
�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 1

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N1307
July 1996

Source: Audio Subgroup

Title: MPEG-2 Audio NBC (13818-7) Committee Draft

Status: Approved

Authors: M. Bosi, K. Brandenburg, S. Quackenbush, M. Dietz, J. Johnston, J.
Herre, H. Fuchs, Y. Oikawa, K. Akagiri, M. Coleman, M. Iwadare, C.
Lueck

ISO/IEC 13818-7:1996(E) �ISO/IEC

2 MPEG-2 NBC WD / 4:37 PM / 10/21/96

1 INTRODUCTION .. 5

1.1 ... 6
1.1 GLOSSARY.. 7
1.2 SYMBOLS AND ABBREVIATIONS.. 12

1.2.1 Arithmetic operators... 12
1.2.2 Logical operators ... 12
1.2.3 Relational operators... 13
1.2.4 Bitwise operators.. 13
1.2.5 Assignment.. 13
1.2.6 Mnemonics.. 13
1.2.7 Constants .. 14

1.3 METHOD OF DESCRIBING BIT STREAM SYNTAX... 14

2 SYNTAX.. 16

2.1 AUDIO_DATA_TRANSPORT_STREAM VERSUS RAW_DATA_STREAM .. 16
2.2 AUDIO_DATA_TRANSPORT_STREAM FRAME, ADTS0... 16

2.2.1 Fixed Header of ADTS0 ... 16
2.2.2 Variable Header of ADTS0 .. 17

2.3 MINIMUM AUDIO_DATA_TRANSPORT_STREAM FRAME, ADTSM ... 17
2.3.1 Header of ADTSm .. 18
2.3.2 Error detection ... 18

2.4 RAW DATA ... 18

3 GENERAL INFORMATION.. 27

3.1 PROFILES.. 27
3.2 DECODING OF RAW DATA... 28

3.2.1 Definitions .. 28
3.2.2 Buffer requirements .. 29

3.3 SINGLE CHANNEL ELEMENT, CHANNEL PAIR ELEMENT AND INDIVIDUAL CHANNEL STREAM............................. 29
3.3.1 Definitions .. 29
3.3.2 Decoding process ... 30
3.3.3 Windows and window sequences.. 31
3.3.4 Scalefactor bands and grouping of scalefactor bands ... 32
3.3.5 Order of spectral coefficients in spectral_data .. 33

3.4 PROGRAM CONFIG ELEMENT.. 33
3.4.1 Implicit and defined channel configurations.. 34

3.5 DATA ELEMENT.. 35
3.6 FILL ELEMENT .. 35
3.7 TABLES .. 35
3.8 FIGURES... 37

4 NOISELESS CODING... 39

4.1 TOOL DESCRIPTION... 39
4.2 DEFINITIONS... 39
4.3 DECODING PROCESS... 40
4.4 TABLES .. 41

5 QUANTIZATION... 43

5.1 TOOL DESCRIPTION... 43
5.2 DEFINITIONS... 43
5.3 DECODING PROCESS... 43

6 SCALEFACTORS.. 44

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 3

6.1 TOOL DESCRIPTION... 44
6.2 DEFINITIONS... 44
6.3 DECODING PROCESS... 44

6.3.1 Scalefactor bands ... 44
6.3.2 Decoding of scalefactors .. 44
6.3.3 Applying scalefactors ... 45

6.4 TABLES .. 46

7 JOINT CODING .. 49

7.1 M/S STEREO... 49
7.1.1 Tool description.. 49
7.1.2 Definitions .. 49
7.1.3 Decoding Process... 49
7.1.4 Diagrams.. 50
7.1.5 Tables ... 50

7.2 INTENSITY STEREO... 50
7.2.1 Tool description.. 50
7.2.2 Definitions .. 50
7.2.3 Decoding Process... 50
7.2.4 Diagrams.. 51
7.2.5 Tables ... 51
7.2.6 Integration with Intra Channel Prediction Tool... 51

7.3 COUPLING CHANNEL .. 51
7.3.1 Tool description.. 51
7.3.2 Definitions .. 52
7.3.3 Decoding Process... 52
7.3.4 Diagrams.. 54
7.3.5 Tables ... 54
7.3.6 Profile Dependent Parameters ... 55

8 LOW FREQUENCY ENHANCEMENT CHANNEL (LFE) ... 56

9 PREDICTION... 57

9.1 TOOL DESCRIPTION... 57
9.2 DEFINITIONS... 57
9.3 DECODING PROCESS... 57

9.3.1 Predictor side information ... 58
9.3.2 Predictor processing .. 58
9.3.3 Predictor reset .. 60

9.4 DIAGRAMS ... 60
9.5 TABLES .. 61

10 TEMPORAL NOISE SHAPING (TNS) ... 62

10.1 TOOL DESCRIPTION... 62
10.2 DEFINITIONS... 62
10.3 DECODING PROCESS... 62
10.4 DIAGRAMS ... 64
10.5 TABLES .. 64
10.6 PROFILE DEPENDENT PARAMETERS... 64

11 FILTERBANK AND BLOCK SWITCHING..65

11.1 TOOL DESCRIPTION.. 65
11.2 DEFINITIONS... 65
11.3 DECODING PROCESS... 65

11.3.1 IMDCT.. 65

ISO/IEC 13818-7:1996(E) �ISO/IEC

4 MPEG-2 NBC WD / 4:37 PM / 10/21/96

11.3.2 Windowing and block switching... 66
11.3.3 Overlapping and adding... 67

12 GAIN CONTROL .. 68

12.1 TOOL DESCRIPTION... 68
12.2 DEFINITIONS... 68
12.3 DECODING PROCESS... 68

12.3.1 Gain Control Data Decoding ... 68
12.3.2 Gain Control Function Setting ... 69
12.3.3 Gain Control Windowing and Overlapping ... 71
12.3.4 Synthesis Filter ... 72

12.4 DIAGRAMS ... 73
12.5 TABLES .. 73

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 5

1 Introduction

Input time signal

Perceptual
Model

Pre-
Processing

Filterbank

Prediction

Rate/Distortion
control process

M/S

Scale
Factors

Quantizer

Noiseless
coder

Bitstream
formatter

13818-7 coded
audio stream

TNS

Intensity/
Coupling

Legend

 Data
 Control

Quantized
Spectrum of
Previous
Frame

Iteration Loops

ISO/IEC 13818-7:1996(E) �ISO/IEC

6 MPEG-2 NBC WD / 4:37 PM / 10/21/96

1.1

Post-
Processing

Filterbank

Prediction

M/S

Scale
Factors

Inverse
Quantizer

Noiseless
Decoder

Bitstream
formatter

TNS

Intensity/
Coupling

Legend

 Data
 Control

13818-7 Coded
Audio Stream

Output
Time
Signal

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 7

Glossary
For the purposes of this Recommendation | International Standard, the following definitions apply. If
specific to a part, this is noted in square brackets.

1.1.1. ac coefficient [video]: Any DCT coefficient for which the frequency in one or both dimensions is
non-zero.
1.1.2. access unit [system]: In the case of compressed audio an access unit is an audio access unit. In the
case of compressed video an access unit is the coded representation of a picture.
1.1.3. adaptive bit allocation [audio]: The assignment of bits to subbands in a time and frequency varying
fashion according to a psychoacoustic model.
1.1.4. adaptive multichannel prediction [audio]: A method of multichannel data reduction exploiting
statistical inter-channel dependencies.
1.1.5. alias [audio]: Mirrored signal component resulting from sub-Nyquist sampling.
1.1.6. adaptive segmentation [audio]: A subdivision of the digital representation of an audio signal in
variable segments of time.
1.1.7. analysis filterbank [audio]: Filterbank in the encoder that transforms a broadband PCM audio signal
into a set of subband samples.
1.1.8. audio access unit [audio]: The smallest part of the encoded bit stream which can be decoded by
itself, where decoded means "fully reconstructed sound".
1.1.9. audio buffer [audio]: A buffer in the system target decoder for storage of compressed audio
bitstream.
1.1.10. audio sequence [audio]: A non-interrupted series of audio frames.
1.1.11. backward motion vector [video]: A motion vector that is used for motion compensation from a
reference picture at a later time in display order.
1.1.12. Bark [audio]: Unit of the Bark scale. The Bark scale is a non-linear mapping of the frequency scale
over the audio range closely corresponding with the frequency selectivity of the human ear across the band.
1.1.13. bidirectionally predictive-coded picture; B-picture [video]: A picture that is coded using motion
compensated prediction from a past and/or future reference picture.
1.1.14. bitrate: The rate at which the compressed bit stream is delivered from the storage medium to the
input of a decoder.
1.1.15. block companding [audio]: Normalising of the digital representation of an audio signal within a
certain time period.
1.1.16. block [video]: An 8-row by 8-column orthogonal block of pels.
1.1.17. byte: Sequence of 8-bits.
1.1.18. byte aligned: A bit in a coded bit stream is byte-aligned if its position is a multiple of 8-bits from
the first bit in the stream.
1.1.19. center channel [audio]: An audio presentation channel used to stabilise the central component of
the frontal stereo image.
1.1.20. channel: A digital medium that stores or transports a 13818 bit stream.
1.1.21. channel [audio]: A sequence of data representing an audio signal.
1.1.22. chrominance (component) [video]: A matrix, block or single pel representing one of the two
colour difference signals related to the primary colours in the manner defined in CCIR Rec 601. The
symbols used for the colour difference signals are Cr and Cb.
1.1.23. coded audio bit stream [audio]: A coded representation of an audio signal.
1.1.24. coded video bit stream [video]: A coded representation of a series of one or more pictures as
specified in this CD.
1.1.25. coded order [video]: The order in which the pictures are stored and decoded. This order is not
necessarily the same as the display order.
1.1.26. coded representation: A data element as represented in its encoded form.
1.1.27. coding parameters [video]: The set of user-definable parameters that characterise a coded video bit
stream. Bit streams are characterised by coding parameters. Decoders are characterised by the bit streams
that they are capable of decoding.
1.1.28. component [video]: A matrix, block or single pel from one of the three matrices (luminance and
two chrominance) that make up a picture.

ISO/IEC 13818-7:1996(E) �ISO/IEC

8 MPEG-2 NBC WD / 4:37 PM / 10/21/96

1.1.29. compression: Reduction in the number of bits used to represent an item of data.
1.1.30. constant bitrate coded video [video]: A compressed video bit stream with a constant average
bitrate.
1.1.31. constant bitrate: Operation where the bitrate is constant from start to finish of the compressed bit
stream.
1.1.32. constrained parameters [video]: The values of the set of coding parameters defined in 2.4.3.2 of
ISO/IEC 11172-2.
1.1.33. constrained system parameter stream (CSPS) [system]: An ISO/IEC 11172 multiplexed stream
for which the constraints defined in 2.4.6 of ISO/IEC 11172-1 apply.
1.1.34. CRC: Cyclic redundancy check.
1.1.35. critical band [audio]: Psychoacoustic measure in the spectral domain which corresponds to the
frequency selectivity of the human ear. This selectivity is expressed in Barks.
1.1.36. data element: An item of data as represented before encoding and after decoding.
1.1.37. dc-coded picture; D-picture [video]: A picture that is coded using only information from itself. Of
the DCT coefficients in the coded representation, only the dc-coefficients are present.
1.1.38. dc-coefficient [video]: The DCT coefficient for which the frequency is zero in both dimensions.
1.1.39. DCT coefficient: The amplitude of a specific cosine basis function.
1.1.40. decoded stream: The decoded reconstruction of a compressed bit stream.
1.1.41. decoder input buffer [video]: The first-in first-out (FIFO) buffer specified in the video buffering
verifier.
1.1.42. decoder: An embodiment of a decoding process.
1.1.43. decoder input rate [video]: The data rate specified in the video buffering verifier and encoded in
the coded video bit stream.
1.1.44. decoding (process): The process defined in ISO/IEC 11172 that reads an input coded bit stream and
produces decoded pictures or audio samples.
1.1.45. decoding time-stamp; DTS [system]: A field that may be present in a packet header that indicates
the time that an access unit is decoded in the system target decoder.
1.1.46. de-emphasis [audio]: Filtering applied to an audio signal after storage or transmission to undo a
linear distortion due to emphasis.
1.1.47. dequantisation [video]: The process of rescaling the quantised DCT coefficients after their
representation in the bit stream has been decoded and before they are presented to the inverse DCT.
1.1.48. digital storage media; DSM: A digital storage or transmission device or system.
1.1.49. discrete cosine transform; DCT [video]: Either the forward discrete cosine transform or the
inverse discrete cosine transform. The DCT is an invertible, discrete orthogonal transformation. The inverse
DCT is defined in annex A of ISO/IEC 11172-2.
1.1.50. display order [video]: The order in which the decoded pictures should be displayed. Normally this
is the same order in which they were presented at the input of the encoder.
1.1.51. downmix [audio]: A matrixing of n channels to obtain less than n channels.
1.1.52. dual channel mode [audio]: A mode, where two audio channels with independent programme
contents (e.g. bilingual) are encoded within one bit stream.
1.1.53. editing: The process by which one or more compressed bit streams are manipulated to produce a
new compressed bit stream.
1.1.54. elementary stream [system]: A generic term for one of the coded video, coded audio or other
coded bit streams.
1.1.55. emphasis [audio]: Filtering applied to an audio signal before storage or transmission to improve the
signal-to-noise ratio at high frequencies.
1.1.56. encoder: An embodiment of an encoding process.
1.1.57. encoding (process): A process that reads a stream of input pictures or audio samples and produces a
valid coded bit stream.
1.1.58. entropy coding: Variable length lossless coding of the digital representation of a signal to reduce
redundancy.
1.1.59. fast forward playback [video]: The process of displaying a sequence, or parts of a sequence, of
pictures in display-order faster than real-time.

