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Συμβολισμοί Βαθμωτών, Διανυσμάτων, 
Πινάκων

 Βαθμωτός(scalar)
 (πεζά, πλάγια)

 Διάνυσμα(vector)
 (πεζά, έντονα)

 Πίνακας(matrix)
 (κεφαλαία, έντονα)
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Διανύσματα

 βέλος: μήκος και διεύθυνση
 Προσανατολισμένο ευθύγραμμο 

τμήμα στον nD χώρο.

 Προσοχή! Δεν έχει 
συγκεκριμένη αρχή και τέλος.

 offset / μετατόπιση
 Με δεδομένο ένα σημείο 

αναφοράς (αρχή του 
συστήματος αξόνων) μπορούμε 
να υπολογίσουμε μετατοπίσεις 
διανυσμάτων.
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Διανύσματα γραμμές - στήλες

 Διάνυσμα γραμμή

 Διάνυσμα στήλη

 Σχετίζονται με αναστροφή
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Πρόσθεση Διανυσμάτων

 διάνυσμα + διάνυσμα = διάνυσμα

 Ισχύει ο κανόνας του παραλληλογράμμου
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Αφαίρεση Διανυσμάτων

 διάνυσμα - διάνυσμα = διάνυσμα
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Αφαίρεση Διανυσμάτων

 διάνυσμα - διάνυσμα = διάνυσμα
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Πολλαπλασιασμός βαθμωτού με διάνυσμα

 βαθμωτός * διάνυσμα = διάνυσμα
 Το νέο διάνυσμα έχει κλιμακωθεί…
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Πολλαπλασιασμός διανυσμάτων

 διάνυσμα * διάνυσμα = βαθμωτός

 εσωτερικό γινόμενο διανυσμάτων

 ή και dot product
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Vector-Vector Multiplication
 multiply:  vector * vector = scalar

 dot product, aka inner product
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 geometric interpretation

 lengths, angles

 can find angle between two 

vectors
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Εσωτερικό Γινόμενο (Dot Product)

 can find length of projection of u onto v

 as lines become perpendicular, 
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Dot Product Example
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Vector-Vector Multiplication, The Sequel

 multiply:  vector * vector = vector

 cross product
 algebraic

 geometric

 parallelogram
area

 perpendicular
to parallelogram
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RHS vs LHS Coordinate Systems

 right-handed coordinate system

 left-handed coordinate system

xy

z

xy

z

right hand rule: 

index finger x, second finger y;

right thumb points up

left hand rule: 

index finger x, second finger y;

left thumb points down

yxz 

yxz 

convention
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Basis Vectors

 take any two vectors that 

are linearly independent 

(nonzero and nonparallel)

 can use linear combination of 

these to define any other 

vector:

bac 21 ww 
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Orthonormal Basis Vectors

 if basis vectors are orthonormal (orthogonal
(mutually perpendicular) and unit length)
 we have Cartesian coordinate system

 familiar Pythagorean definition of distance

0
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



yx

yx

orthonormal algebraic properties
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Basis Vectors and Origins
 coordinate system: just basis vectors

 can only specify offset: vectors

 coordinate frame: basis vectors and origin
 can specify location as well as offset: points

jiop yx o

p

i

j

yota@inf.uth.gr18 ΗΥ416, ΤΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας



Working with Frames

p
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Working with Frames

p
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F1
p = (3,-1)
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Working with Frames
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Working with Frames
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Working with Frames

p
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Working with Frames

p
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Named Coordinate Frames

 origin and basis vectors

 pick canonical frame of reference
 then don’t have to store origin, basis vectors

 just

 convention: Cartesian orthonormal one on previous 
slide

 handy to specify others as needed
 airplane nose, looking over your shoulder, ...

 really common ones given names in CG
 object, world, camera, screen, ...

