10 x_{2} \\ 2 x_{3}\end{array}\right)$
- Thus, $\|\nabla f(x)\|=\sqrt{\nabla^{T} f(x) \nabla f(x)}=2 \sqrt{x_{1}^{2}+25 x_{2}^{2}+x_{3}^{2}}$
- At $\mathrm{x}_{0}=(2,2,2)^{\mathrm{T}}$, the above equation yields: $2 \sqrt{108}$
- Direction of descending: $\frac{-\nabla f\left(x_{0}\right)}{\left\|\nabla f\left(x_{0}\right)\right\|}=-\frac{1}{2 \sqrt{108}}\left(\begin{array}{c}4 \\ 20 \\ 4\end{array}\right)=-\frac{1}{\sqrt{108}}\left(\begin{array}{c}2 \\ 10 \\ 2\end{array}\right)$
- Thus, $x_{1}=(2,2,2)^{T}-\lambda_{0} \frac{1}{\sqrt{108}}(2,10,2)^{T}$

$$
x_{1}=\left(2-\frac{2 \lambda_{0}}{\sqrt{108}}, 2-\frac{10 \lambda_{0}}{\sqrt{108}}, 2-\frac{2 \lambda_{0}}{\sqrt{108}}\right)
$$

An example of gradient descent

- Recall, $\mathrm{f}(\mathrm{x})=\mathrm{x}_{1}{ }^{2}+5 \mathrm{x}_{2}{ }^{2}+\mathrm{x}_{3}{ }^{2}-4$
- Thus $f\left(x_{1}\right)=\left(2-\frac{2 \lambda_{0}}{\sqrt{108}}\right)^{2}+5\left(2-\frac{10 \lambda_{0}}{\sqrt{108}}\right)^{2}+\left(2-\frac{2 \lambda_{0}}{\sqrt{108}}\right)^{2}-4$
- i.e., $f\left(x_{1}\right)=2\left(2-\frac{2 \lambda_{0}}{\sqrt{108}}\right)^{2}+5\left(2-\frac{10 \lambda_{0}}{\sqrt{108}}\right)^{2}-4$
- What is the optimal λ_{0};
- Take the derivative of the previous equation relative to λ_{0} and set to 0

$$
\frac{d f\left(x_{1}\right)}{d \lambda_{0}}=4\left(2-\frac{2 \lambda_{0}}{\sqrt{108}}\right)\left(-\frac{2}{\sqrt{108}}\right)+10\left(2-\frac{10 \lambda_{0}}{\sqrt{108}}\right)\left(-\frac{10}{\sqrt{108}}\right)=0
$$

- which leads to: $\frac{254}{\sqrt{108}} \lambda_{0}=54 \Longrightarrow \lambda_{0} \approx 2.21$
- Therefore: $x_{1}=(1.575,-0.127,1.575)^{T}$

An example of gradient descent

k	x_{k}^{T}	λ_{k}	$\nabla^{T} f\left(x_{k}\right)$	$f\left(x_{k}\right)$
0	$(2,2,2)$	2.2100	$(4,20,4)$	24
1	$(1,575,-0.127,1.575)$	1.7807	$(3.15,-1.27,3.15)$	1.042
2	$(0.364,0.361,0.364)$	0.5100	$(0.728,3.61,0.728)$	-3.08
3	$(0.265,-0.13,0.265)$	0.1824	$(0.53,-1.3,0.53)$	-3.775
4	$(0.190,0.032,0.190)$	0.1550	$(0.38,0.32,0.38)$	-3.923
5	$(0.090,-0.04,0.090)$	0.0610	$(0.18,-0.4,0.18)$	-3.976
6	$(0.060,0.010,0.060)$		$(0.12,0.1,0.12)$	-3.999

- It holds that $X^{*}=(0,0,0)^{T}$ and
- opt value $f\left(x^{*}\right)=-4$

The Perceptron network

Back to single-node perceptron

The reward-punishment concept

- Given two training sets belong to two classes ω_{1} and ω_{2}, respectively
- let w(1) represent the initial weight vector, which may be arbitrary chosen
- c, is a positive constant (should it be?)
- Then, at the k-th training step, we execute:
- If $x(k) \in \omega_{1}$ and $w^{\prime}(k) x(k) \leq 0$, replace $w(k)$ by

$$
\mathrm{w}(\mathrm{k}+1)=\mathrm{w}(\mathrm{k})+\mathrm{cx}(\mathrm{k})
$$

- If $x(k) \in \omega_{2}$ and $w^{\prime}(k) x(k) \geq 0$, replace $w(k)$ by

$$
\mathrm{w}(\mathrm{k}+1)=\mathrm{w}(\mathrm{k})-\mathrm{cx}(\mathrm{k})
$$

- Otherwise,

$$
\mathrm{w}(\mathrm{k}+1)=\mathrm{w}(\mathrm{k})
$$

- Convergence occurs when perceptron produces correct output for each and every input