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 9

1.1.60. FFT: Fast Fourier Transformation. A fast algorithm for performing a discrete Fourier transform (an
orthogonal transform).
1.1.61. filterbank [audio]: A set of band-pass filters covering the entire audio frequency range.
1.1.62. fixed segmentation [audio]: A subdivision of the digital representation of an audio signal into fixed
segments of time.
1.1.63. forbidden: The term "forbidden" when used in the clauses defining the coded bit stream indicates
that the value shall never be used. This is usually to avoid emulation of start codes.
1.1.64. forced updating [video]: The process by which macroblocks are intra-coded from time-to-time to
ensure that mismatch errors between the inverse DCT processes in encoders and decoders cannot build up
excessively.
1.1.65. forward motion vector [video]: A motion vector that is used for motion compensation from a
reference picture at an earlier time in display order.
1.1.66. frame [audio]: A part of the audio signal that corresponds to audio PCM samples from an Audio
Access Unit.
1.1.67. future reference picture [video]: The future reference picture is the reference picture that occurs at
a later time than the current picture in display order.
1.1.68. group of pictures [video]: A series of one or more coded pictures intended to assist random access.
The group of pictures is one of the layers in the coding syntax defined in ISO/IEC 11172-2.
1.1.69. Hann window [audio]: A time function that may be applied to a block of audio samples before
Fourier transformation.
1.1.70. Huffman coding: A specific method for entropy coding.
1.1.71. hybrid filterbank [audio]: A serial combination of subband filterbank and MDCT.
1.1.72. IMDCT [audio]: Inverse Modified Discrete Cosine Transform.
1.1.73. intensity stereo [audio]: A method of exploiting stereo irrelevance in stereophonic audio
programmes based on retaining at high frequencies only the energy envelope of the left and right channel
pairs.
1.1.74. interlace [video]: The property of conventional television pictures where alternating lines of the
picture represent different instances in time.
1.1.75. intra coding [video]: Coding of a macroblock or picture that uses information only from that
macroblock or picture.
1.1.76. intra-coded picture; I-picture [video]: A picture coded using information only from itself.
1.1.77. ISO/IEC 11172 (multiplexed) stream [system]: A bit stream composed of zero or more
elementary streams combined in the manner defined in ISO/IEC 11172-1.
1.1.78. joint stereo coding [audio]: Any method that exploits multichannel irrelevance.
1.1.79. layer [video and systems]: One of the levels in the data hierarchy of the video and system
specifications defined in ISO/IEC 11172-1 and ISO/IEC 11172-2.
1.1.80. low frequency enhancement channel [audio]: A limited bandwidth channel for low frequency
audio effects in a multichannel system.
1.1.81. luminance (component) [video]: A matrix, block or single pel representing a monochrome
representation of the signal and related to the primary colours in the manner defined in CCIR Rec 601. The
symbol used for luminance is Y.
1.1.82. macroblock [video]: The four 8 by 8 blocks of luminance data and the two corresponding 8 by 8
blocks of chrominance data coming from a 16 by 16 section of the luminance component of the picture.
Macroblock is sometimes used to refer to the pel data and sometimes to the coded representation of the pel
values and other data elements defined in the macroblock layer of the syntax defined in ISO/IEC 11172-2.
The usage is clear from the context.
1.1.83. mapping [audio]: Conversion of an audio signal from the time to frequency domain.
1.1.84. masking [audio]: A property of the human auditory system by which an audio signal component
cannot be perceived in the presence of another audio signal component.
1.1.85. masking threshold [audio]: A threshold in the frequency and time domains below which an audio
signal component cannot be perceived by the human auditory system.
1.1.86. MDCT [audio]: Modified Discrete Cosine Transform, which is a filterbank based on time domain
alias cancellation.

ISO/IEC 13818-7:1996(E) �ISO/IEC

10 MPEG-2 NBC WD / 4:37 PM / 10/21/96

1.1.87. motion compensation [video]: The use of motion vectors to improve the efficiency of the
prediction of pel values. The prediction uses motion vectors to provide offsets into the past and/or future
reference pictures containing previously decoded pel values that are used to form the prediction error signal.
1.1.88. motion estimation [video]: The process of estimating motion vectors during the encoding process.
1.1.89. motion vector [video]: A two-dimensional vector used for motion compensation that provides an
offset from the coordinate position in the current picture to the coordinates in a reference picture.
1.1.90. MS stereo [audio]: A method of exploiting stereo irrelevance or redundancy in stereophonic audio
programmes based on coding the sum and difference of channel pairs instead of the actual channel pairs
themselves.
1.1.91. multichannel [audio]: A combination of audio channels used to create a spatial sound field.
1.1.92. multilingual [audio]: A presentation of dialogue in more than one language.
1.1.93. non-intra coding [video]: Coding of a macroblock or picture that uses information both from itself
and from macroblocks and pictures occurring at other times.
1.1.94. non-tonal component [audio]: A noise-like component of an audio signal.
1.1.95. Nyquist sampling: Sampling at or above twice the maximum bandwidth of a signal.
1.1.96. pack [system]: A pack consists of a pack header followed by one or more packets. It is a layer in
the system coding syntax described in ISO/IEC 11172-1.
1.1.97. packet data [system]: Contiguous bytes of data from an elementary stream present in a packet.
1.1.98. packet header [system]: The data structure used to convey information about the elementary stream
data contained in the packet data.
1.1.99. packet [system]: A packet consists of a header followed by a number of contiguous bytes from an
elementary data stream. It is a layer in the system coding syntax described in ISO/IEC 11172-1.
1.1.100. padding [audio]: A method to adjust the average length in time of an audio frame to the duration
of the corresponding PCM samples, by conditionally adding a slot to the audio frame.
1.1.101. past reference picture [video]: The past reference picture is the reference picture that occurs at an
earlier time than the current picture in display order.
1.1.102. pel aspect ratio [video]: The ratio of the nominal vertical height of pel on the display to its
nominal horizontal width.
1.1.103. pel [video]: Picture element.
1.1.104. picture period [video]: The reciprocal of the picture rate.
1.1.105. picture rate [video]: The nominal rate at which pictures should be output from the decoding
process.
1.1.106. picture [video]: Source, coded or reconstructed image data. A source or reconstructed picture
consists of three rectangular matrices of 8-bit numbers representing the luminance and two chrominance
signals. The Picture layer is one of the layers in the coding syntax defined in ISO/IEC 11172-2. Note that
the term "picture" is always used in this context in preference to the terms field or frame.
1.1.107. polyphase filterbank [audio]: A set of equal bandwidth filters with special phase
interrelationships, allowing for an efficient implementation of the filterbank.
1.1.108. prediction [audio]: Calculation of a subband sample in one channel from previous samples and/or
concurrent samples in other channels.
1.1.109. prediction [video]: The use of a predictor to provide an estimate of the pel value or data element
currently being decoded.
1.1.110. predictive-coded picture; P-picture [video]: A picture that is coded using motion compensated
prediction from the past reference picture.
1.1.111. prediction error [video]: The difference between the actual value of a pel or data element and its
predictor.
1.1.112. predictor [video]: A linear combination of previously decoded pel values or data elements.
1.1.113. presentation channel [audio]: audio channels at the output of the decoder corresponding to the
loudspeaker positions left, center, right, left surround and right surround.
1.1.114. presentation time-stamp; PTS [system]: A field that may be present in a packet header that
indicates the time that a presentation unit is presented in the system target decoder.
1.1.115. presentation unit; PU [system]: A decoded audio access unit or a decoded picture.
1.1.116. psychoacoustic model [audio]: A mathematical model of the masking behaviour of the human
auditory system.

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 11

1.1.117. quantisation matrix [video]: A set of sixty-four 8-bit values used by the dequantiser.
1.1.118. quantised DCT coefficients [video]: DCT coefficients before dequantisation. A variable length
coded representation of quantised DCT coefficients is stored as part of the compressed video bit stream.
1.1.119. quantiser scalefactor [video]: A data element represented in the bit stream and used by the
decoding process to scale the dequantisation.
1.1.120. random access: The process of beginning to read and decode the coded bit stream at an arbitrary
point.
1.1.121. reference picture [video]: Reference pictures are the nearest adjacent I- or P-pictures to the
current picture in display order.
1.1.122. reorder buffer [video]: A buffer in the system target decoder for storage of a reconstructed I-
picture or a reconstructed P-picture.
1.1.123. requantisation [audio]: Decoding of coded subband samples in order to recover the original
quantised values.
1.1.124. reserved: The term "reserved" when used in the clauses defining the coded bit stream indicates
that the value may be used in the future for ISO/IEC defined extensions.
1.1.125. reverse playback [video]: The process of displaying the picture sequence in the reverse of display
order.
1.1.126. scalefactor [audio]: A factor by which a set of spectral components of the siganal is scaled before
quantisation.
1.1.127. scalefactor band [audio]: A set of frequency lines in Layer III which are scaled by one
scalefactor.
1.1.128. scalefactor index [audio]: A numerical code for a scalefactor.

1.1.129. sequence header [video]: A block of data in the coded bit stream containing the coded
representation of a number of data elements.
1.1.130. side information: Information in the bit stream necessary for controlling the decoder.
1.1.131. skipped macroblock [video]: A macroblock for which no data are stored.
1.1.132. slice [video]: A series of macroblocks. It is one of the layers of the coding syntax defined in
ISO/IEC 11172-2.
1.1.133. source stream: A single non-multiplexed stream of samples before compression coding.
1.1.134. spreading function [audio]: A function that describes the frequency spread of masking effects.
1.1.135. start codes [system and video]: 32-bit codes embedded in that coded bit stream that are unique.
They are used for several purposes including identifying some of the layers in the coding syntax.
1.1.136. STD input buffer [system]: A first-in first-out buffer at the input of the system target decoder for
storage of compressed data from elementary streams before decoding.
1.1.137. stereo-irrelevant [audio]: a portion of a stereophonic audio signal which does not contribute to
spatial perception.
1.1.138. stuffing (bits); stuffing (bytes) : Code-words that may be inserted into the compressed bit stream
that are discarded in the decoding process. Their purpose is to increase the bitrate of the stream.
1.1.139. subband [audio]: Subdivision of the audio frequency band.
1.1.140. subband filterbank [audio]: A set of band filters covering the entire audio frequency range.
1.1.141. subband samples [audio]: Time-frequency domain samples that represent an audio stream.
1.1.142. surround channel [audio]: An audio presentation channel added to the front channels (L and R or
L, R, and C) to enhance the spatial perception.
1.1.143. syncword [audio]: A 12-bit code embedded in the audio bit stream that identifies the start of a
frame.
1.1.144. synthesis filterbank [audio]: Filterbank in the decoder that reconstructs a PCM audio signal from
subband samples.
1.1.145. system header [system]: The system header is a data structure defined in ISO/IEC 11172-1 that
carries information summarising the system characteristics of the ISO/IEC 11172 multiplexed stream.
1.1.146. system target decoder; STD [system]: A hypothetical reference model of a decoding process
used to describe the semantics of an ISO/IEC 11172 multiplexed bit stream.
1.1.147. time-stamp [system]: A term that indicates the time of an event.
1.1.148. tonal component [audio]: A sinusoid-like component of an audio signal.

ISO/IEC 13818-7:1996(E) �ISO/IEC

12 MPEG-2 NBC WD / 4:37 PM / 10/21/96

1.1.149. variable bitrate: Operation where the bitrate varies with time during the decoding of a
compressed bit stream.
1.1.150. variable length coding; VLC: A reversible procedure for coding that assigns shorter code-words
to frequent events and longer code-words to less frequent events.
1.1.151. video buffering verifier; VBV [video]: A hypothetical decoder that is conceptually connected to
the output of the encoder. Its purpose is to provide a constraint on the variability of the data rate that an
encoder or editing process may produce.
1.1.152. video sequence [video]: A series of one or more groups of pictures. It is one of the layers of the
coding syntax defined in ISO/IEC 11172-2.
1.1.153. zigzag scanning order [video]: A specific sequential ordering of the DCT coefficients from
(approximately) the lowest spatial frequency to the highest.

