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> uupoAicpoi BaBuwTwy, Alavuopdtwy,
Thvakwy

» BaBuwradg(scalar) A
(tedd, tAdyia)

a, .. a,|f
) Alavuoua(veCTOP) [ ’ n] !
(eCd, évrova) [a Gy ]

» TTivakag(matrix) _a11 d;, 313_

(kepaAaia, évrova)
A = dy; d,, dy;

a3 1 a32 a‘33
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AiavUopara
» PEAOC: pAKoC kail O1eUBuvon

TTpooavatoAiopévo euBUypappo

TUAHa otov nD xwpo.

TTpoooxh! Aev éxel
OUYKEKPIHEVN apX A Kal TEAOC.

» offset / yetaromon

Me dedopévo €va onpeio
avagpopdc (apxn Tou -

OUGTAHATOC afovwy) HTTopoUE

vd UTToAOYiOOoUUE HETATOTTIOEIC
OlavUOUATWV.
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Aiaviopara ypappéc - OTAAEC

Aidvuopa ypappn Aoy = [a1 a, .. an]
_al _
a,
Aidvuopa oTAANn d., =
an

2 xeTiCovTal He avaoTpopn

T _
aCO| _arow
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TTp60O6eon AiavuoudTwy

» didavuopa + diavuopa = didvuopda
» Toxvel o kavovacg Tou tapaAAnAoypdupou

YEWMETPIKN aAyeBpikn
u-+Vv u, +v,

BANY
»Q Uu+v=|u,+V,
1
: Uy +V,

TTapadeiyuaTa: (3,2) +(6,4) = (9,6)
(2,51) +(31-1) = (5,6,0)
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Apaipeon AiavuopdTwy

» didvuopa - didvuopa = didvuopda

ul_vl

Us; —V
U—V= B B
u+(—Vv)

(3,2)—(6,4) =(-3,-2)
(2,5,1)-(3,1,-1) =(-1,4,0)

7 HY416, THMMY, MNavemoTtiuio ©@coocaliag yota@inf.uth.gr



Apaipeon AiavuopdTwy

» didvuopa - didvuopa = didvuopda

u—v=
u+(—Vv)

u+Vv
QVTIOTPOPO ETTIXEIPNMA
U

V
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ul_vl

us _Vs

—V (3,2)—(6,4) =(-3,-2)
(2,5,1)-(3,1,-1) =(-1,4,0)

v /™
vV—Uu
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TToAAamAaociaopoc PpaBuwTou pe didvuoua

» paBpwToc * didvuopa = didvuopd
To véo diavuopa €xel KAIHAOKWOE ...

a*u=(a*u,a*u,,a*u,)

2%(3,2) = (6,4)
5%(2,5) = (1,2.5,.5)
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TToAAamrAagiaopéc diavuopdTwy

» d1dvuopa * didvuopa = PaBpwToc
» EOWTEPIKO YIVOHEVO O1aVUOUATWY
» A Kai dot product UeV

i, |o v, |= (1, * v, )+ (1, %v,))+ (uy * ;)
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Vector-Vector Multiplication
» multiply: vector * vector = scalar
» dot product, aka inner product Uue vV

= geometric inter
lengths, ang

can find ang
vectors

11

u, [®V, :(Ul

vy )+ (U *V, )+ (U *v; )

 uev=|uveoso
nretation

es u
e between two fa

V
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EowTepiko Mvopevo (Dot Product)

» can find length of projection of uonto v

sev-luesso U
lucosg = 4V =
VI lu|cos

» as lines become perpendicular, yeyv —0

QVETTIOTANIO @cooaAiag yota@inf.uth.gr
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Dot Product Example

u, [®V, :(ul*vl)"'(ul*vz)"'(us*vs)

1|e|7|=(6*1)+(1*7)+(2*3)=6+7+6=19
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Vector-Vector Multiplication, The Sequel

» multiply: vector * vector = vector

_U2V3 o u3V2 )
U3V1 o u1V3
u1V2 o U2V1

» cross product u, | v,
algebraic u, [x|v, |=
geometric Us | | Vs

axb

bl =|uflvsing |

laxb| parallelogram

area L b
axb perpendicular R ~ ¢

to parallelogram
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RHS vs LHS Coordinate Systems

» right-handed coordinate system convention
ZA right hand rule:
Index finger X, second fingery;
Q right thumb points up
y Z=XXY

» left-handed coordinate system

left hand rule:
Index finger x, second fingery;
left thumb points down

Z=XXxY
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Basis Vectors

» take any two vectors that
are
(nonzero and nonparallel)

can use linear combination of
these to define any other

vector:

c=wa+w,b
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Orthonormal Basis Vectors

