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Homogeneous Coordinates

» Add an extra dimension

in 2D, we use 3 x 3 matrices
In 3D, we use 4 x 4 matrices

» Each point has an extra value, w

x| [a b c d][x
y|_|e T g hjly
Z' ] k | Z
W' mn o pj|w
P = M
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Homogeneous Coordinates

» Most of the time w = 1, and we can ignore it
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Homogeneous Coordinates

Y | can be represented as Y
7 Z
b W_
X Y /
where X=—, y:_’ 7 — —
W W W
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3-D Homogeneous Coordinates

» Homogeneous coordinates: represent
coordinates in 3 dimensions with a 4-vector

x/w]| | x|
ylw| |y
(X,y,2) = =
Z/w Z
| 1 — _W_

[X,y., z, O]" represents a point at infinity (use for
vectors)

[0, 0, 0]" is not allowed

Note that typically w = 1 in object coordinates
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More On Homogeneous Coords

>

N <<

=

1 0 0 07«
010 0y
1001 0|z
00 0 10w

» Conceptually, the fourth coordinate w is a bit like
a scale factor
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More On Homogeneous Coords

» Intuitively:
The w coordinate of a homogeneous point is
typically 1
Decreasing w makes the point "bigger”, meaning
further from the origin

Homogeneous points with w = O are thus "points at
infinity", meaning infinitely far away in some
direction.

To help illustrate this, imagine subtracting two
homogeneous points
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3-D Homogeneous Coordinates

» Homogeneous coordinates seem unintuitive, but
they make graphics operations easier

» Our transformation matrices are now 4x4.
» Rotation around x-axis

1 0 0

0 cos(0) —sin(0)
0 sin(B) cos(0)
0 0 0

Rx =

R O O O
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3-D Homogeneous Coordinates

» Homogeneous coordinates seem unintuitive, but
they make graphics operations easier

» Our transformation matrices are now 4x4.
» Rotation around y-axis

- cos(@) 0 sin(B) O]
0 1 0 0
Ry=| .
—sin(0) 0 cos(®) O
0 0 0 1

72 HY416, THMMY, MNavemoTtiuio ©@coocaliag yota@inf.uth.gr



3-D Homogeneous Coordinates

» Homogeneous coordinates seem unintuitive, but
they make graphics operations easier

» Our transformation matrices are now 4x4.
» Rotation around z-axis

' cos(0) —sin(0)
sin(6) cos(0)
0 0
0 0

R: =

o »r O O
L O O O
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3-D Homogeneous Coordinates

» Homogeneous coordinates seem unintuitive, but they

make graphics operations easier
» Our transformation matrices g,
are now 4x4.
S_ 0
» Performing a scale: 10
10 0 0][x 0
0 2 0 O
y =[x 2y z 1]
0 0 1 0}z
_O 0 O 1__1_
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3-D Homogeneous Coordinates

translation

4

» A: Using the rightmost column:

» Performing a translation:
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Translation Matrices

» Now that we can represent translation as a matrix, we
can composite it with other transformations

» Ex: rotate an point 90° about X, then move it 10 units
down (new)Z-axis:

Z
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A
N

-

= N< X

1 00 0 |1 0
0 1 0 O |0 cos(90°)
0 0 1 -10]0 sin(90°)
00 0 1 )0 0
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Translation Matrices

» Now that we can represent translation as a matrix, we

can composite it with other transformations

» Ex: rotate an point 90° about X, then move it 10 units

down (new)Z-axis:

Z
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Translation Matrices

» Now that we can represent translation as a matrix, we

can composite it with other transformations

» Ex: rotate an point 90° about X, then move it 10 units
down (new)Z-axis:

Z
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Translation Matrices

» Now that we can represent translation as a matrix, we
can composite it with other transformations

» Ex: rotate an point 90° about X, then move it 10 units
down (new)Z-axis:

2 A
1 Ty
y| | —Z 10 Y
= >
Z y—10 X / zZ

X

v Y
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Translation Matrices
Z
~ 4 - - A

10

1 X' 1
0 y' 0 X
—> =
0 Z' -10
W _W'_ W
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S O O

Translation Matrices
Z
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Translation Matrices
Z
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Transformation Commutativity

» Is matrix multiplication, in general, commutative?
Does AB = BA?