1.2 Symbols and abbreviations
The mathematical operators used to describe this Recommendation | International Standard are similar to
those used in the C programming language. However, integer division with truncation and rounding are
specifically defined. The bitwise operators are defined assuming twos-complement representation of
integers. Numbering and counting loops generally begin from zero.

1.2.1 Arithmetic operators
+ Addition.
� Subtraction (as a binary operator) or negation (as a unary operator).
++ Increment.
� � Decrement.
* Multiplication.
^ Power.
/ Integer division with truncation of the result toward zero. For example, 7/4 and �7/�4 are

truncated to 1 and �7/4 and 7/�4 are truncated to �1.
// Integer division with rounding to the nearest integer. Half-integer values are rounded away from

zero unless otherwise specified. For example 3//2 is rounded to 2, and �3//2 is rounded to �2.
DIV Integer division with truncation of the result towards ��.
| | Absolute value. | x | = x when x > 0

| x | = 0 when x == 0
| x | = �x when x < 0

% Modulus operator. Defined only for positive numbers.
Sign() Sign. Sign(x) = 1 when x > 0

Sign(x) = 0 when x == 0
Sign(x) = �1 when x < 0

NINT () Nearest integer operator. Returns the nearest integer value to the real-valued argument. Half-
integer values are rounded away from zero.

sin Sine.
cos Cosine.
exp Exponential.
� Square root.
log10 Logarithm to base ten.
loge Logarithm to base e.
log2 Logarithm to base 2.

1.2.2 Logical operators
|| Logical OR.
&& Logical AND.
! Logical NOT

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 13

1.2.3 Relational operators
> Greater than.
>= Greater than or equal to.
< Less than.
<= Less than or equal to.
== Equal to.
!= Not equal to.
max [,...,] the maximum value in the argument list.
min [,...,] the minimum value in the argument list.

1.2.4 Bitwise operators
A twos complement number representation is assumed where the bitwise operators are used.
& AND
| OR
>> Shift right with sign extension.
<< Shift left with zero fill.

1.2.5 Assignment
= Assignment operator.

1.2.6 Mnemonics
The following mnemonics are defined to describe the different data types used in the coded bit stream.
bslbf Bit string, left bit first, where "left" is the order in which bit strings are written in

ISO/IEC 11172. Bit strings are written as a string of 1s and 0s within single
quote marks, e.g. '1000 0001'. Blanks within a bit string are for ease of reading
and have no significance.

center_chan Index of center channel.
center_limited Variable which indicates whether a subband of the center is not transmitted. It is

used in the case of phantom coding of center channel.
ch Channel. If ch has the value 0, the left channel of a stereo signal or the first of

two independent signals is indicated. (Audio)
gr Granule of 3 * 32 subband samples in audio Layer II, 18 * 32 subband samples in

audio Layer III. (Audio)
L, C, R, LS, RS Left, center, right, left surround and right surround audio signals

Lw, Cw, Rw, LSw, RSw Weighted left, center, right, left surround and right surround audio signals. The
weighting is necessary for two reasons:
1) All signals have to be attenuated prior to encoding to avoid overload when
calculating the compatible stereo signal.
2) The matrix equations contain attenuation factors and other processing like
phase shifting.
The weighted and processed signals are actually coded and transmitted, and
denormalised in the decoder.

left_sur_chan Index of left surround channel.
main_data The main_data portion of the bit stream contains the scalefactors, Huffman

encoded data, and ancillary information. (Audio)
mono_sur_chan Index of the mono surround channel. This index is identical to the index of the

left surround channel. (Audio)
msblimit Maximum used subband
nch Number of channels; equal to 1 for single_channel mode, 2 in other modes.

(Audio)
nmch Number of channels in the multichannel extension part
dyn_cross dyn_cross means that dynamic crosstalk is used for a certain transmission

channel and a certain subband.

ISO/IEC 13818-7:1996(E) �ISO/IEC

14 MPEG-2 NBC WD / 4:37 PM / 10/21/96

npredcoeff Number of prediction coefficients used.
part2_length The number of main_data bits used for scalefactors. (Audio)
right_sur_chan Index of right surround channel.
rpchof Remainder polynomial coefficients, highest order first. (Audio)
sb Subband. (Audio)
sbgr Groups of individual subband according to subbandgroup table in subclause

x.x.x.x
sblimit The number of the lowest subband for which no bits are allocated. (Audio)
scfsi Scalefactor selection information. (Audio)
switch_point_l Number of scalefactor band (long block scalefactor band) from which point on

window switching is used. (Audio)
switch_point_s Number of scalefactor band (short block scalefactor band) from which point on

window switching is used. (Audio)
tc Transmitted channel. (Audio)
uimsbf Unsigned integer, most significant bit first.
vlclbf Variable length code, left bit first, where "left" refers to the order in which the

VLC codes are written.
window Number of the actual time slot in case of block_type==2, 0 <= window <= 2.

(Audio)
The byte order of multi-byte words is most significant byte first.

1.2.7 Constants

� 3,14159265358...
e 2,71828182845...

1.3 Method of describing bit stream syntax
The bit stream retrieved by the decoder is described in x.x.x and x.x.x. Each data item in the bit stream is in
bold type. It is described by its name, its length in bits, and a mnemonic for its type and order of
transmission.
The action caused by a decoded data element in a bit stream depends on the value of that data element and
on data elements previously decoded. The decoding of the data elements and the definition of the state
variables used in their decoding are described in x.x.x, x.x.x, x.x.x and x.x.x. The following constructs are
used to express the conditions when data elements are present, and are in normal type:
Note this syntax uses the 'C'-code convention that a variable or expression evaluating to a non-zero value is
equivalent to a condition that is true.
while (condition) {
 data_element
 . . .
}

If the condition is true, then the group of data elements occurs next in the data
stream. This repeats until the condition is not true.

do {
 data_element
 . . .
} while (condition)

The data element always occurs at least once. The data element is repeated
until the condition is not true.

if (condition) {
 data_element
 . . .
}

If the condition is true, then the first group of data elements occurs next in the
data stream

else {
 data_element
 . . .
}

If the condition is not true, then the second group of data elements occurs next
in the data stream.

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 15

for (expr1; expr2; expr3) {
 data_element
 . . .
}

Expr1 is an expression specifying the initialisation of the loop. Normally it
specifies the initial state of the counter. Expr2 is a condition specifying a test
made before each iteration of the loop. The loop terminates when the
condition is not true. Expr3 is an expression that is performed at the end of
each iteration of the loop, normally it increments a counter.

Note that the most common usage of this construct is as follows:
for (i = 0; i < n; i++) {
 data_element
 . . .
}

The group of data elements occurs n times. Conditional constructs within the
group of data elements may depend on the value of the loop control variable i,
which is set to zero for the first occurrence, incremented to one for the second
occurrence, and so forth.

As noted, the group of data elements may contain nested conditional constructs. For compactness, the {}
may be omitted when only one data element follows.
data_element [] data_element [] is an array of data. The number of data elements is indicated

by the context.
data_element [n] data_element [n] is the n+1th element of an array of data.
data_element [m][n] data_element [m][n] is the m+1,n+1 th element of a two-dimensional array of

data.
data_element [l][m][n] data_element [l][m][n] is the l+1,m+1,n+1 th element of a three-dimensional

array of data.
data_element [m..n] data_element [m..n]is the inclusive range of bits between bit m and bit n in the

data_element.
While the syntax is expressed in procedural terms, it should not be assumed that clause x.x.x implements a
satisfactory decoding procedure. In particular, it defines a correct and error-free input bit stream. Actual
decoders must include a means to look for start codes in order to begin decoding correctly.
Definition of bytealigned function
The function bytealigned () returns 1 if the current position is on a byte boundary, that is the next bit in the
bit stream is the first bit in a byte. Otherwise it returns 0.
Definition of nextbits function
The function nextbits () permits comparison of a bit string with the next bits to be decoded in the bit
stream.
Definition of next_start_code function
The next_start_code function removes any zero bit and zero byte stuffing and locates the next start code.

Syntax No. of bits Mnemonic
next_start_code() {

while (!bytealigned())
zero_bit '1' '0'

while (nextbits() != '0000 0000 0000 0000 0000 0001')
zero_byte 8 '00000000'

}

This function checks whether the current position is bytealigned. If it is not, zero stuffing bits are present.
After that any number of zero bytes may be present before the start-code. Therefore start-codes are always
bytealigned and may be preceded by any number of zero stuffing bits.

ISO/IEC 13818-7:1996(E) �ISO/IEC

16 MPEG-2 NBC WD / 4:37 PM / 10/21/96

2 Syntax

2.1 Audio_Data_Transport_Stream versus Raw_Data_Stream

The Raw_Data_Stream contains all data which belong to the audio (including anxillary data) and are
changing from block to block or frame to frame. Syntax elements which are constant within an audio stream
or audio file (fixed header) or are used to enhance the parsability or error resilience (variable header) are
described within an Audio_Data_Transport_Stream. The simplest Audio_Data_Transport_Stream contains
just one repetition of the constant syntax elements (e.g. layer, sampling_frequency, channel_configuration
etc.), followed by a Raw_Data_Stream which can be decoded with the help of the information in the
Audio_Data_Transport_Stream. The minimum Audio_Data_Transport_Stream ADTSm, which is defined
below, is such a stream. More advanced Audio_Data_Transport_Streams like the MPEG-1-like ADTS0
(defined below) contain data elements which help with synchronization and error resilience.

2.2 Audio_Data_Transport_Stream frame, ADTS0
Below an Audio_Data_Transport_Stream similar to MPEG-1 / MPEG-2 syntax is given. This will be
recognized by MPEG-1 decoders as a “Layer 4” bit-stream.

Syntax No. of bits Mnemonic
audio_sequence()
{

while (nextbits()==syncword) {
adts0_frame()

}
}

Syntax No. of bits Mnemonic
adts0_frame()
{

byte_alignment()
adts0_fixed_header()
adts0_variable_header()
error_check()
for(i=0; i<number_of_raw_data_blocks_in_frame+1; i++) {

raw_data_block()
}

}

2.2.1 Fixed Header of ADTS0
This header contains the syncword plus all parts of the header which are necessary for decoding and which
do not change from frame to frame.

Syntax No. of bits Mnemonic
adts0_fixed_header()
{

syncword 12 bslbf
ID 1 bslbf
layer 2 bslbf
protection_absent 1 bslbf
sampling_frequency 2 bslbf

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 17

private_bit 1 bslbf
channel_configuration 3 bslbf
original/copy 1 bslbf
home 1 bslbf
emphasis 2 bslbf

}

2.2.2 Variable Header of ADTS0
The variable header of ADTS0 contains header data which change from frame to frame. A minimum
Audio_Data_Transport stream can have some of these omitted, others defined to be static for the audio data
to be coded and put into the fixed header.

Syntax No. of bits Mnemonic
adts0_variable_header()
{

bitrate_index 4 bslbf
copyright_id 1 bslbf
copyright_id_start 1 bslbf
end_of_raw_data 12 bslbf
buffer_fullness 8 bslbf
number_of_raw_data_blocks_in_frame 2 uimsfb

}

2.3 Minimum Audio_Data_Transport_Stream frame, ADTSm
This is a Audio_Data_Transport_Stream which does contain one header at the start of the sequence and no
frame headers containing synchronisation data. As such, it is useful only for systems with a defined start and
no need to start decoding from within the audio data stream. It can be used as an intermediate format for a
transcoding element which takes an Audio_Data_Transport_Stream which is not defined in this
International Standard and delivers ADTSm data to a standard decoder.

Syntax No. of bits Mnemonic
audio_m_sequence()
{

adtsm_header()
while (nextbits()) {

adtsm_frame()
}

}

Syntax No. of bits Mnemonic
adtsm_frame()
{

byte_alignment()
error_check()
raw_data_block()

}

ISO/IEC 13818-7:1996(E) �ISO/IEC

18 MPEG-2 NBC WD / 4:37 PM / 10/21/96

2.3.1 Header of ADTSm
The ADTSm header contains the syncword plus all parts of the header which are necessary for decoding
and which do not change from frame to frame. It may be used for audio streams where only one instance of
the header information is required.

Syntax No. of bits Mnemonic
adtsm_header()
{

adtsm_transport_id 12 bslbf
protection_absent 1 bslbf
sampling_frequency 4 bslbf
original/copy 1 bslbf
home 1 bslbf
emphasis 2 bslbf
bitrate_index 4 bslbf
num_program_config_elements 4 bslbf
for (i = 0; i < num_program_config_elements; i++)

program_config_element()
}

2.3.2 Error detection
This is the error detection as defined for MPEG-1 and MPEG-2 audio.

Syntax No. of bits Mnemonic
error_check()
{

if (protection_absent == 0)
crc_check 16 rpchof

}

The CRC algorithm is described in ISO/IEC 11172-3.