),,( cbap

zyxop cba 
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Lines

 slope-intercept form

 y = mx + b

 implicit form

 y – mx – b = 0

 Ax + By + C = 0

 f(x,y) = 0

 Vector form

 (P-P0 ) n = 0 where P, P0 are points on the line and n is the 

normal on the line
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Implicit Functions

 find where function is 0
 plug in (x,y), check if

 0: on line

 < 0: inside

 > 0: outside

 analogy: terrain
 sea level: f=0

 altitude: function value

 topo map: equal-value
contours (level sets)
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Implicit Circles



 circle is points (x,y) where f(x,y) = 0



 points p on circle have property that vector from c to p
dotted with itself has value r2



 points points p on the circle have property that squared 
distance from c to p is r2



 points p on circle are those a distance r from center 
point c

222 )()(),( ryyxxyxf cc 

0)()(:),(),,( 2  ryxcyxp cc cpcp

022
 rcp

0 rcp
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Parametric Curves

 parameter: index that changes continuously
 (x,y): point on curve

 t: parameter

 vector form

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2D Parametric Lines







 start at point p0,

go towards p1,
according to parameter t
 p(0) = p0, p(1) = p1



x

y










x0  t(x1  x0)

y0  t(y1  y0)
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

)()( 010 pppp  tt

)()( dop tt 
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Linear Interpolation

 parametric line is example of general 
concept


 interpolation

 p goes through a at t = 0

 p goes through b at t = 1

 linear

 weights t, (1-t) are linear polynomials in t

)()( 010 pppp  tt
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Ασκήσεις 
 Ποια είναι η παραμετρική εξίσωση της ευθείας που 

διέρχεται από το μέσον του P1P0 ευθυγράμμου 
τμήματος και είναι κάθετος στο P1P0 ;

 Για ποια τιμή του t παίρνουμε το μέσον του P1P0

 Ποια είναι η παραμετρική παράσταση του κύκλου 
και έλλειψης;

 Πως ορίζονται τα εφαπτόμενα και κάθετα 
διανύσματα καμπυλών;
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Matrix-Matrix Addition

 add:  matrix + matrix = matrix

 example
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Scalar-Matrix Multiplication

 multiply: scalar * matrix = matrix

 example
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Matrix-Matrix Multiplication

 row by column
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Matrix-Matrix Multiplication

 row by column
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Matrix-Matrix Multiplication

 row by column
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Matrix-Matrix Multiplication

 row by column
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Matrix-Matrix Multiplication
 row by column

 noncommutative: AB != BA
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Matrix Multiplication

 can only multiply if 
number of left cols = number of right rows
 legal

 undefined
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Matrix-Vector Multiplication
 points as column vectors: postmultiply

 points as row vectors: premultiply
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Πίνακες

 ανάστροφος

 ταυτοτικός

 αντίστροφος
 δεν είναι όλοι οι πίνακες αντιστρέψιμοι
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Πίνακες και Γραμμικά Συστήματα

 Γραμμικό σύστημα n εξισώσεων με n αγνώστους

 σε μορφή πινάκων Ax=b
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Linear Vector Spaces

 Mathematical system for manipulating vectors

 Operations

 Scalar-vector multiplication u=v

 Vector-vector addition: w=u+v

 Expressions such as 
v=u+2w-3r

Make sense in a vector space
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Affine Spaces

 Point + a vector space

 Operations
 Vector-vector addition

 Scalar-vector multiplication

 Point-vector addition

 Scalar-scalar operations

 For any point define
 1 • P = P

 0 • P = 0 (zero vector)
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Γεωμετρία
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Πολύγωνα - Polygons

 A polygon is a closed figure with n sides, defined by 
an ordered set of three or more points in the plane.
 Each point is connected to the next with a line segment.
 For a set of n points, the resulting polygon is also called an 

n-sided polygon or just n-gon.

 The polygon sides or edges are the line segments 
that make up the polygon boundary.

 The points themselves are called the polygon 
vertices.
 Two vertices are adjacent if they are joined by an edge.
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Polygons

 A polygon is simple if no two nonconsecutive edges have a point 
in common.