» if basis vectors are

(

(mutually perpendicular) and unit length)
we have Cartesian coordinate system
familiar Pythagorean definition of distance

orthonormal algebraic properties
X[ =[yl=1
Xey=0

A
y

-

X
Gz

c— 0.5y
2X -
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Basis Vectors and Origins

» coordinate system: just basis vectors
can only specify offset: vectors

» coordinate frame: basis vectors and origin
can specify location as well as of fset: points

. D=0+XI+VY]
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Working with Frames

19
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XI

yJ
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Working with Frames

., p=(-1)
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Working with Frames

D =0+Xl+ V]
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Working with Frames

D=0+XI+ VY]

F, J F]_ P = (3"1)
F, p=(-1.5,2)
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Working with Frames

D=0+XI+ VY]
JIF
O’i ()p
F, J F]_ P= (31'1)
i 10
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Working with Frames

24 HY416, THMMY, MNavetmoTthpio Osocoaliag

D=0+XI+ VY]
JIFs
O.i ()p
F, J F]_ p - (3"1)
A B p=(152)
|
= Jo F.  p=(12)

yota@inf.uth.gr



Named Coordinate Frames

» origin and basis vectors  p=0+ax+by+cz

» pick canonical frame of reference
then don't have to store origin, basis vectors
just p=1(a,b,c)
convention: Cartesian orthonormal one on previous
slide

» handy to specify others as needed
airplane nose, looking over your shoulder, ...

really common ones given names in CG
object, world, camera, screen, ...
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Lines

» slope-intercept form
y=mx+b

» implicit form

y-mx-b=0
Ax+By+C=0
f(xyy)=0

» Vector form

fix,y)=y-mx-b
m = -b/a

(P-Py) n = O where P, Py are points on the line and n is the

hormal on the line
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Implicit Functions

» find where function is O f
plug in (x,y), check if
O: on line
< O: inside
> 0: outside
» analogy: terrain
sea level: =0
altitude: function value
topo map: equal-value f(x.y)=0
contours (level sets)
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Implicit Circles
r TGy =(X=Xx) +(y—y,) —r
» circle is points (x,y) where f(x,y) = 0
» p=(xy)c=(X,Y.):(p-C)e(p—c)-r° =0
» points p on circle have property that vector from ¢ to p
dotted with itself has value r?

» Jp—c| -r?=0
» points points p on the circle have property that squared
distance from ¢ to p is re
» Jp=c| -r=0
» points p on circle are those a distance r from center
point ¢
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Parametric Curves

» parameter: index that changes con’rmuously

(x.,y): point on curve X (t)
T parameter —

y] Lh(t)_

» vector form

p=Tf(t)
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2D Parametric Lines

X| | x,+t(x;,—x,)
V1 W+t =)

>
,P(t) =P +t(P, —Po)

p(t) =0 -+t(d)
» start at point py

go towards p;,
according to parameter t

P(0) = po. p(1) = pg
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Linear Interpolation

» parameftric line is example of general
concept

p(t) =Py +1(P; —Py)

interpolation
p goes throughaat t=0
p goes through b at t =1

linear
weights t, (1-t) are linear polynomials in t
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AOKNOEIC

» TTola ival n mapapeTpikh e€iowaon TnG euBeiac Tou
d1€pxeTal amd To péoov Tou P1PO suBuypappou
TUAHATOC Kal gival kdBetoc oTto P1PO ;

» Ta moia TIpA Tou T Ttaipvoupe To péaov Tou P1Po

» TTola €ival n TapapueTPIKA TTAPACTACN TOU KUKAOU
Kal EAAEIYNC;

» TTwe opiCovTal Ta epanTopevaA Kal KABEeTA
d1avuopaTa KAPTUAWY;
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Matrix-Matrix Addition

» add: matrix + matrix = matrix

mll m12 4 nll r]12 . nll T mll r]12 + m12

My My | [Ny Moo | [Mpg #Myp Nyp My
» example

1 3| [-2 5] [1+(-2) 3+5] [-1 8
(1) | 2+7 441 |9 o

33 HY416, THMMY, MNavemoTtiuio ©@coocaliag yota@inf.uth.gr



Scalar-Matrix Multiplication

» multiply: scalar * matrix = matrix

_m11 m12— _a*mll a*le_
a —

My My | ja*m, a*my,
» example

3_ 1 [3*2 3*4] [6 12

1 5| |3*1 3*5| |3 15
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Matrix-Matrix Multiplication