List of protected bits:
All Header Bits
First 192 bits of any

single_channel_element (SCE)
channel_pair_element (CPE)
coupling_channel_element (CCE)
low frequency enhancement channel (LFE)

In addition, the first 128 bits of the second individual_channel_stream in the channel_pair_element must be
protected. All information in any program configuration element or data element are protected.
For any element where the specified protection length of 128 or 192 bits exceeds its actual length, the
element is zero padded to the specified protection length for crc calculation.

2.4 Raw Data
This is the raw_data_stream. It can be decoded directly or put into the Audio_Data_Transport stream using
a variable rate header and a buffer fullness measure, with all the data of one frame contained between two
occurences of the header.

Syntax No. of bits Mnemonic

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 19

raw_data_block()
{

byte_alignment()
while((id = id_syn_ele) != ID_END){ 3 uimsbf

switch (id) {
case ID_SCE: single_channel_element()

break;
case ID_CPE: channel_pair_element()

break;
case ID_CCE: coupling_channel_element()

break;
case ID_FXE: lfe_channel_element()

break;
case ID_PCE: program_config_element()

break;
case ID_FLE: fill_element()

break;
case ID_DSE: data_stream_element()

break;
}

}
}

Syntax No. of bits Mnemonic
single_channel_element()
{

element_identifier_tag 4 uimsbf
individual_channel_stream(0)

}

Syntax No. of bits Mnemonic
channel_pair_element()
{

element_identifier_tag 4 uimsbf
common_window 1 uimsbf
if(common_window) {

ics_info()
ms_mask_present 2 uimsbf
if(ms_mask_present == 1) {
for(sfb=0; sfb < max_sfb; sfb++) {

ms_used[sfb] 1 uimsbf
}

}
individual_channel_stream0(common_window)
individual_channel_stream1(common_window)

}

ISO/IEC 13818-7:1996(E) �ISO/IEC

20 MPEG-2 NBC WD / 4:37 PM / 10/21/96

Syntax No. of bits Mnemonic
ics_info()
{

window_sequence 3 uimsbf
window_shape 1 uimsbf
if(window_sequence != EIGHT_SHORT_SEQUENCE)

max_sfb_l 6 uimsbf
if(!((window_sequence==ONLY_LONG_SEQUENCE) ||

(window_sequence==LONG_START_SEQUENCE) ||
(window_sequence==LONG_STOP_SEQUENCE)) {
max_sfb_s 4 uimsbf
scale_factor_grouping 7 uimsbf

}
else {

predictor_data_present 1 uimsbf
if (predictor_data_present) {

predictor_reset 1 uimsbf
if (predictor_reset) {

predictor_reset_index 5 uimsbf
}
for (sfb=0; sfb<min(max_sfb_l,PRED_SFB_MAX;

 sfb++) {
prediction_used[sfb] 1 uimsbf

}
}

}
}

Syntax No. of bits Mnemonic
individual_channel_stream(common_window)
{

if(!common_window)
ics_info()

section_data()
scale_factor_data()

pulse_data_present 1 uismbf
if(pulse_data_present) {

pulse_data()
}

tns_data_present 1 uimsbf
if(tns_data_present)

tns_data()

gain_control_data_present 1 uimsbf
if(gain_control_data_present)

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 21

gain_control_data()

spectral_data()
}

Syntax No. of bits Mnemonic
section_data()
{

if(window_sequence == EIGHT_SHORT_SEQUENCE)
top = (8*14)

else
top = 49

k=0
i=0
while (k<top) {

sect_cb[i] 4 uimsbf
len=0
while (sec_len_incr == MAX_INC_LEN)

len += MAX_INC_LEN
3,5 uimsbf

len += sec_len_incr
sect_start[i]=k
sect_end[i]=k+len

 k += len
i++

}
num_sec=i

}

Syntax No. of bits Mnemonic
scale_factor_data()
{

global_gain 8 uimsbf
for (g=0; g<num_window_groups) {

for (sfb=0; sfb<num_sfb_per_window[g]; sfb++) {
if (scale_factor_present(g,sfb)) {

if (is_intensity(g,sfb))
hcod_sf[dpcm_is_position[g][sfb]] 1..12 bslbf

else
hcod_sf[dpcm_sf[g][sfb]] 1..12 bslbf

}
}

}
}

Syntax No. of bits Mnemonic
tns_data()
{

for (w=0; w<num_windows; w++) {
n_filt[w] 1..2 uimsbf

ISO/IEC 13818-7:1996(E) �ISO/IEC

22 MPEG-2 NBC WD / 4:37 PM / 10/21/96

if (n_filt[w])
coef_res[w] 1 uimsbf

for (filt=0; filt<n_filt[w]; filt++) {
length[w][filt] 4/6 uimsbf
order[w][filt] 3/5 uimsbf
if (order[w][filt]) {

direction[w][filt] 1 uimsbf
coef_compress[w][filt] 1 uimsbf
for (i=0; i<order[w][filt]; i++)

coef[w][filt][i] 2..4 uimsbf
}

}
}

}

Syntax No. of bits Mnemonic
spectral_data()
{

for (i=0; i<num_sec; i++) {
if (sect_cb[i] != 0 && sect_cb[i] != INTENSITY_HCB &&

sect_cb[i] != INTENSITY_HCB2) {
for (k=sect_sfb_offset[sect_start[i]];

k< sect_sfb_offset[sect_end[i]];) {
if (sect_cb[i]<FIRST_QUAD_HCB) {

hcod[sect_cb[i]][w][x][y][z]
k += QUAD_LEN

1...31 bslbf

else {
hcod[sect_cb[i]][y][z]
k += PAIR_LEN

1..31 bslbf

if (sect_cb[i]==ESC_HCB) {
if (|y|==ESC_FLAG)

hcod_esc_y 1..31 bslbf
if (|z|==ESC_FLAG)

hcod_esc_z 1..31 bslbf
}

}
}

}
}

}

Syntax No. of bits Mnemonic
pulse_data() {

number_pulse 2 uimsbf
pulse_start_sfb 6 uimsbf
for (i=0;i<number_pulse+1;i++) {

pulse_offset[i] 5 uimsbf
pulse_amp[i] 4 uimsbf

}
}

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 23

Syntax No. of bits Mnemonic
coupling_channel_element()
{

element_identifier_tag 4 uimsbf
num_coupled_elements 3 uimsbf
num_gain_element_lists = 0
for (c=0; c<num_coupled_elements+1; c++) {

num_gain_element_lists++
cc_target[c] 5 uimsbf
if (is_channel_pair_element(cc_target[c])) {

cc_b[c] 1 uimsbf
if (!cc_b[c]) {

cc_l[c] 1 uimsbf
cc_r[c] 1 uimsbf
if (cc_l[c] && cc_r[c])

num_gain_element_lists++
}

}
}
cc_domain 1 uimsbf
gain_element_sign 1 uimsbf
gain_element_scale 2 uimsbf

individual_channel_stream(0)

for (c=1; c<num_gain_element_lists; c++) {
common_gain_element_present[c] 1 uimsbf
if (common_gain_element_present[c])

hcod_sf[common_gain_element[c]] 1 - 12 bslbf
else {

for (g=0; g<num_window_groups) {
for (sfb=0; sfb<num_sfb_per_window[g]; sfb++) {
if (scale_factor_present(g,sfb)

 hcod_sf[dpcm_gain_element[c][g][sfb]] 1 - 12 bslbf
}

}
}

}
}

Syntax No. of bits Mnemonic
lfe_channel_element()
{

element_identifier_tag 4 uimsbf
individual_channel_stream(0)

}

Syntax No. of bits Mnemonic
data_stream_element()
{

element_identifier_tag 4 uimsbf

ISO/IEC 13818-7:1996(E) �ISO/IEC

24 MPEG-2 NBC WD / 4:37 PM / 10/21/96

cnt = count 4 uimsbf
if (cnt == 15)

cnt += esc_count; 12 uimsbf
while (esc_l_cnt == (2^12)-1)

cnt += esc_count 12 uimsbf
for (i=0; i<cnt; i++)

data_stream_byte[element_identifier_tag][i]; 8 uimsbf
}

Syntax No. of bits Mnemonic
program_config_element()
{

element_identifier_tag 4 uimsbf
profile 2 uimsbf
sampling_rate 3 uimsbf
num_front_channel_elements 4 uimsbf
num_side_channel_elements 4 uimsbf
num_back_channel_elements 4 uimsbf
num_lfe_channel_elements 2 uimsbf
num_assoc_data_elements 3 uimsbf
num_valid_cce_elements 4 uimsbf
mono_mixdown_present 1 uimsbf
if (mono_mixdown_present == 1)

mono_mixdown_element_number 4 uimsbf
stereo_mixdown_present 1 uimsbf
if (stereo_mixdown_present == 1)

stereo_mixdown_element_number 4 uimsbf
for (i = 0; i < num_front_channel_elements; i++)

front_element_list[i]; 5 uimsbf
for (i = 0; i < num_side_channel_elements; i++)

side_element_list[i]; 5 uimsbf
for (i = 0; i < num_back_channel_elements; i++)

back_element_list[i]; 5 uimsbf
for (i = 0; i < num_lfe_channel_elements; i++)

lfe_element_list[i]; 4 uimsbf
for (i = 0; i < num_assoc_data_elements; i++)

assoc_data_element_list[i]; 4 uimsbf
for (i = 0; i < num_valid_cce_elements; i++)

valid_cce_element_list[i]; 4 uimsbf
comment_field_bytes 8 uimsbf
for (i = 0; i < comment_field_bytes; i++)

comment_field_data[i]; 8 uimsbf
}

Syntax No. of bits Mnemonic
fill_element()
{

cnt 4 uimsbf
if (cnt == 15)
{

cnt += esc_l_cnt; 8 uimsbf
while (esc_l_cnt == 255)

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 25

cnt += esc_l_cnt 8
}
for (i=0; i<cnt; i++)

fill_byte [i]; 8 uimsbf
}

Syntax No. of bits Mnemonic
gain_control_data()
{

max_band 2 uimsbf

if (window_sequence == ONLY_LONG_SEQUENCE) {
for (bd=0; bd<=max_band; bd++) {

for (wd=0; wd<1; wd++) {
adjust_num[bd][wd] 3 uimsbf
for (ad=0; ad<adjust_num[bd][wd]; ad++) {

alevcode[bd][wd][ad] 4 uimsbf
aloccode[bd][wd][ad] 5 uimsbf

}
}

}
}
else if (window_sequence == LONG_START_SEQUENCE) {

for (bd=0; bd<=max_band; bd++) {
for (wd=0; wd<2; wd++) {

adjust_num[bd][wd] 3 uimsbf
for (ad=0; ad<adjust_num[bd][wd]; ad++) {

alevcode[bd][wd][ad] 4 uimsbf
if (wd == 0)

aloccode[bd][wd][ad] 4 uimsbf
else

aloccode[bd][wd][ad] 2 uimsbf
}

}
}

 }
else if (window_sequence == EIGHT_SHORT_SEQUENCE) {

for (bd=0; bd<=max_band; bd++) {
for(wd=0; wd<8; wd++) {

adjust_num[bd][wd] 3 uimsbf
for (ad=0; ad<adjust_num[bd][wd]; ad++) {

alevcode[bd][wd][ad] 4 uimsbf
aloccode[bd][wd][ad] 2 uimsbf

}
}

}
}
else if (window_sequence == LONG_STOP_SEQUENCE)

for (bd=0; bd<=max_band; bd++) {
for(wd=0; wd<2; wd++) {

adjust_num[bd][wd] 3 uimsbf
for (ad=0; ad<adjust_num[bd][wd]; ad++) {

alevcode[bd][wd][ad] 4 uimsbf

ISO/IEC 13818-7:1996(E) �ISO/IEC

26 MPEG-2 NBC WD / 4:37 PM / 10/21/96

if (wd == 0)
aloccode[bd][wd][ad] 4 uimsbf

else
aloccode[bd][wd][ad] 5 uimsbf

}
}

}
}

}

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 27

3 General information

3.1 Profiles
profile A two bit field indicating the profile in use:

 0 Main profile
 1 low complexity profile (LC)
 2 Sampling Rate Scalable (SRS)
 3 (reserved)

There are three profiles identified in the MPEG2-NBC standard. They are:
Main Profile
Low Complexity Profile
Sample Rate Scalable Profile

Main Profile
The main profile is used when memory cost is not significant, and when there is substantial processing
power available. With the exception of preprocessing, all parts of the main bitstream may be used in order
to provide the best data compression possible. In the main profile, there may be at most three
coupling_channel_elements permitted per 5 channel audio program, and at most one of those
coupling_channel_elements may have independent block switching and window shape adaptation from the
channel(s) that it couples to. If such an independently switched CCE exists, it may use only
common_gain_elements. In addition, each audio program may include up to two LFE channels. The main
profile decoder does not have to decode an SRS profile bitstream.