 A simple polygon partitions the plane into two disjoint parts
 The interior
 The exterior
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Polygons

 A polygon diagonal is a line segment that joins two 
polygon vertices and lies fully inside the polygon.

 A vertex is a convex vertex if the interior angle is 
less than or equal to 180 degrees.
 If the angle is larger than 180 degrees, it is instead called 

a concave (or reflex) vertex.
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Convexity

 An object is convex iff for any two points in the 
object all points on the line segment between 
these points are also in the object

P

Q Q

P

convex
not convex
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Polygons

 A polygon P is a convex polygon if all line segments 
between any two points of P lie fully inside P.

 A polygon that is not convex is called a concave 
polygon.

 A polygon with one or more concave vertices is 
necessarily concave.

 But a polygon with only convex vertices is not always 
convex. 

 The triangle is the only n-sided polygon always 
guaranteed to be convex.
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Polygons

 In addition to the explicit vertex representation, 
convex polygons can also be described as the 
intersection of a finite number of halfspaces.
 This  representation is convenient for point containment 

tests.

 Two or more polygons can be joined at their edges 
to form a polygon mesh.
 The degree of a vertex corresponds to the number of 

edges connected to the vertex.

 A mesh will be considered closed if all polygons have been 
joined such that each edge is part of exactly two polygons.
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Testing Polygon Convexity

 Most intersection tests and other operations 
performed on polygons in a collision detection 
system are faster when applied to convex rather 
than concave polygons.
 Simplifying assumptions can be made in the former case.

 Triangles are nice in this respect.  Always convex.

 It may be more efficient to perform an intersection 
against a single convex n-gon rather than against multiple 
triangles covering the same area. 

 Frequently, quadrilaterals are the only primitives 
supported in addition to triangles.
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Testing Polygon Convexity

 Assume all vertices of the quad ABCD lie in 
the same plane.

 The quad is convex if and only if its two 
diagonals lie fully in the interior of the quad.
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Testing Polygon-Quad Convexity

 This test is equivalent to testing if the two line 
segments AC and BD corresponding to the diagonals, 
intersect each other.
 If they do, the quad is convex.

 If they do not, the quad is concave or self-intersecting.

 If the segments are parallel and overlapping, the quad is 
degenerate (into a line).

 To avoid considering a quad with three collinear 
vertices convex, the segments should only be 
considered intersecting if they overlap on their 
interior.
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Testing Polygon Convexity

 It can be shown that the intersection of the 
segments is equivalent to the points A and C lying on 
opposite sides of the line through BD, as well as to 
the points B and D lying on opposite sides of the line 
through AC.

 This test is equivalent to the triangle BDA having 
opposite winding (περιέλιξη - προσανατολισμός) to 
BDC, as well as ACD having opposite winding to ACB. 
 The opposite winding can be detected by computing the 

normals of the triangles and examining the sign of the dot 
product between the normals of the triangles to be 
compared.
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Testing Polygon Convexity

 If the dot product is negative, the normals point in 
opposing directions, and the triangles therefore 
wind in opposite order.
 (BDⅹBA)ᆞ(BDⅹBC) < 0

 (ACⅹAD)ᆞ(ACⅹAB) < 0

 For general n-gons, not just quads, a 
straightforward solution is to, for each polygon 
edge, test to see if all other vertices lie (strictly) 
on the same side of that edge.
 If the test is true for all edges, the polygon is convex.

 Otherwise it is concave.
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Testing Polygon Convexity

 A separate check for coincident vertices is required 
to make the test robust.

 Although easy to implement, this test is expensive 
for large polygons, with an O(n2) complexity in the 
number of vertices.

 It is easy to come up with tests that are faster.
 Many of them correctly classify only a subset of convex 

polygons and incorrectly classify some nonconvex polygons.
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Testing Polygon Convexity

 For example..
 A strictly convex polygon has interior angles that 

are all less than 180 degrees.