» row by column

nhi

_rn21

35

nhQ

rn22_

nll
_n21

n12

O11

n22_

O21

Py = My Ny, +MyoN5,
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Matrix-Matrix Multiplication

» row by column

nhl

_In21

36

nHZ

rn22_

nll
_n21

th

OLL

n22_

O21

Py = My Ny, +MyoN5,
Py, = My, +MyoN5,
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Matrix-Matrix Multiplication

» row by column
My My | Ny | Ny D11 | P2

_m21 m22__n21 n22__ C)21 022_

Py = My Ny, +MyoN5,
Py = My Ny +1My,N5,
P, = My Ny, +My,N,,
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Matrix-Matrix Multiplication

» row by column

38

My, My || Ny [Ny D14
My Myl Moy [ Npy | 021

Prg = Mgy +My5N,,

P21 = My, Ny, +My5N,5,

Pro = My, + MMy,

9o = My My, +1M,5N5,

HY416, THMMY, MNavemoTtiuio ©@coocaliag
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Matrix-Matrix Multiplication

» row by column

mll

__m21

le

m22 |

O
[EEN

o O

(&
N
N

nll r.112

_n21 n22__

» hohcommutative: AB |= BA

39

011

021

mllnll + m12n21
m21n11 + m22n21
rn11”12 + ranr]ZZ
m21n12 + m22n22

HY416, THMMY, MNavemoTtiuio ©@coocaliag
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Matrix Multiplication

» can only multiply if
number of left cols = number of right rows

legal R
a b c
defined |e f Ik
ertine
a - g-_l m
a b ¢ | i
. h |
0 ik
0 P Qg )
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Matrix-Vector Multiplication
» points as column vectors: postmultiply

X' m, My My My | X .
y _ My My Myz My, | Y p — M p
Z My My Mgy My, || 2

_hl_ | My Mgy My m44__h_

» points as row vectors: premultiply

- T

. M, m, m
My My My, p'T — pT MT
m m m
m m,, m

2

=

X vy 2z h|=[x y z h]

3

S 3 3 3

4

[aiy
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TTivakec

4 anGTpO(pOC my, My My My My My My My
My My My My | My My My My,
My My Mgy My, Mz Myz Mgz Mys
| My My Myz My, | My My Mgy My, |
, (1 0 0 0
» TAUTOTIKOG 0100
0 010
0 0 0 1)

A AL
» AVTIOTPOYOC = |
dev gival 6Aol o1 TTiVaKEC avTIOTPEYIHOI
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TTivakec kai Tpappika 2uoTApara

» Tpappiké ovoTnHa n e€1I0WOEWY HE h AYVWOTOUC

X+ 7y+2z=4
2X—4y—-3z=-1
ObX+2y+z=1

» 0€ HopPh TIVAKWY AX=b

43

3
2
5

,
—4
2

2
-3
1
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Linear Vector Spaces

» Mathematical system for manipulating vectors

» Operations
Scalar-vector multiplication U=oV

Vector-vector addition: W=U+V

» Expressions such as
V=Uu+2w-3r
Make sense in a vector space
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Affine Spaces

» Point + a vector space

» Operations
Vector-vector addition
Scalar-vector multiplication
Point-vector addition
Scalar-scalar operations

» For any point define
1-P=P
0+P=0 (zero vector)
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TToAUywva - Polygons

» A polygon is a closed figure with n sides, defined by
an ordered set of three or more points in the plane.
Each point is connected to the next with a line segment.
For a set of n points, the resulting polygon is also called an
n-sided polygon or just n-gon.
»  The polygon sides or edges are the line segments
that make up the polygon boundary.

»  The points themselves are called the polygon
vertices.
Two vertices are adjacent if they are joined by an edge.
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Polygons

Edge Self-intersection

\

Vertex Interior

Diagonal

™

Exterior

(a) (b)

» A polygon is simple if no two nonconsecutive edges have a point
In common.

» A simple polygon partitions the plane into two disjoint parts
The interior
The exterior
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Polygons

» A polygon diagonal is a line segment that joins two
polygon vertices and lies fully inside the polygon.

» A vertex is a convex vertex if the interior angle is
less than or equal to 180 degrees.

If the angle is larger than 180 degrees, it is instead called
a concave (or reflex) vertex.

Convex
vertex

Concave
vertex

(a) (b)
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Convexity

» Anobject is convex iff for any two points in the
object all points on the line segment between
these points are also in the object

not convex

convex
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Polygons

» A polygon P is a convex polygon if all line segments
between any two points of P lie fully inside P.