Low Complexity
The low complexity profile is used when RAM usage, processing power, and compression requirements are
all present. In the low complexity profile, prediction and preprocessing are not permitted, and TNS order
and bandwidth are limited as specified in the TNS tools section. Additionally, there may be at most one
CCE, that must use a window state (block switching) and window shape adaptation identical to that of all
channels that it is coupling to. The low complexity profile supports at most one LFE channel. An LC
profile decoder does not have to be able to decode either a main profile or SRS profile bitstream.

Sampling Rate Scalable
In the sampling rate scalable profile, the preprocessing block is added. Prediction is not permitted, and
TNS order and bandwidth are limited as specified in the TNS tools section. No coupling channels are
permitted. The full-bandwidth SRS profile is able to decode a low-complexity profile bitstream,
disregarding the CCE and LFE channels.

3.1.1 Profile dependent functions
Maximum TNS bandwidth:
This is profile dependent, and is listed under the TNS tool description.

Maximum TNS order:
This is profile dependent, and is listed under the TNS tool description.

Maximum prediction bandwidth:
This is profile dependent, and is listed under the Prediction tools description.

LFE Channel:
Has restrictions on the highest non-zero spectral coefficient, the window type and the window shape. In
addition, the prediction is restricted. These restrictions are listed under the LFE section.

ISO/IEC 13818-7:1996(E) �ISO/IEC

28 MPEG-2 NBC WD / 4:37 PM / 10/21/96

3.2 Decoding of raw data

3.2.1 Definitions

raw_data_block() block of raw data that contains audio data for a time period of 1024
samples, related information and other data. There are 8 bitstream elements,
identified as bitstream element id_syn_el. The audio elements in one raw
data stream and one raw data block must have one and only one sampling
rate. In the raw data block, several instances of the id_syn_ele may occur,
but each such instance must have a different 4-bit element_identifier_tag.
Therefore, in one raw data block, there can be at most 16 of any id_syn_ele,
except for the terminator and fill id_syn_ele. As the raw data block is
closed immediately following any terminator id_syn_ele, only one such
element can be specified. There can be any number of fill elements. Except
for the requirements that each instance of any one id_syn_ele must have a
unique element_identifier_tag, and that the terminator must come last, there
is no specified ordering of id_syn_ele’s. For a given program, audio, or
data stream, the same element_identifier_tag(s) are used from block to
block.

id_syn_ele a bitstream element that identifies one of the following syntactic elements:

Syntactic Element ID name encoding
single_channel_element ID_SCE 0x0
channel_pair_element ID_CPE 0x1
coupling_channel_element ID_CCE 0x2
lfe_channel_element ID_FXE 0x3
data_stream_element ID_DSE 0x4
program_config_element ID_PCE 0x5
fill_element ID_FLE 0x6
terminator ID_END 0x7

single_channel_element() syntactic element of the bitstream containing coded data for a single audio
channel. A single channel element basically consists of an
individual_channel_stream. There may be up to 16 such elements per raw
data block, each one must have a unique element_identifier_tag.

channel_pair_element() syntactic element of the bitstream containing data for a pair of channels. A
channel_pair_element consists of two individual_channel_streams and
additional joint channel coding information. The two channels may share
common side information. The channel_pair_element has the same
restrictions as the single channel element as far as element_identifier_tag,
and number of occurrances.

coupling_channel_element() syntactic element that contains audio data for a coupling channel. A
coupling channel represents the information for one multi-channel intensity
stream for one block, or alternately for a dialogue block for multilingual
language programming. The rules for number of
coupling_channel_elements and identifier tags are as for
single_channel_elements.

lfe_channel_element() syntactic element that contains a low sampling frequency enhancement
channel. The rules for the number of lfe_channel_elements and identifier
tags are as for single_channel_elements.

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 29

program_config_element() syntactic element that contains program configuration data. The rules for
the number of program_config_elements and element id’s are the same as
for single_channel_elements.

fill_element() syntactic element that contains fill data There may be any number of fill
elements, that can come in any order in the raw data block.

data_stream_element() syntactic element that contains data. Again, there are 16
element_identifier_tags. There is, however, no restriction on the number of
data_stream_elements with any one identifier tag, as a single data stream
may continue across multiple data_stream_elements with the same identifier
tag.

terminator The terminator id_syn_ele indicates the end of a raw data block. There must
be one and only one terminator per raw data block.

element_identifier_tag unique identifier tag for syntactic elements. Except for
data_stream_elements and fill_elements, all sytactic elements except of
fill_element and terminator may occur more than once but must have an
unique element_identifier_tag. This tag is also used to reference to audio
syntactic elements in a coupling_channel_element, and
single_channel_elements, channel_pair_elements, lfe_channel_elements,
data_channel_elements, and coupling_channel_elements inside a
program_config_element, and provides the possibility of up to 16
independent program_config_elements.

audio_channel_element generic term for single_channel_element, channel_pair_element,
coupling_channel_element and lfe_channel_element. ????

3.2.2 Buffer requirements

Bit reservoir:
The bit reservoir in the encoder is 8160 bits. The state of the bit reservoir is transmitted in the
buffer_fullness field as the number of available bits in the bit reservoir divided by 32 and truncated to an
integer value.

Maximum bit rate:
The maxium bit rate depends on the audio sampling rate, the encoder bit reservoir and the end_of_raw_data
field, the last being a transport parameter. In the ADTS0 transport the length of the end_of_raw_data field
is 12 bits. At 48 kHz sampling rate with an encoder bit reservoir of 8160 bits, the maximum bit rate of the
encoded bitstream 1.153 Mbit/s.

Minimum decoder input buffer:
The decoder input buffer requirements are relevant only for rate-limited communications channels. For
constant rate channels of rate R bits per block, and for an encoder bit buffer of size B bits, the decoder’s
input buffer must be R+B+1 bits. The worst case for this figure occurs at 48 kHz sampling rate.

3.3 Single channel element, channel pair element and individual channel stream

3.3.1 Definitions

Bit stream elements:

individual_channel_stream() contains data necessary to decode one channel
ics_info() contains side information necessary to decode an

individual_channel_stream. The individual_channel_streams of a
channel_pair_element may share one common ics_info.

channel_pair_element():

ISO/IEC 13818-7:1996(E) �ISO/IEC

30 MPEG-2 NBC WD / 4:37 PM / 10/21/96

common_window a flag indicating wether the two individual_channel_streams share a
common ics_info or not. In case of sharing the ics_info is part of the
channel_pair_element and must be used for both channels. Otherwise the
ics_info is part of each individual_channel_stream.

ics_info():

window_sequence indicates the sequence of windows as defined in Table 3.4
window_shape A 1 bit field that determines what window is used for the trailing part of this

analysis window.
max_sfb_l number of scalefactor bands transmitted in case of a long window (1024).
max_sfb_s number of scalefactor bands transmitted in case of short windows (128).
scale_factor_grouping A bit field that contains information about grouping of short spectral data.

gain_control_data() part of the bit stream that contains the gain control data for the gain control
tool.

Help elements:

group group index
win window index within group
sfb scalefactor band index within window
bin coefficient index within scalefactor band
num_window_groups #groups of windows which share one set of scalefactors
window_group_length[group]#windows in each group.
bit_set(bit_field,bit_num) function that returns the value of bit number bit_num of a bit_field (most

left bit is bit 0)
num_sfb_per_window[group]Table with number of scalefactor bands for each group
num_windows number of windows the actual window sequence
x_quant[group][win][sfb][bin] Huffman decoded value for group group, window win, scalefactor band

sfb, coefficient bin
sect_sfb_offset[section] table that gives the number of the start coefficient for the section_data().

This offset depends on the window_sequence and scale_factor_grouping.

3.3.2 Decoding process

Decoding an ICS
In the individual_channel_stream, the order of decoding is:

Get ics_info information (parse bitstream if common information is not present)
Recover Section Data
Recover and decode pulse data if present
Recover and preload TNS processing, if present
Recover and preload gain control data, if present
Recover Scale Factor Data
Recover Spectral Data, if present.

The process of recovering ICS info, pulse dat, tns_data, and gain_control data will be described in sections
???? respectively. The section, scalefactor data, and spectral data will be explained here.

Recovering Sectioning Data
In the ICS, the information about one long type, or eight short blocks, is recovered. The sectioning data is
the first field to be decoded, and describes the huffman codes that apply to the scalefactor bands present in
the ICS. The form of the section data is:

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 31

sect_cb The codebook for the section
and

sect_len The length of the section. This length is recovered by reading the bitstream sequentially
for a sector length, adding the escape value to the total length of the section until a non-escape value is
found, which is added to establish the total length of the section. This process is clearly explained in the C-
like syntax description.
The sectioning data describes the codebook, and then the length of the section using that codebook, starting
from the first scalefactor band as recovered from the ICS_info, and continuing until the total number of
active scale-factor bands is described.
After this description is provided, all scalefactors and spectral data corresponding to codebook zero are
zeroed out, and no values corresponding to these scalefactors or spectral data will be transmitted. All
spectral values not included, by virtrue of being excluded via the max_sfb_l and max_sfb_s, are also zeroed
at this time. It is important to note that not only the spectral data but also the scalefactors for any codebook
zero scale factor bands will be omitted when scanning for scale-factor data.
All spectral data corresponding to the scalefactor bands that have an intensity stereo codebook will NOT be
transmitted, as well, but intensity steering coefficients will be transmitted in place of the scalefactors, as
described in ????

Scale Factor Data Parsing and Decoding:
For each scalefactor that is not a part of a zero codebook, a scalefactor is transmitted. First transmitted, as a
fixed 8-bit field, is the global gain, usually corresponding to the value of the first scalefactor. Then, all
scalefactors (and steering coefficients) are transmitted via DPCM from the previous present scalefactor, via
huffman coding. If any intensity steering coefficients are recieved interspersed with the DPCM scalefator
elements, they are sent to the intensity stereo module, and are NOT involved in the DPCM coding of
scalefactor values. All values for scalefactors present are transmitted, including the first scalefactor, that is
usually also transmitted as the global gain, however it is not illegal, merely inefficient, to provide a
global_gain that is different than the first active scalefactor and then a non-zero DPCM value for the first
scalefactor DPCM value. Once the scalefactors are decoded to their integer values, the actual values are
found via table lookup, and put in place for spectral reconstruction.

Spectral Data Parsing and Decoding
The spectral data is recovered as the last part of the parsing of an ICS. It consists of all the non-zeroed lines
remaning in the spectrum or spectra, ordered as described in the ICS_info. For each non-zero, non-intensity
codebook, the data are recovered via huffman decoding in quads or pairs, as indicated in the huffman
coding section. In the case of the ESCAPE codebook, if any escape value is recieved, a corresponding
escape code will appear after that huffman code. There may be zero, one or two escape codes for each
codeword in the ESCAPE codebook, as indicated by the presence of escape values in that decoded
codeword. For each section. the huffman coding continues until all the spectral values in that section have
been decoded. Once all sections have been decoded, the data is multiplied by the decoded scalefactors and
send back through the reordering process ???? to prediction, TNS, and filterbank. Other semantic or
syntactic elements may modify or replace these values as indicated elsewhere.

3.3.3 Windows and window sequences

Quantization and coding is done in the frequency domain. For this purpose, the time signal is mapped into
the frequency domain in the encoder. The decoder performs the inverse mapping as described in section
????. Depending on the signal, the coder may change the time/frequency resolution by using two different
windows: LONG_WINDOW and SHORT_WINDOW. To switch between both windows, the transition
windows LONG_START_WINDOW and LONG_STOP_WINDOW are used. Table 3.3 lists the used
windows , specifies the corresponding transform length and shows the shape of the windows schematically.
Two transform lengths are used: 1024 (referred to as long transform) and 128 coefficients (reffered to as
short transform).

ISO/IEC 13818-7:1996(E) �ISO/IEC

32 MPEG-2 NBC WD / 4:37 PM / 10/21/96

The windows are composed to window sequences in a way that a raw_data_block always contains data
representing 1024 output samples. The bitstream element window_sequence indicates the window
sequence that is actually used. Table 3.4 lists how the window sequences are composed of windows. The
window sequences 4 to 7 are currently not used, but may be enabled in the future. Refer to section ???? for
more detailed information about the transform and the windows.