 However, although this test is a necessary 
criterion for convexity it is not a sufficient one.
 Testing the interior angles alone would thus incorrectly 

conclude that a pentagram (πεντάλφα) is a convex 
polygon.

 This test only works if the polygon is known, a priori, not 
to be self-intersecting.
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Testing Polygon Convexity

 Another basis for a convexity test is that there are 
only two changes in direction along any given axis 
when moving from vertex to vertex of a convex 
polygon, accounting for wraparound from the first 
to the last vertex.

 To detect the zigzag case, a test for change of 
direction would have to be performed for two 
different directions, such as both the x axis and 
the y axis.
 This fails when all vertices of an originally convex polygon 

have been projected onto a single line. 
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Polyhedra

 A polyhedron is the 3D counterpart of a polygon. 
 It is a bounded and connected region of space in the shape 

of a multifaceted (πολύπλευρος) solid. 

 The polyhedron boundary consists of a number of polygonal 
faces (όψη) connected so that each polygon edge is part of 
exactly two faces.
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Polyhedra

 The polyhedron boundary divides space into two 
disjoint regions: the interior and the exterior.

 A polyhedron is convex if the point set determined 
by its interior and boundary is convex.
 A bounded convex polyhedron is also referred to as a 

polytope (πολύτοπο).
 Polytopes can also be described as the intersection of a 

finite number of halfspaces.

 A d-simplex is the convex hull of d+1 affinely
(συσχετισμένα) independent points in d-dimensional 
space.
 A simplex is a d-simplex for some given d.
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Polyhedra

0-simplex: a point, 

1-simplex: a line segment, 

2-simplex: a triangle, 

3-simplex: a tetrahedron.
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Testing Polyhedral Convexity

 A polyhedron P is convex if and only if for all faces 
of P all vertices of P lie (strictly) on the same side 
of that face.
 A separate test for coincident vertices and collinear edges 

of the polyhedron faces is required to make the test 
robust, usually with some tolerance added for determining 
coincidency and collinearity.

 The complexity of this test is O(n2)

 A faster O(n) approach is to compute for each face 
F of P the centroid C of F, and for all neighboring 
faces G of F test if C lies behind the supporting 
plane of G. 
 If some C fails to lie behind the supporting plane of one or 

more neighboring faces, P is concave.
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Computing Convex Hulls

Andrew’s algorithm
One of the most robust and easy to implement 2D

convex hull algorithms
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Computing Convex Hulls

The Quickhull algorithm
 A method that works in both 2D and 3D

yota@inf.uth.gr66 ΗΥ416, ΤΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας



Computing Convex Hulls

The Quickhull algorithm
 The initial hull approximation may not always be a 

quadrilateral.
 To avoid problems, an implementation must be written to 

handle an initial hull approximation of a variable number 
of edges.

 There might not be a single unique point on the 
edge of the initial bounding box, or a single unique 
point farthest away from an edge.
 One of them that lie closest to the edge endpoints must 

be chosen as the extreme point.
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Voronoi Region

 Given a set S of points in the plane, the Voronoi region of a 
point P in S is defined as the set of points in the plane closer 
to P than to any other points in S. 
 Quite useful for collision detection applications

 Given a polyhedron P, let a feature of P be one of its vertices, 
edges, or faces.

 The Voronoi region of a feature F of P is then the set of 
points in space closer to F than to any other feature of P.
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Voronoi Region

 The boundary planes of a Voronoi region are 
referred to as Voronoi planes.

 Given a convex polyhedron P, all points in space 
exterior to P can be classified as lying in a Voronoi
feature region of a vertex, edge, or face of P, with 
the boundary between two neighboring Voronoi
feature regions considered to belong to only one of 
the regions.
 The Voronoi regions create a partitioning of space exterior 

to a polyhedron, they can be used to determine the closest 
point on a convex polyhedral object to some point Q in 
space.