» A polygon that is not convex is called a concave

polygon.
» A polygon with one or more concave vertices is
necessarily concave.

»  But a polygon with only convex vertices is not always
convex.

»  The triangle is the only n-sided polygon always
guaranteed to be convex.
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Polygons

»  Inaddition to the explicit vertex representation,
convex polygons can also be described as the
intersection of a finite number of halfspaces.

This representation is convenient for point containment
tests.

»  Two or more polygons can be joined at their edges
to form a polygon mesh.

The degree of a vertex corresponds to the number of
edges connected to the vertex.

A mesh will be considered closed if all polygons have been
joined such that each edge is part of exactly two polygons.
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Testing Polygon Convexity

53

Most intersection tests and other operations
performed on polygons in a collision detection
system are faster when applied to convex rather
than concave polygons.
Simplifying assumptions can be made in the former case.
Triangles are nice in this respect. > Always convex.

It may be more efficient fo perform an intersection
against a single convex n-gon rather than against multiple
triangles covering the same area.

Frequently, quadrilaterals are the only primitives
supported in addition to triangles.
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Testing Polygon Convexity

» Assume all vertices of the quad ABCD lie in
the same plane.

»  The quad is convex if and only if its two
diagonals lie fully in the interior of the quad.
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Testing Polygon-Quad Convexity

»  This test is equivalent to testing if the two line
segments AC and BD corresponding to the diagonals,
intfersect each other.

If they do, the quad is convex.

If they do not, the quad is concave or self-intersecting.
If the segments are parallel and overlapping, the quad is
degenerate (into a line).

»  To avoid considering a quad with three collinear
vertices convex, the segments should only be
considered intersecting if they overlap on their
interior.,
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Testing Polygon Convexity

» It can be shown that the intersection of the
segments is equivalent to the points A and C lying on
opposite sides of the line through BD, as well as to
the points B and D lying on opposite sides of the line
through AC.

»  This test is equivalent to the triangle BDA having
opposite winding (TepiéAIEn - mpooavaToAionog) to
BDC, as well as ACD having opposite winding to ACB.

The opposite winding can be detected by computing the
normals of the triangles and examining the sign of the dot
product between the normals of the triangles to be
compared.
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Testing Polygon Convexity

»  If the dot product is negative, the normals point in
opposing directions, and the triangles therefore
wind in opposite order.

(BDxBA) - (BDxBC)<O0
(ACxAD) - (ACxAB)<O0

»  For general n-gons, not just quads, a
straightforward solution is to, for each polygon
edge, test to see if all other vertices lie (strictly)
on the same side of that edge.

If the test is true for all edges, the polygon is convex.
Otherwise it is concave.
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Testing Polygon Convexity

58

A separate check for coincident vertices is required
to make the test robust.

Although easy to implement, this test is expensive
for large polygons, with an O(n?) complexity in the
number of vertices.

It is easy to come up with tests that are faster.

Many of them correctly classify only a subset of convex
polygons and incorrectly classify some nonconvex polygons.

(e)

HY416, THMMY, MavemoTtiuio @socaliag yota@inf.uth.gr
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Testing Polygon Convexity

»  For example..

» A strictly convex polygon has interior angles that
are all less than 180 degrees.

» However, although this test is a necessary
criterion for convexity it is not a sufficient one.

Testing the interior angles alone would thus incorrectly
conclude that a pentagram (mevrdAga) is a convex

polygon.
This test only works if the polygon is known, a priori, not
to be self-intersecting.
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Testing Polygon Convexity

4

60

Another basis for a convexity test is that there are
only two changes in direction along any given axis
when moving from vertex to vertex of a convex
polygon, accounting for wraparound from the first
to the last vertex.

To detect the zigzag case, a test for change of
direction would have to be performed for two
different directions, such as both the x axis and
the y axis.

This fails when all vertices of an originally convex polygon
have been projected onto a single line.

a
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Polyhedra

» A polyhedron is the 3D counterpart of a polygon.

It is a bounded and connected region of space in the shape
of a multifaceted (moAUTAgUpoc) solid.

The polyhedron boundary consists of a number of polygonal
faces (6yn) connected so that each polygon edge is part of
exactly two faces.

(a) (b)
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Polyhedra

)

62

The polyhedron boundary divides space into two
disjoint regions: the interior and the exterior.

A polyhedron is convex if the point set determined
by its interior and boundary is convex.

A bounded convex polyhedron is also referred to as a
polytope (moAUTOTO).

Polytopes can also be described as the intersection of a
finite number of halfspaces.

A d-simplex is the convex hull of d+1 affinely
(ouoxeTiopéva) independent points in d-dimensional
space.

