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Introduction 

• Neural networks (NN),  
• beautiful biologically-inspired programming 

paradigm which enables a computer to learn from 
observational data 

• Deep Learning (DL) 
• powerful set of techniques for learning in neural 

networks 
• Neural networks and deep learning currently 

provide the best solutions to many problems in  
• image recognition 
• speech recognition 
• natural language processing 

 



Milestones in NN evolution 



Some contemporary NN persons 



Turing Award (called the Nobel Prize of computing) 2018 



Historical waves of Artificial NN 



ANN Neuron connectivity over time 

1. Adaptive linear element (Widrow and Hoff, 1960) 
2. Neocognitron (Fukushima, 1980) 
3. GPU-accelerated convolutional network (Chellapilla et al., 2006) 
4. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a) 
5. Unsupervised convolutional network (Jarrett et al., 2009) 
6. GPU-accelerated multilayer perceptron (Ciresan et al., 2010) 
7. Distributed autoencoder (Le et al., 2012) 
8. Multi-GPU convolutional network (Krizhevsky et al., 2012) 
9. COTS HPC unsupervised convolutional network (Coates et al., 2013) 
10. GoogLeNet (Szegedy et al., 2014a) 



NN size over time 

1. Perceptron (Rosenblatt, 1958, 1962) 
2. Adaptive linear element (Widrow and Hoff, 1960) 
3. Neocognitron (Fukushima, 1980) 
4. Early back-propagation network (Rumelhart et al., 1986b) 
5. Recurrent neural network for speech recognition (Robinson and 
Fallside, 1991) 
6. Multilayer perceptron for speech recognition (Bengio et al., 1991) 
7. Mean field sigmoid belief network (Saul et al., 1996) 
8. LeNet-5 (LeCun et al., 1998b) 
9. Echo state network (Jaeger and Haas, 2004) 
10. Deep belief network (Hinton et al., 2006) 

11. GPU-accelerated convolutional network (Chellapilla et al., 2006) 
12. Deep Boltzmann machine (Salakhutdinov and Hinton, 2009a) 
13. GPU-accelerated deep belief network (Raina et al., 2009) 
14. Unsupervised convolutional network (Jarrett et al., 2009) 
15. GPU-accelerated multilayer perceptron (Ciresan et al., 2010) 
16. OMP-1 network (Coates and Ng, 2011) 
17. Distributed autoencoder (Le et al., 2012) 
18. Multi-GPU convolutional network (Krizhevsky et al., 2012) 
19. COTS HPC unsupervised convolutional network (Coates et al., 
2013) 
20. GoogLeNet (Szegedy et al., 2014a) 



Neural Networks their relation to AI 



How does a neuron look like? 



How does a neuron look like? 



How does a computation neuron look like? 
The McCulloch-Pitts neuron 
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Neural computation of logical OR 

 
 

 

A1 

A2 

w1=1.1 
1.1*0+1.1*0 = 0    < 1 → 0 
1.1*1+1.1*0 = 1    ≥ 1 → 1 
1.1*0+1.1*1 = 1    ≥ 1 → 1 
1.1*1+1.1*1 = 2.2 ≥ 1 → 1 

w2=1.1 

w1*A1+w2*A2 θ = 1 



Neural computation of logical AND 

 
 

 

A1 

A2 

w1=0.6 
0.6*0+0.6*0 = 0    < 1   → 0 
0.6*1+0.6*0 = 0.6 < 1   → 0 
0.6*0+0.6*1 = 0.6 < 1   → 0 
0.6*1+0.6*1 = 1.2 ≥ 1   → 1 

w2=0.6 

w1*A1+w2*A2 θ = 1 



Types of neural networks 



Which architectures we will deal with? 



Which architectures we will deal with? 



Which architectures we will deal with? 



Introduction to  
Fuzzy Logic 



Precision and Significance 



Neural pre-attentive processing 
• The human visual systems behaves as an adaptive system: The 

Kanizsa square exists in our brain, not ‘out there’ 
• The four symmetric ink patterns are noumena, “things in 

themselves”, according to Immanuel Kant 
• The noumena-induced sensation produces the Kanizsa-square 

phenomenon or perception in our brain 
• The real-time interaction of millions of competing and 

cooperating neurons produces the Kanizsa-square illusion, and 
everything we “see” 

The Kanizsa square 



Bivalent paradoxes: Where classic logic fails 

• Does the liar from Crete lies when he says that all 
Cretans are liars? 

• Russell’s barber is a man in a town who advertises his 
services with the logo: “I shave all, and only, those 
men who do not shave themselves” 
• Who shaves the barber? 

• Consider the card that says on one side “The sentence 
on the other side is true”, and says on the other side 
“The sentence on the other side is false” 
 

• These paradoxes have the same form: A statement S 
and its negation not-S have the same truth-value t(S): 

                                 t(S) = t(not-S)                            (1-1) 



Bivalent paradoxes: Where classic logic fails 

• The two statements are both TRUE or both FALSE 
• This violates the laws of noncontradiction [not-(A and 

not-A)] and excluded middle [either A OR not-A] 
• For bivalent truth tables, it holds that: 
                                   t(not-S) = 1 - t(S)                        (1-2) 
• So, it reduces to 
                                      t(S) = 1 - t(S)                            (1-3) 
• If S is true, if t(S)=1, then 1=0. t(S)=0 also implies the 

contradiction 0=1. 
• The fuzzy or multivalued interpretation accepts the 

logical relation (1-3), and instead of insisting that 
t(S)=0 or t(S)=1, simply solves for t(S) in (1-3): 

                                      t(S) = ½                                  (1-5) 



Bivalent paradoxes: Where classic logic fails 

• Multivaluedness also resolves the classical sorites 
paradoxes.  

• Consider a heap of sand. 
• Is it still a heap if we remove one grain of sand? 
• How about two grains? Three? 
• If we argue bivalently by induction, we eventually 

remove all grains and still conclude that a heap 
remains, or that it has suddenly vanished 

• No single grains takes us from heap to nonheap 



Bivalent paradoxes: Where classic logic fails 

• Suppose there are n grains of sand in the heap. 
Removing one grain leaves n-1 grains and a truth 
value t(Sn-1) of the statement Sn-1 that the n-1 sand 
grains are a heap 

• In general, t(Sn-1) < 1, and t(Sn-1) may be close to unity 
but we have a non-zero doubt dn-1 about the truth of 
the matter 

• So, t(Sn) = 1 – dn where 0 ≤ dn ≤ … dn-m≤ 1 
• Inductively, t(Sn→Sn-m) = (1-dn-k) 
• If we interpret the conjunction operator as the 

minimum operator, we have: 
t(Sn→Sn-m) = min(1-dn, …, 1-dn-m) = 1 – max(dn, …, dn-m) 



Fuzzy logic 

• Polish Jan Lukasiewicz in 1930 first introduced 
a three-value logic (inspired by Heisenberg 
uncertainty principle – quantum theory) 

• Lotfi Zadeh introduced (instead of the bivalent 
indicator function) the membership function 
mA:X →[0…1] 

• Re-defined union and intersection 
• IA∩B(x)= min(IA(x), IB(x)) 
• IA∪B(x)= max(IA(x), IB(x)) 
• IAc(x)= 1 - IA(x) 
• A ⊂ B iff IA(x) ≤ IB(x) for all x in X 



Fuzzy logic 
• The membership value mA(x) measures the elementhood 

or degree to which element x belongs to set A 
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