3.3.4 Scalefactor bands and grouping of scalefactor bands

Many modules of the decoder perform operations on groups of spectral values called scalefactor bands
(abbreviation ‘sfb’). The width of the scalefactor bands is built in imitation of the critical bands of the
human auditory system and therefore depends on the transform length. Table 3.5 and Table 3.6 list the
width of the scalefactor bands for the transform lengths 1024 and 128 respectively.
To reduce the amount of side information in case of sequences which contain SHORT_WINDOWS, several
SHORT_WINDOWs may be grouped. For grouped SHORT_WINDOWs one common set of side
information is transmitted. The information about the grouping is contained in the scale_factor_grouping
bitstream element.
For each different transform length within a window sequence the number of scalefactor bands for which
side information is transmitted is indicated with the bitstream elements max_sfb_l (1024 transform) and
max_sfb_s (128 transform).
The pseudo code shown below shows
� how to determine the number of windows in a window_sequence num_windows
� how to determine the number of window_groups num_window_groups
� how to determine the number of windows in each group window_group_length[group]
� how to determine the number of scalefactor bands for each group num_sfb_per_window[group]
� how to calculate the total number of transmitted scalefactor bands max_sfb
� how to determine sect_sfb_offset[section], the offset of the first coefficient in section section. This

offset depends on window_sequence and scale_factor_grouping and is needed to decode the
spectral_data().

A long transform window is always described as a window_group with one single window in it.

sect_sfb = 0
sect_sfb_offset[sect_sfb++] = 0
switch(window_sequence) {

case ONLY_LONG_SEQUENCE:
case LONG_START_SEQUENCE:
case LONG_STOP_SEQUENCE:

num_windows = 1;
num_window_groups = 1;
window_group_length[num_window_groups-1] = 1;
num_sfb_per_window[num_window_groups-1] = max_sfb_l;
max_sfb = max_sfb_l;
for(i=0; i< 49; i++)

sect_sfb_offset[sect_sfb++] = sfb_offset_long_window[i];
break;

case EIGHT_SHORT_SEQUENCE:
num_windows = 8;
num_window_groups = 1;
window_group_length[num_window_groups-1] = 1;
num_sfb_per_window[num_window_groups-1] = max_sfb_s;
max_sfb = max_sfb_s;
for(i=0; i<2;i++) {

if(bit_set(scale_factor_grouping,i)) == 0) {
num_window_groups += 1;
window_group_length[num_window_groups-1] = 1;
num_sfb_per_window[num_window_groups-1] = max_sfb_s;
max_sfb += max_sfb_s;

}
else {

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 33

window_group_length[num_window_groups-1] += 1;
}

}
/* preparation of sect_sfb_offset for short blocks */
offset = 0
for(g=0; g=num_window_groups; g++) {

for(i=0; i< 14; i++) {
sect_sfb_offset[sect_sfb++] = offset +

sfb_offset_short_window[i] *
window_group_length[g];

}
offset += window_group_length[g] * 128;

}
break;

default:
break;

}

An example for grouping of SHORT_WINDOWs is given in Figure 3.1 for a
EIGHT_SHORT_SEQUENCE.

3.3.5 Order of spectral coefficients in spectral_data

The order of the Huffman coded representation of the spectral values of a raw data block is as follows:

HuffmanData() {
for(g=0; g=num_window_groups; g++) {

HuffmanDataGroup(g);
}

}

HuffmanDataGroup(group) {
for(sfb=0; sfb < num_sfb_per_window[group]; sfb ++) {

for(win=0; win<window_group_length[group]; win++) {
HuffmanDataSfb(group,win,sfb)

}
}

}

HuffmanDataSfb(group, win, sfb) {
 /* Huffman Data representing ascending spectral coefficients of
 scalefactor band sfb in window win in the actual group */
}

This means that groups which contain more than one SHORT_WINDOW the spectral data is interleaved by
scalefactor bands. For window sequences that exist of only one group with one window, like
ONLY_LONG_SEQUENCE, the spectral values are just in spectral ascending order. Figure 3.2 shows the
spectral ordering for a ONLY_LONG_SEQUENCE and a EIGHT_SHORT_SEQUENCE with grouping of
SHORT_WINDOWs.

3.4 Program Config Element
num_front_channel_elements The number of audio syntactic elements in the front channels, front

center to back center, symmetrically by left and right, or alternating by left
and right in the case of single channel elements

num_side_channel_elementsNumber of elemnets to the side as above
num_lfe_channel_elements number of lfe channel elements associated with this program
num_back-channel_elementsAs number of side and front channel elements, for back channels.
num_assoc_data_elements The number of associated data elements for this program

ISO/IEC 13818-7:1996(E) �ISO/IEC

34 MPEG-2 NBC WD / 4:37 PM / 10/21/96

num_valid_cce_elements The number of cce's that can add to the audio data for this program.
mono_mix_present One bit, indicating the presence of the mono mixdown element
mono_mixdown_element_number The number of a specified sce that is the mono mixdown
stereo_mix_present One bit, indicating that there is a stereo mixdown present
stereo_mixdown_element_number The number of a specified cpe that is the stereo mixdown

element
front_element_list A list of the front elements
side_element_list A list of the side elements
back_element_list A list of the back elements
lfe_element_list A list of the lfe elements in this program
assoc_data_element_list A list of the associated data elements of this program
valid_cce_element_list A list of the cce's that can be applied to this program
comment_field_bytes The length, in bytes, of the following comment field
comment_field_data The data in the comment field.

3.4.1 Implicit and defined channel configurations

The MPEG-NBC audio syntax provides two ways to convey the mapping of channels within a set of
syntactic elements to physical locations of speakers. The first way is a default mapping based on the
specific set of syntactic elements received and the order in which they are received, as listed in Table 1. In
the case of this default mapping, other audio syntactic elements that do not imply additional output
speakers, such as coupling channel_element, may follow the listed set of syntactic elements. Obviously
non-audio syntactic elements may be received in addition and in any order relative to the listed syntactic
elements.

Table 1 Implicit speaker mapping

number
of
speakers

audio syntactic elements, listed in order
received

default element to speaker mapping

1 single_channel_element center front speaker
2 channel_pair_element left, right front speakers
3 single_channel_element,

channel_pair_element
center front speaker
left, right front speakers

5 single_channel_element,
channel_pair_element,
channel_pair_element

center front speaker
left, right front speakers,
left surround, right surround rear speakers

6 single_channel_element,
channel_pair_element,
channel_pair_element,
lfe_element

center front speaker
left, right front speakers,
left surround, right surround rear speakers,
front low frequency effects speaker

For more complicated configurations a Program Configuration Element (PCE) is defined. There are 16
available PCE’s, and each one can specify a distinct program that is present in the raw data stream.
Programs may or may not share audio syntactic elements, for example, programs could share a
channel_pair_element and use distinct coupling channels for voice over in different languages.. A given
program configuration element contains information pertaining to only one program out of many that may
be included in the raw data stream. Included in the PCE are “list of front channels”, again using the rule
center outwards, left before right. In this list, a center channel SCE, if any, must come first, and any other
SCE’s must appear in pairs, constituting an LR pair. If only two SCE’s are specified, this signifies one LR
stereophonic pair.

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 35

After the list of front channels, there is a list of “side channels” consisting of CPE’s, or of pairs of SCE’s.
These are listed in the order of front to back. Again, in the case of a pair of SCE’s, the first is a left channel,
the second a right channel.

After the list of side channels, a list of back channels is available, listed from outside in. Any SCE’s except
the last SCE must be paired, and the presence of exactly two SCE’s (alone or preceeded by a CPE) indicates
that the two SCE’s are Left and Right Rear center, respectively.

Other elements are also specified. A list of one or more LFE’s is specified for application to this program.
A list of one or more CCE’s (profile-dependent) is also provided, in order to allow for dialog management
as well as different intensity coupling streams for different channels using the same main channels. A list of
data streams associated with the program can also associate one or more data streams with a program. The
program configuration element also allows for the specification of one monophonic and one stereophonic
simulcast mixdown channels for a program.

3.5 Data element
data_stream_element()
count Initial value for length of data stream
esc_count Incremental value of length of data or padding element
data_stream_byte A data stream byte extracted from bitstream,

3.6 Fill element
count Initial value for length of fill data
esc_count Incremental value of length of fill data
fill_byte byte to be discarded by the decoder

3.7 Tables

Table 3.2 - sampling frequency index for adts0

sampling_frequency_index sampling frequency
0 44100
1 48000
2 32000
3 reserved

ISO/IEC 13818-7:1996(E) �ISO/IEC

36 MPEG-2 NBC WD / 4:37 PM / 10/21/96

Table 3.3 - Transform windows

window num_sfb #coeffs looks like

LONG_WINDOW 49 1024

SHORT_WINDOW 14 128

LONG_START_WINDOW 49 1024

LONG_STOP_WINDOW 49 1024

Table 3.4 - Window Sequences

num window_sequence num_
windows

looks like

0 ONLY_LONG_SEQUENCE
 = LONG_WINDOW 1

1 LONG_START_SEQUENCE
 = LONG_START_WINDOW 1

2 EIGHT_SHORT_SEQUENCE
 = 8 * SHORT_WINDOW 8

3 LONG_STOP_SEQUENCE
 = LONG_STOP_WINDOW 1

4 reserved

5 reserved

6 reserved

7 reserved

Table 3.5 -- scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW

fs [kHz] 32,44.1,48

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 37

num_sfb 49

sfb sfb_offset sfb sfb_offset

0 0 25 216
1 4 26 240
2 8 27 264
3 12 28 292
4 16 29 320
5 20 30 352
6 24 31 384
7 28 32 416
8 32 33 448
9 36 34 480
10 40 35 512
11 48 36 544
12 56 37 576
13 64 38 608
14 72 39 640
15 80 40 672
16 88 41 704
17 96 42 736
18 108 43 768
19 120 44 800
20 132 45 832
21 144 46 864
22 160 47 896
23 176 48 928
24 196 1024

Table 3.6 -- scalefactor bands forSHORT_WINDOW

fs [kHz] 32,44.1,48

num_sfb 14

sfb sfb_offset sfb sfb_offset

0 0 8 44
1 4 9 56
2 8 10 68
3 12 11 80
4 16 12 96
5 20 13 112
6 28 128
7 36

3.8 Figures

ISO/IEC 13818-7:1996(E) �ISO/IEC

38 MPEG-2 NBC WD / 4:37 PM / 10/21/96

window_sequence =EIGHT_SHORT_SEQUENCE

grouping_bits = ‘1100101’
num_window_groups = 4

window_group_length[] = { 3, 1, 2, 2 }

0 1 2 3 4 5 6 7window#

Figure 3.1 -- Example for short window grouping

sfb 2sfb 1sfb 0 . .. sfb (num_sfb-1)

sfb 0
win 2

sfb 0
win 1

sfb 0
win 0

. ..sfb 1
win 2

sfb 1
win 1

sfb 1
win 0

sfb 2
win 3

sfb 1
win 3

sfb 0
win 3

. ..

Order of scalefactor bands for ONLY_LONG_SEQUENCE

Order of scale factor bands for EIGHT_SHORT_SEQUENCE
window_group_length[] = { 3, 1, ... }

spectral coefficients

sfb (num_sfb-1)
win 7

spectral coefficients

Figure 3.2 -- Spectral order of scalefactor bands

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 39

4 Noiseless Coding

4.1 Tool description
Noiseless coding is used to further reduce the redundancy of the scalefactors and the quantized spectrum of
each audio channel.

The global_gain is coded as 8 bit unsigned integer. The first scalefactor associated with the quantized
spectrum is differentially coded relative to the global_gain value and then huffman coded using the
scalefactor codebook. The remaining scalefactors are differentially coded relative to the previous
scalefactor and then huffman coded using the scalefactor codebook.

Noiseless coding of the quantized spectrum relies on two divisions of the spectral coefficients. The first,
which is fixed, is a division into scalefactor bands that contain a multiple of 4 quantized spectral
coefficients but no more than 32 quantized spectral coefficients. The scalefactor bands are detailed in tables
??(scalefac section??).

The second division, which is data dependent, is a division of scalefactor bands into sections. The
significance of a section is that the quantized spectrum within the section is represented using a single
huffman codebook chosen from a set of 11 possible codebooks. The length of a section and its associated
huffman codebook must be transmitted as side information in addition to the section’s quantized spectrum.
In order to maximize the match of the statistics of the quantized spectrum to that of the huffman codebooks
the number of sections is permitted to be as large as the number of scalefactor bands.

The noiseless coding has two ways to represent spectral coefficients that are sufficiently large that they
cannot be represented by any of the huffman codewords. One way is to send the escape flag from the ESC
huffman codebook, which signals that the bits immediately following that codeword are an escape sequence
that encodes values larger than those represented by the ESC huffman codebook. There are two possible
values for the escape flag, which are the most positive and the most negative value represented by the ESC
codebook. Since the escape flag is signed, the escape sequence need only represent an unsigned value.