A simplex is a d-simplex for some given d.
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Polyhedra

63

O-simplex: a point,
1-simplex: a line segment,
2-simplex: a triangle,
3-simplex: a tetrahedron.

® PRI e e

0-simplex 1-simplex 2-simplex
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Testing Polyhedral Convexity

» A polyhedron P is convex if and only if for all faces
of P all vertices of P lie (strictly) on the same side
of that face.

A separate test for coincident vertices and collinear edges
of the polyhedron faces is required to make the test

robust, usually with some tolerance added for determining
coincidency and collinearity.

The complexity of this test is O(n?)
» A faster O(n) approach is to compute for each face
F of P the centroid C of F, and for all neighboring

faces G of F test if C lies behind the supporting
plane of 6.

If some C fails to lie behind the supporting plane of one or
more neighboring faces, P is concave.
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Computing Convex Hulls

Andrew’s algorithm

One of the most robust and easy to implement 2D
convex hull algorithms

Tl
] T
T




Computing Convex Hulls

The Quickhull algorithm
A method that works in both 2D and 3D
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Computing Convex Hulls

The Quickhull algorithm

The initial hull approximation may not always be a
quadrilateral.

To avoid problems, an implementation must be written to
handle an initial hull approximation of a variable number
of edges.
There might not be a single unique point on the
edge of the initial bounding box, or a single unique
point farthest away from an edge.

One of them that lie closest to the edge endpoints must
be chosen as the extreme point.
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Voronoi Region

»  Given a set S of points in the plane, the Voronoi region of a
point P in S is defined as the set of points in the plane closer
to P than to any other points in S.

Quite useful for collision detection applications

»  Given a polyhedron P, let a feature of P be one of its vertices,
edges, or faces.

»  The Voronoi region of a feature F of P is then the set of
points in space closer to F than to any other feature of P.

& B
V

(a) (b) (c)
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Voronoi Region

4
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The boundary planes of a Voronoi region are
referred to as Voronoi planes.

Given a convex polyhedron P, all points in space
exterior to P can be classified as lying in a Voronoi
feature region of a vertex, edge, or face of P, with
the boundary between two nei%hbor'in Voronoi
feature regions considered to belong Yo only one of
the regions.

The Voronoi regions create a partitioning of space exterior
to a polyhedron, ’rhe?/ can be used to defermine the closest
point on a convex polyhedral object to some point Q in
space.

This determination is done by walking from region to region
until Q is found to be inside the region.
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Voronoi Region

» The closest point on the object to Q is then
the projection of Q onto the feature with
which the given region is associated.
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Minkowski Sum and Difference

» Let A and B be two point sets, and let a and
b be the position vectors corresponding to
pairs of points in A and B.

Minkowski sum is defined by

A®B={a+b:acAbeB}

Visually, the Minkowski sum can be seen as the
region swept by A translated to every point in B.
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Minkowski Sum and Difference
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A®B
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Minkowski Sum and Difference

» Let A and B be two point sets, and let a and
b be the position vectors corresponding to
pairs of points in A and B.

Minkowski difference is defined by

A-B={a—b:acAbecB]

Geometrically, the Minkowski difference is
obtained by adding A to the reflection of B about
the origin.
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Minkowski Sum and Difference
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For two convex polygons, P and Q, the Minkowski
sum R has the properties that R is a convex polygon
and the vertices of R are sums of the vertices of P
and Q.
The Minkowski sum of two convex polyhedra is a convex
polyhedra, with corresponding properties.
Minkowski sums both directly and indirectly apply to
collision detection.

Obstacles can be “grown” by the object at the same time
the object is “shrunk” allowing the collision testing of the
moving object to be treated as a moving point against the
grown obstacles.
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Minkowski Sum and Difference
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The Minkowski difference is important from a
collision detection perspective because two point
sets A and B collide if and only if their Minkowski
difference C contains the origin.

It is possible to establish an even stronger result:
computing the minimum distance between A and B is
equivalent to computing the minimum distance between C
and the origin.
The Minkowski difference of two convex sets is also
a convex set and thus its point of minimum norm is

unique.
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Minkowski Sum and Difference

AD(-B)
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Closest-point Computations

4
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Closest-point qlu.er'ies are some of the most
powerful of collision queries.

Given the closest points between two
ob:iec’rs, the distance between the objects is
obtained.

If the combined maximum movement of two

objects is less than the distance between them, a
collision can be ruled out.

In a hierarchical representation, closest-point
computations allow parts of the hierarchy that
will never come close enough to collide to be
pruned from further consideration.