» What about rotation, scaling, and translation
matrices?
DoesR,R, = RR,?
DoesR,S=SR,?
DoesR, T=TR,?
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Combining Translation & Rotation

T(11) L» R(45°)

N/
R(45°) L. T(11)

N
N
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Combining Transformations

vi =3V

v'' =Rv'=RSv

V' =Tv'=TRV'=TRSV
V' =Mv

where M =TRS
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3-D Rotation

» General rotations in 3-D require rotating about an
arbitrary axis of rotation

» Deriving the rotation matrix for such a rotation
directly is a good exercise in linear algebra

» Another approach: express general rotation as
composition of
Rotations about X, Y, Z
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Composing Canonical Rotations

» Goal: rotate about arbitrary vector A by a

87

Idea: we know how to rotate about XY, Z

So, rotate about Y by 6 until A lies in the YZ plane
Then rotate about X by ¢ until A coincides with +Z
Then rotate about Z by a

Then reverse the rotation about X (by -o)
Then reverse the rotation about Y (by -6)
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Composing Canonical Rotations

» First: rotating about Y by 0 until A
A lies inYZ N

Draw it...

Project A onto XZ plane
Find angle t to X: Z
0=-(90°-1)=1-90° Y
» Second: rotating about X by ¢
until A liesonZ

’ '\

N\
cp[ C >
o

Z
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3-D Rotation Matrices

» So an arbitrary rotation about A composites several
canonical rotations together

» We can express each rotation as a matrix
» Compositing transforms == multiplying matrices

» Thus we can express the final rotation as the product
of canonical rotation matrices

» Thus we can express the final rotation with a single
matrix!
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Compositing Matrices

» So we have the following matrices:
p: The point to be rotated about A by a
R,,: Rotate about Y by 0
R,,: Rotate about X by ¢
R,,: Rotate about Z by «
R, , % Undo rotation about X by ¢
R,;!: Undo rotation about ¥ by 6
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Compositing Matrices

» Remember: the transformations, in order, are
written from to

In other words, the first matrix to affect the
vector goes next to the vector, the second next to
the first, efc.

This is the rule with column vectors (OpenGL); row
vectors would be the opposite

» So In our case:
P' = Ryﬁ-l Rx -IR RX(pRyé’ P
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Rotation Matrices

» Notice these two matrices:
R, ,: Rotate about X by ¢
R, , *: Undo rotation about X by ¢

Obvious answer: calculate R,

Clever answer: exploit fact that rotation matrices
are
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Rotation Matrices

» Rotation matrix is

Columns/rows linearly independent
Columns/rows sum to 1

» The inverse of an orthogonal matrix is just its

Transpose:
a b
d e
_h i
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Rotation Matrix for Any Axis

» Given glRotated (angle, x, y, z)
Let ¢ = cos(angle)
Let s = sin(angle)
And normalize the vector so that ||(x,y,z)|| ==
» The produced matrix to rotate something by angle degrees around the

axis (x)y,z) is:
xx(1-c)+¢  xy(l-c)-zs xz(l-c)+ys O]
yx(1-c)+zs yy(d-c)+c yz(l-c)—xs O
zXx(1-c)-ys zy(dl-c)+xs zz(1-c)+c O

0 0 0 1
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Rotations about an arbitrary axis

Rotate by @ around a unit axis I
y
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An Alternative View

» We can view the rotation around an arbitrary axis
as a set of simpler steps

» We know how to rotate and translate around the
world coordinate system

» Can we use this knowledge to perform the
rotation?
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Rotation about an arbitrary axis

» Translate the space so that the origin of the
unit vector is on the world origin

» Rotate such that the extremity of the vector
now lies in the xz plane (x-axis rotation)

» Rotate such that the point lies in the z-axis
(y-axis rotation)

» Perform the rotation around the z-axis
» Undo the previous transformations
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Rotation about an arbitrary axis

» Step 1
Rotate x-axis

(a,b,c)

(a’,b’,c’)
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Closer Look at Y-Z Plane

» Need to rotate o degrees around the x-axis
y
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Equations for a

sin( ) - 100D *(0b,0)]
1.0 ][I (0,b,c) |
os(ar) - (0:D:0)#(0.0)

110,b,c) (111 (0,01) |
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Rotation about the Y-axis

» Using the same analysis as before, we need to
rotate B degrees around the Y-axis

y

X

\x (@,b",¢)=R, () (a,b,c)T
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Equations for

I(0,01)x(@’,b',c’) |
@0l (@",b",c)]
(a',b',c')«(0,0,1)

I (@', 0",c’) 1] (0,0.1) |

sIn( ) =

cos(f) =
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Rotation about the Z-axis

» Now, it is alighed with the Z-axis, thus we can
simply rotate 6 degrees around the Z-axis.

