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. Introduction
e

* Neural networks (NN),

* beautiful biologically-inspired programming
paradigm which enables a computer to learn from
observational data

* Deep Learning (DL)

- powerful set of techniques for learning in neural
networks
* Neural networks and deep learning currently
provide the best solutions to many problems 1n
* 1mage recognition
* speech recognition

- natural language processing



Milestones in NN evolution
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Some contemporary NN persons

Michael I. Jordan
1956. UC Berkeley

Geoffrey Hinton
1947, Google & U of T, BP
92.9-93.10 =200 papers

Andrew NG( 5 FiK)
1976. Stanford. Coursera
Google Brain = Baidu Brair

AT&T,
| cnl]eague\‘a,_

Yoshua Bengio

Yann LeCun
wend 964, UdeM. RNN & NLP

1960. Facebook & NYU. ; 4 t 5 th
CNN & LeNet g BN postge & o]
3 (d)energy-based n




Geoffrey Hinton Yoshua Bengio Yann LeCun



Historical waves of Artificial NN

. 0.000250 : - : - :
_:,:‘E —— cybernetics
= . . - M e s e e a -

':: 0.000200H . (connectionism + neural networks) - T .
= ,
T 0000150 f- - -« v o e et S % A S
o : " . : s :
< 0.000100F------- R o R TR foe S
> : : : : : :
= . . . . .
= . . . ' . .
g 000000 L - - - - ... P AT Y T " PSP feasnna
) ¥ 5 i i .

0.000000 R '

1940 1950 1960 1970 1980 1990 2000

Year

Figure 1.7: The figure shows two of the three historical waves of artificial neural nets
research, as measured by the frequency of the phrases “cybernetics” and “connectionism” or
“neural networks” according to Google Books (the third wave is too recent to appear). The
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1. Adaptive linear element (Widrow and Hoff, 1960)

2. Neocognitron (Fukushima, 1980)

3. GPU-accelerated convolutional network (Chellapilla et al., 2006)

4. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)

5. Unsupervised convolutional network (Jarrett et al., 2009)

6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

7. Distributed autoencoder (Le et al., 2012)

8. Multi-GPU convolutional network (Krizhevsky et al., 2012)

9. COTS HPC unsupervised convolutional network (Coates et al., 2013)
10. GoogLeNet (Szegedy et al., 2014a)



NN si1ze over time
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L Perceptror! (OB, 195_8’ 1962) 11. GPU-accelerated convolutional network (Chellapilla et al., 2006)
2. cuiclplatie Wl Slirenl (00 by el =0, e 12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a)
=, NEOERETIIGOT (Fukughlma, 1980) 13. GPU-accelerated deep belief network (Raina et al., 2009)
4. Barly back-propagation network (Rumelhart et al., 1986b) 14. Unsupervised convolutional network (Jarrett et al., 2009)
S. Re_current neural network for speech recognition (Robinson and 15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010)
FaII5|de_, 1991) » i 16. OMP-1 network (Coates and Ng, 2011)
6. Multilayer perceptron for speech recognition (Bengio et al., 1991) 17. Distributed autoencoder (Le et al., 2012)
7. Mean field sigmoid belief network (Saul et al., 1996) 18. Multi-GPU convolutional network (Krizhevsky et al., 2012)
8. LeNet-5 (LeCun et al., 1998b) 19. COTS HPC unsupervised convolutional network (Coates et al.,
9. Echo state network (Jaeger and Haas, 2004) 2013)

10. Deep belief network (Hinton et al., 2006) 20. GoogLeNet (Szegedy et al., 2014a)



Neural Networks their relation to Al
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How does a neuron look like?
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How does a neuron look like?
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1\% How does a computation neuron look like?
ﬁ The McCulloch-Pitts neuron
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Neural computation of logical OR
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Neural computation of logical AND
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Types of neural networks
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Which architectures we will deal with?
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Which architectures we will deal with?
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Introduction to
Fuzzy Logic




Precision and Significance

‘ Precision and Significance in the Real World I
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Neural pre-attentive processing

The human visual systems behaves as an adaptive system: The
Kanizsa square exists in our brain, not ‘out there’

The four symmetric ink patterns are noumena, “things in
themselves”, according to Immanuel Kant

The noumena-induced sensation produces the Kanizsa-square
phenomenon or perception in our brain

The real-time interaction of millions of competing and
cooperating neurons produces the Kanizsa-square illusion, and
everything we “see”

The Kanizsa square ‘ a




Bivalent paradoxes: Where classic logic fails

Does the liar from Crete lies when he says that all
Cretans are liars?

Russell’s barber 1s a man 1n a town who advertises his
services with the logo: “I shave all, and only, those
men who do not shave themselves”

* Who shaves the barber?

Consider the card that says on one side “The sentence
on the other side is true”, and says on the other side
“The sentence on the other side 1s false”

These paradoxes have the same form: A statement S
and its negation not-S have the same truth-value t(S):

t(S) = t(not-S) (1-1)
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Bivalent paradoxes: Where classic logic fails

* The two statements are both TRUE or both FALSE
* This violates the laws of noncontradiction [not-(A and

not-A)] and excluded middle [either A OR not-A]

* For bivalent truth tables, 1t holds that:

t(not-S) =1 - £(S) (1-2)

* So, 1t reduces to

t(S) =1 - (S) (1-3)

 If S 1s true, if £(S)=1, then 1=0. {(S)=0 also implies the

contradiction 0=1.

* The fuzzy or multivalued interpretation accepts the

logical relation (1-3), and instead of insisting that
t(S)=0 or t(S)=1, simply solves for t(S) 1in (1-3):

t(S) =% (1-5)



Bivalent paradoxes: Where classic logic fails

Multivaluedness also resolves the classical sorites
paradoxes.

Consider a heap of sand.
Is 1t still a heap i1if we remove one grain of sand?
How about two grains? Three?

If we argue bivalently by induction, we eventually
remove all grains and still conclude that a heap
remains, or that it has suddenly vanished

No single grains takes us from heap to nonheap



@ Bivalent paradoxes: Where classic logic fails

= . Suppose there are n grains of sand in the heap.
Removing one grain leaves n-1 grains and a truth

value {(S, ;) of the statement S, ; that the n-1 sand
grains are a heap

* In general, (S, ;) <1, and (S, ;) may be close to unity
but we have a non-zero doubt d,_; about the truth of
the matter

* So,t(S,)=1—-d, where0<d,<...d, <1
* Inductively, {(S,—S,,_,,) = (1-d, ;)

- If we 1nterpret the conjunction operator as the
minimum operator, we have:

£S,—S, ) =min(1-d,, ..., 1-d, Y=1—max(d,, ..., d

n-m)



& uzzy logic

g
* Polish Jan Lukasiewicz in 1930 first introduced

a three-value logic (inspired by Heisenberg
uncertainty principle — quantum theory)

* Lotfi Zadeh introduced (instead of the bivalent
indicator function) the membership function
m,: X —[0...1]

* Re-defined union and intersection

* Ipp(@)= min(I,(x), Ig(x))

* Iyop@)= max(I5(x), I5(x))

* Irc(x)=1 - I,(x)

- Ac Biff I,(x) <I(x) for all x in X



% The membership value m,(x) measures the elementhood

Fuzzy logic

or degree to which element x belongs to set A
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really not very
tall at all (n =0.30)
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