Obtaining the closest points between two
objects can be seen as a minimization
problem.
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Closest Point on Plane to Point

4
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Given a plane n, defined by a point P and a
normal n, all points X on the plane satisfy
the equation n - (X-P) = 0.

Q is an arbitrary point in space.

The closest point R on the plane to Q is the
orthogonal projection of Q onto the plane,
obtained by moving Q perpendicularly toward
the plane.

R = Q - tn, for some value of t.
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Closest Point on Plane to Point

?Q

n-((Q—tn)—P) =0« (inserting R for X in plane equation)
n-Q—tn-n)—-n-P=0<« (expanding dot product)
n-(Q—-P)=tln-n) & (gathering similar terms and moving t expression to RHS)
t=n-(Q—P)/(n-n) (dividing both sides by n - n)

Substituting this expression for ¢ in R = Q — tn gives the projection point R as

R=Q—-(m-(Q—-P)(n-n))n.
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Closest Point on Plane to Point

4
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When n is of unit length, t simplifies to 1 =
n - (Q-P), giving R as simply R = Q-(n - (Q-
P))n.

It is easy to see that for an arbitrary point
Q, t =n- (Q-P) corresponds to the signed
distance of Q from the plane in units of the
length of n.
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Closest Point on Line Segment to
Point

» Let AB be a line segment specified by the
endpoints A and B and let C be an arbitrary
point. The problem is to determine the point
D on AB closest to C.

(a) (b)
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Closest Point on Line Segment to
Point

4

4
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Projecting C onto the extended line through AB
provides the solution.

If the projection point P lies within the segment, P itself is
the correct answer.

If P lies outside the segment, it is instead the segment

endpoint closest to C that is the closest point.
Any point on the segment is given by P(t) = A + 1(B-
A), O<t<l.
Using the projective properties of the dot product,
the t corresponding to the projection of C onto the
line is given by t = (C-A) - n/||B-A||, where n=(B-
A)/||B-A|| is a unit vector in the direction of AB.

t should be clamped to the interval O<t<l.

D can then be obtained by substituting 1 into the
parametric equation.
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Closest Point on Line Segment to
Point

» Distance of Point to Segment

The squared distance between a point C
and a segment AB can be directly
computed without explicitly computing the
point D on AB closest to C.

There are three cases to consider
AC - AB < 0O: distance is AC - AC
AC - AB > AB - AB: distance is BC - BC
O<AC- - AB< AB - AB: distance is CD * CD
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Closest Point on AABB to Point

» Let B be an axis-aligned bounding box and P an
arbitrary point in space.

»  The point Q on B closest to P is obtained by
clamping P to the bounds of B on a componentwise
basis.

If P is inside B, the clamped point is P itself, which is also
the point in B closest to P.

If Pis ina face Voronoi region of B, the clamping operation
will bring P to that face of B.

The clamping corresponds to an orthogonal projection of P
onto B and must therefore result in the closest point on B.
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Closest Point on AABRB to Point

4
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The point Q on B closest to P is obtained by
clamping P to the bounds of B on a
componentwise basis.

When P is in a vertex Voronoi region of B,
clamping P gives the vertex as a result, which
again is the closest point on B.

When P is in an edge Voronoi region, clamping P
corresponds to an orthogonal projection onto the
edge, which also must be the closest point on B to
P.

This procedure works in both two and three

dimensions
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Closest Point on AABB to Point

» Distance of Point to AABB

When the point Q on an AABB B closest to a
given point P is computed only to determine the
distance between P and Q, the distance can be
calculated without explicitly obtaining Q.

for (int i = 0; i < 3; i++) {
// For each axis count any excess distance outside box extents
float v = p[il;
if (v < b.min[i]) sqDist += (b.min[i] - v) * (b.min[i] - v);

} if (v > b.max[i]) sqDist += (v - b.max[i]) * (v - b.max[i]);

return sqDist;

|}
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Affine Sums

» Consider the "sum”
P= O(f]_I:)]_'I'O(lzl:)z_l_. .. ..+OCnPn
Can show by induction that this sum makes sense iff

in which case we have the affine sum of the points
P,P,,....P_

» If, in addition, o.>=0, we have the convex hull of
PP P
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Convex Hull

» Smallest convex object containing P,P,,.....P,
» Formed by "shrink wrapping” points
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Curves and Surfaces

» Curves are one parameter entities of the form
P(a)) where the function is nonlinear

» Surfaces are formed from two-parameter
functions P(a, B)