 This determination is done by walking from region to region 
until Q is found to be inside the region.
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Voronoi Region

 The closest point on the object to Q is then 
the projection of Q onto the feature with 
which the given region is associated. 
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Minkowski Sum and Difference

 Let A and B be two point sets, and let a and 
b be the position vectors corresponding to 
pairs of points in A and B.
 Minkowski sum is defined by

 Visually, the Minkowski sum can be seen as the 
region swept by A translated to every point in B.

 BABA  baba ,:
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Minkowski Sum and Difference
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Minkowski Sum and Difference

 Let A and B be two point sets, and let a and 
b be the position vectors corresponding to 
pairs of points in A and B.
 Minkowski difference is defined by

 Geometrically, the Minkowski difference is 
obtained by adding A to the reflection of B about 
the origin.

 BABA  baba ,:
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Minkowski Sum and Difference

 For two convex polygons, P and Q, the Minkowski
sum R has the properties that R is a convex polygon 
and the vertices of R are sums of the vertices of P 
and Q. 
 The Minkowski sum of two convex polyhedra is a convex 

polyhedra, with corresponding properties.

 Minkowski sums both directly and indirectly apply to 
collision detection.
 Obstacles can be “grown” by the object at the same time 

the object is “shrunk” allowing the collision testing of the 
moving object to be treated as a moving point against the 
grown obstacles.
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Minkowski Sum and Difference

 The Minkowski difference is important from a 
collision detection perspective because two point 
sets A and B collide if and only if their Minkowski
difference C contains the origin.
 It is possible to establish an even stronger result: 

computing the minimum distance between A and B is 
equivalent to computing the minimum distance between C 
and the origin. 

 The Minkowski difference of two convex sets is also 
a convex set and thus its point of minimum norm is 
unique.
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Minkowski Sum and Difference
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Closest-point Computations

 Closest-point queries are some of the most 
powerful of collision queries.

 Given the closest points between two 
objects, the distance between the objects is 
obtained.
 If the combined maximum movement of two 

objects is less than the distance between them, a 
collision can be ruled out.

 In a hierarchical representation, closest-point 
computations allow parts of the hierarchy that 
will never come close enough to collide to be 
pruned from further consideration.

 Obtaining the closest points between two 
objects can be seen as a minimization 
problem.
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Closest Point on Plane to Point

 Given a plane п, defined by a point P and a 
normal n, all points X on the plane satisfy 
the equation nᆞ(X-P) = 0.

 Q is an arbitrary point in space. 

 The closest point R on the plane to Q is the 
orthogonal projection of Q onto the plane, 
obtained by moving Q perpendicularly toward 
the plane.
 R = Q – tn, for some value of t.
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Closest Point on Plane to Point
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Closest Point on Plane to Point

 When n is of unit length, t simplifies to t = 
nᆞ(Q-P), giving R as simply R = Q-(nᆞ (Q-
P))n.

 It is easy to see that for an arbitrary point 
Q, t = nᆞ (Q-P) corresponds to the signed 
distance of Q from the plane in units of the 
length of n.
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Closest Point on Line Segment to 
Point

 Let AB be a line segment specified by the 
endpoints A and B and let C be an arbitrary 
point. The problem is to determine the point 
D on AB closest to C.
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Closest Point on Line Segment to 
Point
 Projecting C onto the extended line through AB 

provides the solution.
 If the projection point P lies within the segment, P itself is 

the correct answer.
 If P lies outside the segment, it is instead the segment 

endpoint closest to C that is the closest point.

 Any point on the segment is given by P(t) = A + t(B-
A), 0≤t≤1.

 Using the projective properties of the dot product, 
the t corresponding to the projection of C onto the 
line is given by t = (C-A)ᆞn/||B-A||, where n=(B-
A)/||B-A|| is a unit vector in the direction of AB.
 t should be clamped to the interval 0≤t≤1.
 D can then be obtained by substituting t into the 

parametric equation.
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Closest Point on Line Segment to 
Point

 Distance of Point to Segment
 The squared distance between a point C 

and a segment AB can be directly 
computed without explicitly computing the 
point D on AB closest to C.