A second way is the pulse escape method, in which several large-amplitude samples can be replaced by
samples with smaller amplitudes in order to enable the use of code tables with higher coding efficiency.
This replacement is corrected by sending the position of the spectral coefficient and the differences in
amplitude. The frequency information is represented by the combination of the scalefactor band number to
indicate a base frequency and an offset into that scalefactor band.

4.2 Definitions
sect_cb[i] spectrum huffman codebook used in this section.
sect_len_incr token used to compute the lenth of a section, measures in number of

scalefactor bands from start of section.
global_gain global gain of the quantized spectrum It is sent as a integer value .
hcod_sf[] Huffman codeword from the Huffman code table used for coding of

scalefactors
hcod[sect_cb[i]][w][x][y][z] Huffman codeword from codebook sect_cb[i] that encodes the next 4-tuple

(w, x, y, z) of spectral coefficients, progressing from low to high frequency
within the current section.

hcod[sect_cb[i]][y][z] Huffman codeword from codebook sect_cb[i] that encodes the next 2-tuple
(y, z) of spectral coefficients, progressing from low to high frequency within
the current section.

hcod_esc_x escape code for quantized spectral coefficient x of tuple (x,y) associated
with the immediately preceeding Huffman codeword

ISO/IEC 13818-7:1996(E) �ISO/IEC

40 MPEG-2 NBC WD / 4:37 PM / 10/21/96

hcod_esc_y escape code for quantized spectral coefficient y of tuple (x,y) associated
with the immediately preceeding Huffman codeword

pulse_data_present 1 bit indicating whether the pulse escape is used (1) or not (0).
number_pulse 2 bits indicating how many pulse escapes are used. The number of pulse

escapes is from 1 to 4.
pulse_start_sfb 6 bits indicating the index of the lowest scalefactor band where the pulse

escape is achieved.
pulse_offset[i] 5 bits indicating the offset, from the lowest coefficient, within the

scalefactor band.
pulse_amp[i] 4 bits indicating the unsigned magnitude of the pulse.

ncb_huff[i] spectrum Huffman codebook used in each scalefactor band.
sect_start[i] offset to first spectral coefficient in section i
sect_end[i] offset to one higher than last spectral coefficient in section i.
num_sec number of sections in this block
escape_flag the value of +16 or -16 in the ESC huffman codebook
escape_prefix the bit sequance of N 1’s
escape_separator one 0 bit
escape_word an N+4 bit unsigned integer word, msb first
escape_sequence the sequence of escape_prefix, escape_separator and escape_word
escape_code 2^(N+4) + escape_word

x_quant[k] quantized spectral coefficient k

The noiseless coding tool requires these constants

ZERO_HCB 0
FIRST_QUAD_HCB 4
ESC_HCB 7
QUAD_LEN 4
PAIR_LEN 2
INTENSITY_HCB2 14
INTENSITY_HCB 15
ESC_FLAG 16

4.3 Decoding Process
Four-tuples or two-tuples of quantized spectral coefficients huffman are coded and transmitted starting from
the lowest-frequency coefficient and progressing to the highest-frequency coefficient. For the case of
multiple windows per block, the concatenated set of spectral coefficients is treated as a single set of
coefficients that progress from low to high. (This set of spectral coefficients may need to be de-interleaved
after they are decoded.) This set of coefficients is divided into sections and the sectioning information is
transmitted starting from the lowest frequency section and progressing to the highest frequency section.
The spectral information for sections that are coded with the “zero” codebook is not sent as this spectral
information is zero. Similarly, spectral information for sections coded with the “intensity” codebooks are
not sent.

There is a single differential scalefactor codebook which represents a range of values as shown in Table 4.1.
The actual differential scalefactor codebook is shown in Error! Reference source not found.. There are
eleven huffman codebooks for the spectral data, as shown in Table 4.2 There are three other “codebooks”
above and beyond the actual Huffman codebooks, specifically the “zero” codebook, indicating that neither
scalefactors nor quantized data will be transmitted, and the “intensity” codebooks indicating that this
individual channel is part of a channel pair, and that the data that would normally be scalefactors is instead

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 41

steering data for intensity stereo. In this case, there are no quantized spectral data transmitted. Codebook
indices 12 and 13 are reserved.

The spectrum huffman codebooks encode 2- or 4-tuples of signed quantized spectral coefficients, as shown
in Table 4.3. The range of values is centered on zero, and the largest absolute value (LAV) able to be
encoded by each codebook is shown in Table 4.2 and Error! Reference source not found.. The ESC
codebook is a special case. It represents values from -16 to 16 inclusive, but values from -15 to 15 encode
actual data values, and values -16 and 16 are an escape_flag that signals the presence of an
escape_sequence. This escape_sequence permits quantized spectral elements of LAV>15 to be encoded. It
consists of an escape_preamble of N 1’s, followed by an escape_separator of one zero, followed by an
escape_word of N+4 bits representing an unsigned integer value. The escape_sequence has a decoded
value of 2^(N+4)+escape_word. The desired quantized spectral coefficient is then the sign of the
escape_flag applied to the value of the escape_sequence. In other words, an escape_sequence of 00000
would decode as 16, an escape_sequence of 01111 as 31, an escape_sequence of 1000000 as 32, one of
1011111 as 63, and so on.

When pulse_data_present is 1 (the pulse escape is used), one or several quantized coefficients are replaced
by samples with smaller amplitudes. The number replaced is indicated by number_pulse. In reconstructing
the quantized spectral coefficients x_quant[k] this replacement is compensated by adding to pulse_amp or
subtracting from pulse_amp the previously decode coefficients whose frequency indexes are indicated by
pulse_start_sb and pulse_offset.

if (pulse_data_present)
 for (k=sfb[pulse_start_sfb],j=0;j<number_pulse;j++) {

k += pulse_offset[j];
if (x_quant[k]>0) x_quant[k] += pulse_amp[j];

else x_quant[k] -= pulse_amp[j];
}

4.4 Tables

Table 4.1 Scalefactor huffman codebook parameters

Codebook Number Dimension of Codebook Range of values
0 1 -60 to +60

Table 4.2 Spectrum huffman codebooks parameters

Codebook Number Dimension of Codebook LAV for codebook
0 - 0
1 4 1
2 4 1
3 4 2
4 4 2
5 2 4
6 2 4
7 2 7
8 2 7
9 2 12
10 2 12
11 2 (16) ESC
12 - (reserved)
13 - (reserved)
14 - intensity out-of-phase
15 - intensity in-phase

ISO/IEC 13818-7:1996(E) �ISO/IEC

42 MPEG-2 NBC WD / 4:37 PM / 10/21/96

Table 4.3 Spectrum huffman codebooks

(See alternate location)

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 43

5 Quantization

5.1 Tool description
For quantization of the spectral coefficients in the encoder a non linear quanizer is used. Therefore the
decoder has to perform the inverse non linear quantization.

5.2 Definitions

x_quant[] quantized spectral coefficients
x_invquant[] spectral coefficients after inverse quantizer

5.3 Decoding process
The inverse quantization is described by the following formula:

()x invquant i x quant i i_ [] _ []= ∀
4

3

The maximum allowed amplitude for x_quant is 8191.

ISO/IEC 13818-7:1996(E) �ISO/IEC

44 MPEG-2 NBC WD / 4:37 PM / 10/21/96

6 Scalefactors

6.1 Tool description
The basic method to adjust the quantization noise in the frequency domain is the noise shaping using
scalefactors. For this purpose the spectrum is divided in several groups of spectral coefficients called
scalefactor bands which share one scalefactor. A scalefactor represents a gain value which is used to change
the amplitude of all spectral coefficients in that scalefactor band. This mechanism is used to change the
allocation of the quantization noise in the spectral domain generated by the nonlinear quantizer.
For window sequences which contain short windows a special mechanism is used. In order to reduce the
amount of bits needed for transmission of the scalefactors, a specified number of consecutive short windows
may have only one set of scalefactors.
The decoder must apply the the scalefactor values to the inverse quantized coefficients to reconstruct the
correct spectral values.

6.2 Definitions

Bit stream elements:

scale_factor_data() Part of bit stream which contains the differential coded scalefactors
global_gain An 8-bit unsigned integer value representing the value of the first

scalefactor. It is also the starting point for the following differential coded
scalefactors.

hcod_sf[] Huffman codeword from the Huffman code table used for coding of
scalefactors

dpcm_sf[g][sfb] Differential coded scalefactor of group g, scalefactor band sfb

Help elements:

scale_factor_present(g,sfb) Function that returns TRUE if the actual scalefactor is transmitted. This
depends on the Huffman code books used and short grouping

is_intensity(g,sfb) Function that returns 0 if the actual scalefactor band is not coded with the
intensity stereo technique. See section ????.

dpcm_sf[] Differential coded scalefactor
sfi sampling frequency table index
x_rescal[] rescaled spectral coefficients
sf[group][sfb] Array for scalefactors of each group

6.3 Decoding process

6.3.1 Scalefactor bands
Scalefactors are used to shape the quantization noise in the spectral domain. For this purpose, the spectrum
is divided into several scalefactor bands (see section ????(general)´). Each scalefactor band has a
scalefactor, which represents a certain gain value which has to be applied to all spectral coefficients in this
scalefactor band. A consecutive number of SHORT_WINDOWs may share the same set of scalefactors, i.e.
that the coefficients in the corresponding scalefactor bands of the grouped SHORT_WINDOWs are scaled
using the same scalefactor. See section ????(general) for more information about grouping.

6.3.2 Decoding of scalefactors
For all scalefactors the difference to the preceeding value is coded using the Huffman code book given in
table 6.4. The start value is given explicitly as a 8 bit PCM in the bitstream element global_gain. A

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 45

scalefactor is not transmitted for scalefactor bands which are coded with the Huffman codebook
ZERO_HCB. The function scale_factor_present() returns 1 if the respective scalefactor band uses a
Huffman codebook other than ZERO_HCB. If the Huffman codebook for a scalefactor band is coded with
INTENSITY_HCB or INTENSITY_HCB2 the scalefactor is used for intensity stereo, see section ???? for
more information. The function is_intensity() returns 0, if one of the intensity codebooks is indicated. The
return values of the functions scale_factor_present() and is_intensity() can be derived from the section_data
(see section ????).

The following pseudo code describes how to decode the scalefactors sf[group][sfb]:

last_sf = global_gain;
for(group=0; group < num_window_groups; group++) {

for(sfb=0; sfb<num_sfb_per_window[group]; sfb++) {
if(scale_factor_present(group, sfb) &&

 !is_intensity(group, sfb) {
dpcm_sf = decode_huffman();
sf[group][sfb] = dpcm_sf + last_sf;
last_sf = sf[group][sfb];

}
else {

sf[group][sfb] = 0;
}

}
}

scale_factor_present(group, sfb) {
scale_factor_present_flag = 0;
for(win=0; win < window_group_length[group]; win++) {

if(codebook(group, win, sfb) != ZERO_HCB) {
scale_factor_present_flag = 1;

}
}

}
return(scale_factor_present_flag)

}

6.3.3 Applying scalefactors
Finally all spectral coefficients of all scalefactor bands which correspond to a scalefactor have to be
rescaled according to their scalefactor. In case of a window sequence that contains groups of short windows
all coefficients in grouped scalefactor bands have to be scaled using the same scalefactor.
In case of window_sequences with only one window, the order of the scalefactor bands and their
corresponding coefficients is just as specified in table ????. In case of a window sequence that contains
groups of short windows, the spectral coefficients of grouped short windows are interleaved by scalefactor
bands. See clause ???? for more detailed information.
The rescaling operation is done according to the following pseudo code:

for(group=0; group<num_window_groups; group++) {
for(sfb=0; sfb < num_sfb_per_window[group]; sfb++) {

width = (sfb_offset [group][sfb+1] - sfb_offset [group][sfb]);
for(win = 0; win < window_group_len[group]; win++) {;

gain = get_scale_factor_gain(sf[group][sfb]);
for(k=0; k<width; k++) {

x_rescal[group][window][sfb][k] =
x_invquant[group][window][sfb][k] * gain;

}
}

}
}

ISO/IEC 13818-7:1996(E) �ISO/IEC

46 MPEG-2 NBC WD / 4:37 PM / 10/21/96

The function get_scale_factor_gain(sf) returns the gain factor that corresponds to a scalefactor. The return
value follows the equation:

gain sf SF OFFSET= ⋅ −20 25. (_)

The constant SF_OFFSET must be set to 100.

