
Introduction to

OpenGL Programming

Frame Buffer
 The computer program stores the image in a two-

dimensional array in RAM of pixel values (called a frame

buffer). The display hardware produces the image line-

by-line (called raster lines).

 The frame buffer is not a device. It is simply a chunk of

RAM memory that has been allocated for this purpose.

 A program modifies the display by writing into the frame

buffer, and thus instantly altering the image that is

displayed.

 OpenGL is used to write such programs and send their

commands to the graphics accelerators (graphic cards).

The accelerator rasterizes the results of the commands

and sends them to the frame buffer.

2

Graphic cards

 Graphic card relieves the computer’s CPU from much of

the mundane repetitive effort involved in maintaining the

frame buffer.

 A typical graphic card will provide assistance for a

number of operations (graphical pipeline) including the

following:

 Transformations

 Clipping

 Projection

 Shading and Coloring

 Texturing

 Hidden – surface elimination

3

SGI and GL

 Silicon Graphics (SGI) revolutionized the

graphics workstation by implementing the

pipeline in hardware (1982)

 To access the system, application

programmers used a library called GL

 With GL, it was relatively simple to program

three dimensional interactive applications

4

What is OpenGL
http://www.opengl.org/

 OpenGL is a software API to graphics hardware.

 designed as a steamlined hardware-independent interface

to be implemented on many different hardware platforms

 Intuitive, procedural interface with C/C++ binding

 No windowing commands !

 No high-level commands for describing models of three-

dimensional objects

 The OpenGL Utility Library (GLU) provides many of the

modeling features, such as quadric surfaces and NURBS

curves and surfaces

5

OpenGL - Basic Attributes

The success of GL lead to OpenGL (1992), a

platform-independent API that was

 Easy to use

 Close enough to the hardware to get excellent

performance

 Focus on rendering

 Omitted windowing and input to avoid window

system dependencies

6

OpenGL Libraries

 OpenGL core library

 OpenGL32 on Windows

 GL on most unix/linux systems (libGL.a)

 OpenGL Utility Library (GLU)

 Provides functionality in OpenGL core but avoids

having to rewrite code

 Links with window system

 GLX for X window systems, WGL for Windows

 Cross-platform GUI libraries: GLUT, SDL, FLTK, QT,

…

7

Windowing with OpenGL

 OpenGL is independent of any specific
window system

 OpenGL can be used with different window
systems

 X windows (GLX)

 MFC

 …

 GLUT provide a portable API for creating
window and interacting with I/O devices

8

GLUT
http://www.opengl.org/documentation/specs/glut/spec3/spec3.html

 OpenGL Utility Toolkit (GLUT)

 Provides functionality common to all window systems

 Open a window

 Get input from mouse and keyboard

 Menus

 Event-driven

 Code is portable but GLUT lacks the functionality of a

good toolkit for a specific platform

 No slide bars, buttons, …

9

OpenGL as a state machine

 GL State Variables- can be set and queried by OpenGL. Remains
unchanged until the next change.
 Projection and viewing matrix

 Color and material properties

 Lights and shading

 Line and polygon drawing modes

 …

 OpenGL functions are of two types
 Primitive generating

 Can cause output if primitive is visible

 How vertices are processed and appearance of primitive are controlled by the
state

 State changing
 Transformation functions

 Attribute functions

10

OpenGL Syntax

 Functions have prefix gl and initial capital letters for each word

 glClearColor(), glEnable(), glPushMatrix() …

 glu for GLU functions

 gluLookAt(), gluPerspective() …
 Constants begin with GL_, use all capital letters

 GL_COLOR_BUFFER_BIT, GL_PROJECTION, GL_MODELVIEW …

 Extra letters in some commands indicate the number and type of
variables

 glColor3f(), glVertex3f() …

 OpenGL data types

 GLfloat, GLdouble, GLint, GLenum, …,for compatibility
 Underlying storage mode is the same

 Easy to create overloaded functions in C++ but issue is efficiency

 11

OpenGL function format

glVertex3f(x,y,z)

belongs to GL library

function name

x,y,z are floats

glVertex3fv(p)

p is a pointer to an array

dimensions

12

OpenGL #defines

 Most constants are defined in the include files
gl.h, glu.h and glut.h

 Note #include <GL/glut.h> should

automatically include the others

 Examples

 glBegin(GL_POLYGON)

 glClear(GL_COLOR_BUFFER_BIT)

 include files also define OpenGL data types:
GLfloat, GLdouble,….

13

GLUT

 Developed by Mark Kilgard

 Hides the complexities of differing window

system APIs

 Default user interface for class projects

 Glut routines have prefix glut

 glutCreateWindow() …

 Has very limited GUI interface

 Glui is the C++ extension of glut

14

Glut Routines

 Initialization: glutInit() processes (and removes) commandline
arguments that may be of interest to glut and the window system and
does general initialization of Glut and OpenGL
 Must be called before any other glut routines

 Display Mode: The next procedure, glutInitDisplayMode(),
performs initializations informing OpenGL how to set up the frame
buffer.
 Display Mode Meaning

 GLUT_RGB Use RGB colors

 GLUT_RGBA Use RGB plus alpha (for transparency)

 GLUT_INDEX Use indexed colors (not recommended)

 GLUT_DOUBLE Use double buffering (recommended)

 GLUT_SINGLE Use single buffering (not recommended)

 GLUT_DEPTH Use depthbuffer (for hidden surface removal.)