 There are three cases to consider
 ACᆞAB ≤ 0: distance is ACᆞAC

 ACᆞAB ≥ ABᆞAB: distance is BCᆞBC

 0 < ACᆞAB < ABᆞAB: distance is CDᆞCD
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Closest Point on AABB to Point

 Let B be an axis-aligned bounding box and P an 
arbitrary point in space.

 The point Q on B closest to P is obtained by 
clamping P to the bounds of B on a componentwise
basis.
 If P is inside B, the clamped point is P itself, which is also 

the point in B closest to P.

 If P is in a face Voronoi region of B, the clamping operation 
will bring P to that face of B. 
 The clamping corresponds to an orthogonal projection of P 

onto B and must therefore result in the closest point on B.
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Closest Point on AABB to Point

 The point Q on B closest to P is obtained by 
clamping P to the bounds of B on a 
componentwise basis.
 When P is in a vertex Voronoi region of B, 

clamping P gives the vertex as a result, which 
again is the closest point on B.

 When P is in an edge Voronoi region, clamping P 
corresponds to an orthogonal projection onto the 
edge, which also must be the closest point on B to 
P.

 This procedure works in both two and three 
dimensions
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Closest Point on AABB to Point

 Distance of Point to AABB
 When the point Q on an AABB B closest to a 

given point P is computed only to determine the 
distance between P and Q, the distance can be 
calculated without explicitly obtaining Q.
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Affine Sums

 Consider the “sum”

P = 1P1+2P2+…..+nPn

Can show by induction that this sum makes sense iff

1+2+…..n=1

in which case we have the affine sum of the points 
P1,P2,…..Pn

 If, in addition, i>=0, we have the convex hull of 
P1,P2,…..Pn
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Convex Hull

 Smallest convex object containing P1,P2,…..Pn

 Formed by “shrink wrapping” points
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Curves and Surfaces

 Curves are one parameter entities of the form 
P() where the function is nonlinear

 Surfaces are formed from two-parameter 
functions P(, b)

 Linear functions give planes and polygons

P() P(, b)
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Planes

 A plane can be defined by a point and two vectors 
or by three points

P(,b)=R+u+bv P(,b)=R+(Q-R)+b(P-Q)

u

v

R

P

R

Q
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Triangles

convex sum of P and Q

convex sum of S() and R

for 0<=,b<=1, we get all points in triangle
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Normals

 Every plane has a vector n normal 
(perpendicular, orthogonal) to it

 From point-two vector form P(,b)=R+u+bv, we 
know  we can use the cross product to find     
n = u   v and the equivalent form

(P()-P)  n=0

u

v

P
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2D Object Definition (1/3)
 Lines and polylines:

 Polylines: lines drawn between ordered points

 A closed polyline is a polygon, a simple polygon has no self-
intersections

 Convex and concave polygons:
 Convex:  For every pair of points inside the polygon, the line between 

them is entirely inside the polygon.

 Concave: For some pair of points inside the polygon, the line between 
them is not entirely inside the polygon.  Not Convex.

simple polygon,

closed polyline
not closed, 

simple polyline

not simple polygon, 

closed polyline

convex concave
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2D Object Definition (2/3)

 Special Polygons:

 Circles:
 Set of all points equidistant 
from one point called the center
 The distance from the center 
is the radius r
 The equation for a circle centered
at (0, 0) is r2 = x2 + y2

Triangle Square Rectangle

(0, y)

(0, x)

r

(0, 0)

(x, y)
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2D Object Definition (3/3)

 A circle can be approximated by a polygon with 
many sides.