Linear functions give planes and polygons

P(a) P(a, B)
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Planes

» A plane can be defined by a point and two vectors
or by three points

P
O
v
®Q
R ¢ u R @
P(a,B)=R+au+pv P(a,B)=R+a(Q-R)+B(P-Q)
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Triangles

P % convex sum of S(a) and R
/’, \\\
convex sumofPandQ .7 \
// \
T, B) \
/, \
/’ k)
4 \
< \

91

S{ol) Q

for 0<=a,B<=1, we get all points in triangle
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Normals

» Every plane has a vector n normal
(perpendicular, orthogonal) to it

» From point-two vector form P(a,B)=R+au+pv, we
know we can use the cross product to find
n=u x Vv and the equivalent form

(P(0)-P) - n=0 :
A

P

92 HY416, THMMY, MNavemoTtiuio ©@coocaliag yota@inf.uth.gr



2D Object Definition (1/3)

» Lines and polylines:
Polylines: lines drawn between ordered points

A closed polyline is a polygon, a simple polygon has no self-
intfersections

not closed, simple polygon, not simple polygon,
simple polyline closed polyline closed polyline

» Convex and concave polygons:

Convex: For every pair of points inside the polygon, the line between
them is entirely inside the polygon.

Concave: For some pair of points inside the polygon, the line between
them is not entirely inside the polygon. Not Convex.

/ ./0 \, convex —/! o ; concave
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2D Object Definition (2/3)

» Special Polygons:

Triangle Square o Rectangle

» Circles:
Set of all points equidistant
from one point called the center
The distance from the center
is the radius r
The equation for a circle centered
at (0, 0) is ré = x2 +y?

(0, 0)
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2D Object Definition (3/3)

» A circle can be approximated by a polygon with
many sides.

O O 0O 0-0

» Axis aligned ellipse: a circle scaled in the x and/or
y direction

[/
)

= N w B [¢;] »
| | |
»

| | | | | | | »
1 1 1 0 ! ! ! ! ! ! ! '
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Scaled by a factor of 2 in the x direction and not scaled in the y direction. Width changes from 3 to 6.

| | | | | | » |
! ! ! ! ! ! !
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Representing Shape

» Vertex and edge tables:
General purpose, minimal overhead, reasonably efficient
Each vertex listed once

Each edge is an ordered pair of indices to the vertex list
(like triangles in WPF)

4 N2

0 (0,0) 0 (0,1) v, v,
1 (2,0) 1 (1,3)
2 (0,1) 2 (3,4) E, e,
3 (2,1) 3 (4,2)
4 (1,15) 4 (2,0) v, ® Eo oy,

Sufficient to draw shape and perform simple operations
(transforms, point inside/outside)

Edges listed in counterclockwise order by convention
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Splines (1/5) - Representing General Curves

» We can represent any polyline with vertices and edges. What about
curves?

Don't want to store curves as raster graphics (aliasing, not scalable, memory
intensive). We need a more efficient mathematical representation

Sl;ror'e control points in a list, find some way of smoothly interpolating between
them

» Piecewise Linear Approximation
Not smooth, looks awful without many control points

» Trigonometric functions
Difficult to manipulate and control, computationally expensive to compute

» Higher order polynomials

Relatively cheap to compute, only slightly more difficult to operate on than
polylines
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Splines (2/5) - Spline Types and Uses

b Poglnomial interpolation is typically used. Splines are second or third
order parametric curves governed by control points or control vectors

» Used early on in automobile and aircraft industry to achieve smoothness
- even small differences can make a big difference in efficiency and look

approximating

: interpolating
spline

spline Vs

Splines still exist outside of computers.

Representing smooth shapes in 2D as outlines or in 3D using "PETEHEE flexible curves
parameterized with two variables: s and t (see slide 12)

Animation paths for “tweening” between keyframes
Afproximaﬂng “expensive"” functions (polynomials are cheaper than log, sin, cos
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Splines (3/5) - Hermite Curves

» Polylines are linear (15 order polynomial) interpolations between points

Given points P and Q, line between the two is given by the parametric equation:
x(t) = (1 —-t)P +tQ 0<t<1

(1 —t) and t are called weighting functions of P and Q
» Splines are higher order polynomial interpolations between points

Like linear interpolation but with higher order weighting functions allowing
better approximations/smoother curves

» One representation - Hermite curves (interpolating spline):

Determined by two control points P and Q, an initial fangent vector vand a
final tangent vector w.

y(t) = (23 = 3t> + 1P + (—2t3 + 3t?)Q

Satisfies:
Gy'(o)'?; » + (&3 -2t + v+ (t° — tH)w
B Q:t=1
y(1) =2 o
(0) = v P:t=0
YD) =w
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Splines (4/5) - Hermite Weighting Explained