» Then undo all the transformations we just did
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Equation summary

/a'\ /a\
r0t,,(0) =| b | =T *RA@)R, (AR, (O)R, (AR, (@)T| b
\C) .C)
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Other Transformations
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Deformations

Transformations that do not preserve shape
Non-uniform scaling
Shearing
Tapering
Twisting
Bending
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Shearing

—

» Y coordinates are unaffected, but x
coordinates are translated linearly with y

» That is:

' X 1 h O X
Y =Y yl= |0 1 0%y
X'z=x+y*h 1 00111
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Shearing in Y

X 1 0O X
> y|= |g 1 0|*y
1 00 1 |1

Interesting Facts:
= A 2D rotation is three shears

= Shearing will not change the area of the object

= Any 2D shearing can be done by a rotation,
followed by a scaling, and followed by a rotation
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Shearing

X' [ 1 sy s« Of x|
y'| |s« 1 sz Ofy
2| |sx sy 1 0z
1 O 0 O 1|1
Sy =1 L L7
Sz =0
Syx=Syz =0
Szx = Szy = 0 yT_, — T
X X
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Tapering

X' 1 O 0 Ofx
y' 0 f(x) 0 0|y
7110 0 f(x) 0]z
1, |0 O O 1)1
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Twisting
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Qriginal objects
Bending
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Reflection
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Reflection

I
l
|
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Reflection

I
l
|
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Reflection about X-axis

N
X 1 0O X
> yl= |0 -10 *y
1 O 01 1

116 HY416, THMMY, MNavetmmoTApio Osocoaliag yota@inf.uth.gr



Reflection about Y-axis

X -1 0 O X
> yl= 101 0|*ly
1 O 0 1 1
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Affine Transformation

» Translation, Scaling, Rotation, Shearing are all
affine transformation
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Affine Transformation

» Translation, Scaling, Rotation, Shearing are all
affine transformation

» Affine transformation - transformed point P' (x',y')

is a linear combination of the original point P (x,y),
.e.

mll m12 m13 X

Y{=|Myy My Mygl-Y
1 0 0 1|11
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Affine Transformation

» Translation, Scalinﬁ, Rotation, Shearing
(Z1pépAwaon) are all affine transformation

» Affine transformation - transformed point P’ (xy')
is a linear combination of the original point P (x,y{
.e.

mll m12 m13 X

Y =My My,  Mygi-ty

1 0 0 1|1

» Any 2D affine tfransformation can be decomposed
into a rotation, followed by a scaling, followed by a
shearing, and followed by a translaftion.

Affine matrix = translation x shearing x scaling x rotation
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Composing Transformation

» Composing Transformation - the process of
applying several transformation in succession to
form one overall transformation

» If we apply transform a point P using M1 matrix
first, and then transform using M2, and then M3,
then we have:

(M3 x (M2 x (M1 xP))) =M3 xM2xM1xP

(pre-multiply) | '
M
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Composing Transformation

» Matrix multiplication is associative

M3 x M2 x M1 = (M3 x M2) x M1 = M3 x (M2 x M1)

» Transformation products may not be commutative A xB I=

BxA
» Some cases where AxB=Bx A
A B
translation translation
scaling scaling
rotation rotation
uniform scaling rotation
(sx = sy)
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Transformation Order Matters!

» Example: rotation and translation are not
commutative

Translate (5,0) and then Rotate 60 degree

—

OR

Rotate 60 degree and then translate (5,0)??

' . Rotate and then translate !!

123 HY416, THMMY, MNavemaoTrpio @scoaliag yota@inf.uth.gr




Finding Affine Transformations

» Image of 3 points determines affine transformation
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Finding Affine Transformations

» Image of 3 points determines affine transformation
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Finding Affine Transformations

» Image of 3 points determines affine transformation
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Finding Affine Transformations

» Image of 3 points determines affine transformation

M13\/px qx r-x\ /ﬁx qx I/'-\X\
Myl By Gy T, |= l5y CAly fy
1 f1 1 1) (1 1 1,
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