 Axis aligned ellipse: a circle scaled in the x and/or 
y direction

0
1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

0
1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

Scaled by a factor of 2 in the x direction and not scaled in the y direction.  Width changes from 3 to 6.

yota@inf.uth.gr95 ΗΥ416, ΤΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας



Representing Shape

 Vertex and edge tables:
 General purpose, minimal overhead, reasonably efficient
 Each vertex listed once
 Each edge is an ordered pair of indices to the vertex list 

(like triangles in WPF)

 Sufficient to draw shape and perform simple operations 
(transforms, point inside/outside)

 Edges listed in counterclockwise order by convention

Vertices

0 (0, 0)

1 (2, 0)

2 (0, 1)

3 (2, 1)

4 (1, 1.5) 

Edges

0 (0, 1)

1 (1, 3)

2 (3, 4)

3 (4, 2)

4 (2, 0) 

E4

E3 E2

E0

E1

V0 V1

V2 V3

V4
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Splines
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Splines (1/5) - Representing General Curves

 We can represent any polyline with vertices and edges. What about 
curves?
 Don’t want to store curves as raster graphics (aliasing, not scalable, memory 

intensive).  We need a more efficient mathematical representation
 Store control points in a list, find some way of smoothly interpolating between 

them

 Piecewise Linear Approximation
 Not smooth, looks awful without many control points

 Trigonometric functions
 Difficult to manipulate and control, computationally expensive to compute

 Higher order polynomials
 Relatively cheap to compute, only slightly more difficult to operate on than 

polylines
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Splines (2/5) – Spline Types and Uses
 Polynomial interpolation is typically used.  Splines are second or third 

order parametric curves governed by control points or control vectors
 Used early on in automobile and aircraft industry to achieve smoothness 

– even small differences can make a big difference in efficiency and look

 Used for:
 Representing smooth shapes in 2D as outlines or in 3D using “patches” 

parameterized with two variables: 𝑠 and 𝑡 (see slide 12)
 Animation paths for “tweening” between keyframes
 Approximating “expensive” functions (polynomials are cheaper than log, sin, cos

…)

Splines still exist outside of computers.

They’re now called flexible curves.

V0

V1

V2 V3

V4

V5

approximating

spline
interpolating

spline

polyline

approximation
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Splines (3/5) – Hermite Curves
 Polylines are linear (1st order polynomial) interpolations between points

 Given points 𝑃 and 𝑄, line between the two is given by the parametric equation:
𝑥 𝑡 = 1 − t P + tQ, 0 ≤ t ≤ 1

 1 − t and t are called weighting functions of P and 𝑄

 Splines are higher order polynomial interpolations between points
 Like linear interpolation but with higher order weighting functions allowing 

better approximations/smoother curves

 One representation - Hermite curves (interpolating spline):
 Determined by two control points P and Q, an initial tangent vector v and a 

final tangent vector w.

 Satisfies:

 𝛾 0 = 𝑃

 𝛾 1 = 𝑄

 𝛾′ 0 = 𝑣

 𝛾′ 1 = 𝑤

𝛾 𝑡 = 2𝑡3 − 3𝑡2 + 1 𝑃 + −2𝑡3 + 3𝑡2 𝑄
+ 𝑡3 − 2𝑡2 + 𝑡 𝑣 + 𝑡3 − 𝑡2 𝑤

𝛾
w

v

𝑄: 𝑡 = 1

𝑃: 𝑡 = 0
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Splines (4/5) – Hermite Weighting Explained

Polynomial weighting functions in Hermite curve equation

1

(0, 0) 𝑡1

𝑃’s coefficient 𝑄’s coefficient

𝑤’s coefficient𝑣’s coefficient

 Polynomial splines have more
complex weighting functions
than lines
 Coefficients for 𝑃 and 𝑄 are now 

3rd degree polynomials

 At 𝑡 = 0:
 Coefficient of 𝑃 is 1, all others 0
 Derivative of coefficient of 𝑣 is

1, derivative of all others is 0

 At 𝑡 = 1:
 Coefficient of 𝑄 is 1, all others 0
 Derivative of coefficient of 𝑤 is