15

Glut Routines

 Window Setup
 glutInitWindowSize(int width, int height)

 glutInitWindowPosition(int x, int y)

 glutCreateWindow(char* title)

16

A Simple Program

Generate a square on a solid background

17

simple.c
#include <GL/glut.h>

void init()

{

 glClearColor (0.0, 0.0, 0.0, 1.0);

 glColor3f(1.0, 1.0, 1.0);

 glMatrixMode (GL_PROJECTION);

 glLoadIdentity ();

 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

}

void mydisplay(){

 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POLYGON);

 glVertex2f(-0.5, -0.5);

 glVertex2f(-0.5, 0.5);

 glVertex2f(0.5, 0.5);

 glVertex2f(0.5, -0.5);

 glEnd();

 glFlush();

}
18

Simple.c (continue)

int main(int argc, char** argv){

 glutInit(&argc, argv);

 glutInitDisplayMode (GLUT_SINGLE |
 GLUT_RGB);

 glutInitWindowSize(500,500);

 glutInitWindowPosition(0,0);

 glutCreateWindow("simple");

 glutDisplayFunc(mydisplay);

 init();

 glutMainLoop();

}

19

Closer Look at the main()

#include <GL/glut.h>

int main(int argc, char** argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

 glutInitWindowSize(500,500);

 glutInitWindowPosition(0,0);

 glutCreateWindow("simple");

 glutDisplayFunc(mydisplay);

 init();

 glutMainLoop();

}

includes gl.h

define window properties

set OpenGL state

enter event loop

display callback

20

Closer Look at the init()

void init()

{

 glClearColor (0.0, 0.0, 0.0, 1.0);

 glColor3f(1.0, 1.0, 1.0);

 glMatrixMode (GL_PROJECTION);

 glLoadIdentity ();

 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

}

black clear color

opaque window

fill/draw with white

viewing volume

21

Event Handling

 Virtually all interactive graphics programs are event
driven

 GLUT uses callbacks to handle events
 Windows system invokes a particular procedure when an

event of particular type occurs.

 MOST IMPORTANT: display event

 Signaled when window first displays and whenever portions
of the window reveals from blocking window

 glutDisplayFunc(void (*func)(void)) registers
the display callback function

 Running the program: glutMainLoop()

 Main event loop. Never exit()

22

More Callbacks

 glutReshapeFunc(void (*func)(int w, int h)) indicates
what action should be taken when the window is resized.

 glutKeyboardFunc(void (*func)(unsigned char key, int
x, int y)) and glutMouseFunc(void (*func)(int button,
int state, int x, int y)) allow you to link a keyboard key or a
mouse button with a routine that's invoked when the key or mouse
button is pressed or released.

 glutMotionFunc(void (*func)(int x, int y)) registers a
routine to call back when the mouse is moved while a mouse button is
also pressed.

 glutIdleFunc(void (*func)(void)) registers a function that's to
be executed if no other events are pending - for example, when the
event loop would otherwise be idle

23

OpenGL Drawing

 OpenGL coordinate system has different origin from
the window system

 GLUT uses the convention that the origin is in the
upper left corner and coordinates are given as
integers. This makes sense for Glut, because its
principal job is to communicate with the window
system, and most window systems (X-windows, for
example) use this convention.

 OpenGL uses the convention that coordinates are
(generally) floating point values and the origin is in the
lower left corner. Recalling the OpenGL goal is to
provide us with an idealized drawing surface this
convention is mathematically more elegant.

24

Clear the Window

 glClear(GL_COLOR_BUFFER_BIT)

 clears the frame buffer by overwriting it with the

background color.

 Background color is a state set by
glClearColor(GLfloat r, GLfloat g,

GLfloat b, GLfloat a) in the init().

25

Drawing Attributes: Color

 glColor3f(GLfloat r, GLfloat g, GLfloat b) sets the
drawing color
 glColor3d(), glColor3ui() can also be used

 Remember OpenGL is a state machine

 Once set, the attribute applies to all subsequent defined
objects until it is set to some other value

 glColor3fv() takes a flat array as input

 There are more drawing attributes than color
 Point size: glPointSize()

 Line width: glLinewidth()

 Dash or dotted line: glLineStipple()

 Polygon pattern: glPolygonStipple()

 …

26

Drawing Commands

 Simple Objects glRectf()

 Complex Objects
 Use construct

glBegin(mode) and
glEnd() and a list of
vertices in between
 glBegin(mode)

 glVertex(v0);

 glVertex(v1);

 ...

 glEnd();

 Some other commands can
also be used between
glBegin() and glEnd(), e.g.
glColor3f().

 Example
27