> Polynomial Splines have morePolynomial weighting functions in Hermite curve equation
complex weighting functions '

than lines P O
Coefficients for P and Q are now P's coefficient N\ @’s coefficient
3rd degree polynomials .
» At t=0:

Coefficient of Pis 1, all others O

Derivative of coefficient of vis . .asicient
1, derivative of all others is O \

» ATt =1:

w’s.coefficient

Coefficient of Q is 1, all others 0 ©9 1t

Derivative of coefficient of w is
1, derivative of all others is O

» Can be chained together to make
more complex curves
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Splines (5/5) - Bezier Curves

» Bezierrepresentationis similarto Hermite
» 4 pointsinstead of 2 points and 2 vectors (P; ... Py)

» Initial position Py, tangent vectoris P, — Py \ T
» Final position P, tangentvectoris P, — P \J \
» Thisrepresentationallows a spline to be stored as
a list of vertices with some global parametersthat L
describe the smoothness and continuity —
» Beziersplinesare widely used :
(Adobe, Microsoft) for font definition J \_ Y
— ~L
Image credit:

http://miphol.com/muse/2008/04/25/Bezier-courbes-anim.qif

www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/bezierSplines/bezier_splines_guide.html
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http://miphol.com/muse/2008/04/25/Bezier-courbes-anim.gif

v

v

A4

v

"Vertices in Motion" - Object Definition

A line is drawn by tracing a point as it moves (one dimension
added)

A rectangle is drawn by tracing the vertices of a line as it moves
perpendicularly to itself (2nd dimension added)

A rectangular prism is drawn by tracing the vertices of a
rectangle as it moves perpendicularly to itself (3rd dimension)

A circle is drawn by tracing a point swinging at a fixed distance
around a center point.

=IO
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Building 3D Primitives

Made out of 2D and 1D primitives

Triangles are commonly used

Many triangles used for a single
object is a triangular mesh.

Splines used to describe boundaries of
“patches” — these can be “sewn
together” to represent curved surfaces (x.y.2) _— L

x(s,t) = (1 —s)* (1 —t)**Py4
+(1 —5)? *3t(1 —t)** P, + ...

Control Polygon

Image credit.(Stanford-Bunny):
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http://mech.fsv.cvut.cz/~dr/papers/Habil/img1007.gif

Triangle Meshes

Most common representation of shape in three
dimensions

All vertices of triangle are guaranteed to lie in one
plane (not true for quadrilaterals or other polygons)

Uniformity makes it easy to perform mesh operations
such as subdivision, simplification, transformation etc.

Procedural generation techniques
(upcoming labs on simulating #errain,
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http://upload.wikimedia.org/wikipedia/en/f/fb/Dolphin_triangle_mesh.png

Vertex List Face List

Triangular Mesh 0 [wwiw

° vO |0,0,0 fO f1 f12 15 {7 fl vO v5 vl
Representation o (v
v1—|1;0;0 f2-f3-f13 12 f1 3 vI=v6-v2

f4 v2 v6 v7

2 113,10 f4 f5 f14 f13 3 f5 2 v7 v3

» Vertex and face tables, analogous ' O
to 2D vertex and edge tables v3 [0,1,0 |f6 7 115 f14 15 7 [ v3 va vo
. . v4d 10,0,1 f6 f7 fO f8 f11 8 v8 v5 v4

listed as ordered triplets of v6 [1,1,1 |2 3 f4 f10 f9 f10 | v8 v7 vé
. . . f11 8 v4 v7
indices into the vertex table S P P 1o Tvove va
Edges inferred from triangles v8 |.5,.5,0 |f8 f9 10 f11 f13 | vO v6 v5

' . f14 v9 v7 v6

It's often useful fo store associated ve 1551 M2 13 M4 TS a5 | vo va v7

faces with vertices (i.e. computing
normals: vertex normal average of
surrounding face normals)

» Vertices listed in counter clockwise
order in face table.
No longer just because of

convention. CCW order
differentiates front and back of

face vl v2

Diagram licensed under Creative Commons Attribution license. Created by Ben Herila based
on
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http://upload.wikimedia.org/wikipedia/en/thumb/2/2d/Mesh_fv.jpg/500px-Mesh_fv.jpg
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http://support.inf.uth.gr/courses/CE416/
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» E-mail AioTa Tou paBnuaroc:
ce416@inf-server.inf.uth.gr

..kai1 péow eclass...
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107 HY416, THMMY, MNavetmmoTApio Ocooaliag yota@inf.uth.gr