1, derivative of all others is 0

 Can be chained together to make 
more complex curves
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Splines (5/5) – Bezier Curves

Image credit: 

http://miphol.com/muse/2008/04/25/Bezier-courbes-anim.gif

www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/bezierSplines/bezier_splines_guide.html
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“Vertices in Motion” - Object Definition
 A line is drawn by tracing a point as it moves (one dimension 

added)

 A rectangle is drawn by tracing the vertices of a line as it moves 
perpendicularly to itself (2nd dimension added)

 A rectangular prism is drawn by tracing the vertices of a 
rectangle as it moves perpendicularly to itself (3rd dimension)

 A circle is drawn by tracing a point swinging at a fixed distance 
around a center point.
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Building 3D Primitives

Image credit (Stanford Bunny):
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Triangle Meshes

 Most common representation of shape in three 
dimensions

 All vertices of triangle are guaranteed to lie in one 
plane (not true for quadrilaterals or other polygons)

 Uniformity makes it easy to perform mesh operations 
such as subdivision, simplification, transformation etc.

 Many different ways to represent triangular meshes

 See chapters 8 and 28 in book, 
en.wikipdia.org/wiki/polygon_mesh

 Mesh transformation and deformation
 Procedural generation techniques

(upcoming labs on simulating terrain)Image credit: 

http://upload.wikimedia.org/wikipedia/en/f/fb/Dolphin_triangle_mesh.png
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Triangular Mesh 
Representation

 Vertex and face tables, analogous 
to 2D vertex and edge tables

 Each vertex listed once, triangles 
listed as ordered triplets of 
indices into the vertex table

 Edges inferred from triangles

 It’s often useful to store associated 
faces with vertices  (i.e. computing 
normals: vertex normal average of 
surrounding face normals)

 Vertices listed in counter clockwise 
order in face table.

 No longer just because of 
convention.  CCW order 
differentiates front and back of 
face

Diagram licensed under Creative Commons  Attribution license. Created by Ben Herila based 

on http://upload.wikimedia.org/wikipedia/en/thumb/2/2d/Mesh_fv.jpg/500px-Mesh_fv.jpg

v0

v1 v2

f3

f2

f1

f0

f9

v8

v4 v7

v6

f10f8

f11

v5

Vertex  List

v0 0, 0, 0 f0  f1  f12  f15  f7

v1 1, 0, 0 f2  f3  f13  f12  f1

v2 1, 1, 0 f4  f5  f14  f13  f3

v3 0, 1, 0 f6  f7  f15  f14  f5

v4 0, 0, 1 f6  f7  f0  f8  f11

v5 1, 0, 1 f0  f1  f2  f9  f8

v6 1, 1, 1 f2  f3  f4  f10  f9

v7 0, 1, 1 f4  f5  f6  f11  f10

v8 .5, .5, 0 f8  f9  f10  f11

v9 .5, .5, 1 f12  f13  f14  f15

Face  List

f0 v0  v4  v5

f1 v0  v5  v1

f2 v1  v5  v6

f3 v1  v6  v2

f4 v2  v6  v7

f5 v2  v7  v3

f6 v3  v7  v4

f7 v3  v4  v0

f8 v8  v5  v4

f9 v8  v6  v5

f10 v8  v7  v6

f11 v8  v4  v7

f12 v9  v5  v4

f13 v9  v6  v5

f14 v9  v7  v6

f15 v9  v4  v7
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Ερωτήσεις

 Ιστοσελίδα μαθήματος (ενεργοποιημένη) :

http://support.inf.uth.gr/courses/CE416/
http://eclass.uth.gr/eclass/MHX101/

 E-mail λίστα του μαθήματος: 

ce416@inf-server.inf.uth.gr

…και μέσω eclass…

 Π. Τσομπανοπούλου, Ε3-12, yota@uth.gr

yota@inf.uth.gr107 ΗΥ416, ΤΗΜΜΥ, Πανεπιστήμιο Θεσσαλίας