Workout training example

- Train a single-node perceptron to learn the following two-class case:
- learning rate $\mathrm{c}=1$, threshold $=0$, and $\mathrm{w}(1)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{\prime}$

Recall the Gradient (Steepest) Descent for finding (a/the) minimum of a function

- Recall that the gradient of a function f with respect to a vector $y=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)^{\prime}$ is defined as

$$
\operatorname{grad} f(y)=\frac{d f(y)}{d y}=\left(\begin{array}{c}
\frac{\partial f}{\partial y_{1}} \\
\frac{\partial f}{\partial y_{2}} \\
\vdots \\
\frac{\partial f}{\partial y_{n}}
\end{array}\right)
$$

- It points to the direction of the maximum rate of increase of the function f, when the argument increases

Recall the Gradient (Steepest) Descent for finding (a/the) minimum of a function

- We will consider functions with a unique minimum
- Consider the criterion function

$$
J(w, x)=\left(\left|w^{\prime} x\right|-w^{\prime} x\right)
$$

- Apparently, its minimum is $\mathrm{J}(\mathrm{w}, \mathrm{x})=0$
- Thus, we increment w in the direction of negative gradient of $\mathrm{J}(\mathrm{w}, \mathrm{x})$
- If we let $w(k)$ represent the value of w at the k th step, the gradient descent can be written:

$$
w(k+1)=w(k)-c\left\{\frac{\partial J(w, x)}{\partial w}\right\}_{w=w(k)}
$$

Perceptron algorithm as a case of Gradient Descent-based optimization

- Let the criterion function be

$$
\begin{aligned}
J(w, x) & =\frac{1}{2}\left(\left|w^{\prime} x\right|-w^{\prime} x\right) \\
\text { hat } \frac{\partial J}{\partial w} & =\frac{1}{2}\left[\left(x \operatorname{sgn}\left(w^{\prime} x\right)-x\right)\right]
\end{aligned}
$$

- Substituting the last equation into the last equation of the previous slide, we get: $w(k+1)=w(k)+\frac{c}{2}\left\{x(k)-x(k) \operatorname{sgn}\left(w^{\prime}(k) x(k)\right)\right\}$
- From the definition of the sign (sgn) function:

$$
w(k+1)=w(k)+c \begin{cases}0, & \text { if } w^{\prime}(k) x(k)>0 \\ x(k), & \text { if } w^{\prime}(k) x(k) \leq 0\end{cases}
$$

Decision boundary and the perpendicular vector

Decision boundary and vectors

- Consider the following neural network:

- $\operatorname{So}, \mathrm{a}=\operatorname{hardlim}(\mathrm{n})=\operatorname{hardlim}(\mathbf{W p}+\mathrm{b})=$ $\operatorname{hardlim}\left(\mathrm{w}_{1,1} \mathrm{p}_{1}+\mathrm{w}_{1,2} \mathrm{p}_{2}+\mathrm{b}\right)$
- The decision boundary is determined by those net inputs that satisfy: $\mathrm{w}_{1,1} \mathrm{p}_{1}+\mathrm{w}_{1,2} \mathrm{p}_{2}+\mathrm{b}=0$
- The weights define a decision boundary, and vector \mathbf{W} is perpendicular to that boundary

Basic geometric concepts

$>$ A line L is defined: $\mathrm{Ax}+\mathrm{By}+\Gamma=0,|\mathrm{~A}|+|\mathrm{B}| \neq 0$
It holds that:

- This line is parallel to vector $\delta_{1}(\mathrm{~B},-\mathrm{A})$
- This line is perpendicular to vector $\delta_{2}(\mathrm{~A}, \mathrm{~B})$

PROOF

- Condition for parallelism
- If $\mathrm{B}=0$, then $\mathrm{L} / /$ y'y axis, and $\delta_{1}(0,-\mathrm{A}) / /$ y'y axis. Thus, $\mathrm{L} / / \delta_{1}$
- If $B \neq 0$, then slope ${ }_{\delta 1}=-A / B$ and slope $_{L}=-A / B$. Thus, $L / / \delta_{1}$
- Condition for perpendicularity
- We know that if dot product $\left(\delta_{1}, \delta_{2}\right)=0$, then $\delta_{1} \perp \delta_{2}$
- Indeed, $\delta_{1} \bullet \delta_{2}=\mathrm{B} * \mathrm{~A}+(-\mathrm{A}) * \mathrm{~B}=0$

Basic geometric concepts: Example

$>$ Consider the line: $3 \mathrm{x}-4 \mathrm{y}+12=0$
$>$ So, $\mathrm{A}=3, \mathrm{~B}=-4$, and $\Gamma=12$