6.4 Tables

Table 6.4 -- Huffman code book for differential scalefactors

Scalefactor Codebook
index length codeword

base 10 base 2
0 19 524280 1111111111111111000
1 19 524244 1111111111111010100
2 19 524287 1111111111111111111
3 19 524281 1111111111111111001
4 19 524238 1111111111111001110
5 19 524252 1111111111111011100
6 19 524256 1111111111111100000
7 19 524247 1111111111111010111
8 19 524248 1111111111111011000
9 19 524253 1111111111111011101
10 19 524254 1111111111111011110
11 19 524251 1111111111111011011
12 19 524239 1111111111111001111
13 19 524285 1111111111111111101
14 19 524273 1111111111111110001
15 19 524268 1111111111111101100
16 19 524259 1111111111111100011
17 19 524258 1111111111111100010
18 19 524275 1111111111111110011
19 18 262118 111111111111100110
20 19 524263 1111111111111100111
21 18 262116 111111111111100100
22 17 131056 11111111111110000
23 17 131057 11111111111110001
24 16 65523 1111111111110011
25 16 65525 1111111111110101
26 16 65527 1111111111110111
27 16 65520 1111111111110000
28 16 65526 1111111111110110
29 16 65521 1111111111110001
30 15 32756 111111111110100
31 15 32758 111111111110110
32 14 16372 11111111110100
33 14 16373 11111111110101
34 14 16374 11111111110110
35 14 16377 11111111111001
36 14 16375 11111111110111
37 14 16370 11111111110010
38 13 8181 1111111110101

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 47

39 13 8182 1111111110110
40 12 4085 111111110101
41 12 4087 111111110111
42 12 4089 111111111001
43 11 2041 11111111001
44 12 4088 111111111000
45 11 2040 11111111000
46 10 1012 1111110100
47 10 1013 1111110101
48 10 1015 1111110111
49 9 505 111111001
50 9 502 111110110
51 8 249 11111001
52 8 247 11110111
53 8 246 11110110
54 7 121 1111001
55 6 56 111000
56 6 59 111011
57 5 27 11011
58 4 12 1100
59 3 4 100
60 1 0 0
61 4 10 1010
62 4 11 1011
63 5 26 11010
64 6 58 111010
65 6 57 111001
66 7 122 1111010
67 7 120 1111000
68 8 248 11111000
69 8 250 11111010
70 9 504 111111000
71 9 503 111110111
72 10 1017 1111111001
73 10 1016 1111111000
74 10 1014 1111110110
75 11 2039 11111110111
76 11 2038 11111110110
77 11 2036 11111110100
78 11 2037 11111110101
79 12 4084 111111110100
80 12 4086 111111110110
81 13 8183 1111111110111
82 13 8180 1111111110100
83 13 8184 1111111111000
84 14 16376 11111111111000
85 14 16371 11111111110011
86 16 65522 1111111111110010
87 15 32759 111111111110111
88 16 65524 1111111111110100
89 15 32757 111111111110101

ISO/IEC 13818-7:1996(E) �ISO/IEC

48 MPEG-2 NBC WD / 4:37 PM / 10/21/96

90 18 262117 111111111111100101
91 19 524243 1111111111111010011
92 19 524271 1111111111111101111
93 19 524272 1111111111111110000
94 19 524240 1111111111111010000
95 19 524270 1111111111111101110
96 19 524278 1111111111111110110
97 19 524277 1111111111111110101
98 19 524279 1111111111111110111
99 19 524276 1111111111111110100
100 19 524245 1111111111111010101
101 19 524274 1111111111111110010
102 19 524269 1111111111111101101
103 19 524286 1111111111111111110
104 19 524284 1111111111111111100
105 19 524265 1111111111111101001
106 19 524246 1111111111111010110
107 19 524283 1111111111111111011
108 19 524282 1111111111111111010
109 19 524264 1111111111111101000
110 19 524266 1111111111111101010
111 19 524242 1111111111111010010
112 19 524241 1111111111111010001
113 19 524257 1111111111111100001
114 19 524250 1111111111111011010
115 19 524262 1111111111111100110
116 19 524267 1111111111111101011
117 19 524261 1111111111111100101
118 19 524260 1111111111111100100
119 19 524255 1111111111111011111
120 19 524249 1111111111111011001

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 49

7 Joint coding

7.1 M/S Stereo

7.1.1 Tool description
The M/S joint channel coding operates on channel pairs. Channels are most often paired such that they have
symmetric presentation relative to the listener, such as left/right or left surround/right surround. The first
channel in the pair is denoted “left” and the second “right.” On a per-spectral-coefficient basis the vector
formed by the left and right channel signals is reconstructed or de-matrixed by either the identity matrix

l

r

l

r









 =




















1 0

0 1

or the M/S matrix

l

r

m

s









 =

−



















1 1

1 1

The decision on which matrix to use is done on a scalefactor band by scalefactor band basis.

7.1.2 Definitions

ms_mask_present this two bit field indicates that the MS mask is
00 All zeros
01 A mask of max_sfb bands of ms_used follows this field
10 All ones
11 Reserved

ms_used[sfb] one-bit flag per scalefactor band indicating that M/S coding is being used in
scalefactor band sfb.

left_spec[k] spectral coefficient x_quant[k] for the first (or “left”) channel of the M/S
channel pair.

right_spec[k] spectral coefficient x_quant[k] for the second (or “right”) channel of the
M/S channel pair.

7.1.3 Decoding Process
Reconstruct the spectral coefficients of the first (“right”) and second (“left”) channel as specified by the
mask_present and the mask[] flags as follows:

k=w=0;
if (mask_present >= 1) {

for (g=0; g<num_window_groups, g++) {
for (b=0; b<window_group_length[g], b++,w++) {

for(sfb=0; sfb<num_sfb_per_window[g]; sfb++)
if (ms_used[g][sfb] || mask_present == 2) {

for (i=sfb_offset[sfb]; i< sfb_offset[sfb+1];i++,k++) {
tmp = left_spec[k] + right_spec[k];
left_spec[k] = left_spec[k] - right_spec[k];
right_spec[k] = tmp;

}
else

k += sfb_offset[sfb+1] - sfb_offset[sfb];
}

ISO/IEC 13818-7:1996(E) �ISO/IEC

50 MPEG-2 NBC WD / 4:37 PM / 10/21/96

}
}

}

7.1.4 Diagrams

7.1.5 Tables

7.2 Intensity Stereo

7.2.1 Tool description
This tool is used to implement joint intensity stereo coding between both channels of a channel pair. Thus,
both channel outputs are derived from a single set of spectral coefficients after the inverse quantisation
process. This is done selectively on a scalefactor band and group basis when intensity stereo is flagged as
active.

7.2.2 Definitions

hcod_sf[] Huffman codeword from the Huffman code table used for coding of
scalefactors

dpcm_is_position[][] Differentially encoded intensity stereo position
is_position[group][sfb] Intensity stereo position for each group and scalefactor band
l_spec[] Array containing the left channel spectrum of the respective channel pair
r_spec[] Array containing the right channel spectrum of the respective channel pair

7.2.3 Decoding Process
The use of intensity stereo coding is signaled by the use of the pseudo codebooks INTENSITY_HCB and
INTENSITY_HCB2 (15 and 14) in the right channel (use of these codebooks in a left channel of a channel
pair element is illegal). INTENSITY_HBC and INTENSITY_HCB2 signal in-phase and out-of-phase
intensity stereo coding, respectively .
In addition, the phase relationship of the intensity stereo coding can be toggled by means of the ms_used
field: Because M/S stereo coding and intensity stereo coding are mutually exclusive for a particular
scalefactor band and group, the primary phase relationship indicated by the Huffman code tables is changed
from in-phase to out-of-phase and vice versa if the corresponding ms_used bit is set for the respective band.
The directional information for the intensity stereo decoding is represented by an "intensity stereo position"
value indicating the relation between left and right channel scaling. If intensity stereo coding is active for a
particular group and scalefactor band, an intensity stereo position value is transmitted instead of the
scalefactor of the right channel.
Intensity positions are coded just like scalefactors, i.e. by Huffman coding of differential values with two
differences:
� there is no first value that is sent as PCM. Instead, the differential decoding is started assuming the last

intensity stereo position value to be zero.
� Differential decoding is done separately between scalefactors and intensity stereo positions. In other

words, the scalefactor decoder ignores interposed intensity stereo position values and vice versa (see
section ????)

The same codebook is used for coding intensity stereo positions as for scalefactors.

Two pseudo functions are defined for use in intensity stereo decoding:

function is_intensity(group,sfb) {

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 51

+1 for window groups / scalefactor bands with right channel
codebook INTENSITY_HCB

-1 for window groups / scalefactor bands with right channel
codebook INTENSITY_HCB2

0 otherwise
}

function invert_intensity(group,sfb) {
1-2*ms_used[group][sf] if (ms_mask_present == 1)
+1 otherwise
}

The intensity stereo decoding for one channel pair is defined by the following pseudo code:

p = 0;
for (g=0; g<num_window_groups; g++) {

/* Decode intensity positions for this group */
for (sfb=0; sfb<num_sfb_per_window[g]; sfb++)

if (is_intensity(g,sfb))
is_position[g][sfb] = p += dpcm_is_position[g][sfb];

/* Do intensity stereo decoding */
for (b=0; b<window_group_length[g]; b++) {

for (sfb=0; sfb<num_sfb_per_window[g]; sfb++) {
if (is_intensity(g,sfb)) {

scale = is_intensity(g,sfb) * invert_intensity(g,sfb) *
0.5^(0.25*is_position[g][sfb]);

/* Scale from left to right channel, do not touch left channel */
for (i=sfb_offset[sfb]; i<sfb_offset[sfb+1]; i++)

r_spec[g][b][sfb][i] = scale * l_spec[g][b][sfb][i];

}

}
}

}

7.2.4 Diagrams

7.2.5 Tables

7.2.6 Integration with Intra Channel Prediction Tool
For scalefactor bands coded in intensity stereo the corresponding predictors in the right channel are
switched to "off" thus effectively overriding the status specified by the prediction_used mask. The update of
these predictors is done by feeding the intensity stereo decoded spectral values of the right channel as the
"last quantised value" xrec(n-1). These values result from the scaling process from left to right channel as
described in the pseudo code.

7.3 Coupling Channel

7.3.1 Tool description
Coupling channel elements provide two functionalities: First, coupling channels may be used to implement
generalized intensity stereo coding where channel spectra can shared across channel boundaries. Second,

ISO/IEC 13818-7:1996(E) �ISO/IEC

52 MPEG-2 NBC WD / 4:37 PM / 10/21/96

coupling channels may be used to dynamically perform a downmix of one sound object into the stereo
image.

7.3.2 Definitions

num_coupled_channels number of coupled target channels
cc_target[] 5 bit fields indicating the coupled target syntax elements. Each field is

composed of one bit stating the type of the coupled element (0 for a
single_channel_element and 1 for a channel_pair_element) and 4 bits
identifying the element_identifier_tag value of the coupled element.

cc_b one bit indicating that a list of gain_element values is applied to both
channels of a channel pair.

cc_l one bit indicating that a list of gain_element values is applied to the left
channel of a channel pair.

cc_r one bit indicating that a list of gain_element values is applied to the right
channel of a channel pair.

cc_domain one bit indicating whether the coupling is performed before (0) or after (1)
the TNS decoding of the coupled target channels

gain_element_sign one bit indicating if the transmitted gain_element values contain information
about in-phase / out-of-phase coupling (1) or not (0)

gain_element_scale determines the amplitude resolution cc_scale of the scaling operation
according to table ????

common_gain_element_present[c] one bit indicating whether Huffman coded
common_gain_element values are transmitted (1) or whether Huffman
coded differential gain_elements are sent (0)

dpcm_gain_element[][] Differentially encoded gain element
gain_element[group][sfb] Gain element for each group and scalefactor band
common_gain_element[] Gain element that is used for all window groups and scalefactor bands of

one coupling target channel

spectrum_m(idx, domain) Pointer to the spectral data associated with the single_channel_element with
index idx. Depending on the value of "domain", the spectral coefficients
before (0) or after (1) TNS decoding are pointed to.

spectrum_l(idx, domain) Pointer to the spectral data associated with the left channel of the
channel_pair_element with index idx. Depending on the value of "domain",
the spectral coefficients before (0) or after (1) TNS decoding are pointed to.

spectrum_r(idx, domain) Pointer to the spectral data associated with the right channel of the
channel_pair_element with index idx. Depending on the value of "domain",
the spectral coefficients before (0) or after (1) TNS decoding are pointed to.

7.3.3 Decoding Process

The coupling channel is based on an embedded single_channel_element which is combined with some
dedicated fields to accomodate its special purpose.
The scaling operation involved in channel coupling (intensity stereo) is defined by gain_element values
which describe the applicable gain factor and sign. In accordance with the coding procedures for
scalefactors and intensity stereo positions, gain_element values are differentially encoded using the
Huffman table for scalefactors. Similarly, the decoded gain factors for coupling relate to window groups of
spectral coefficients.

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 53

Please note that the window_sequence and the window_type of the coupling channel must not be different
from the window_sequence and window_type value of any coupled target channel.

The following pseudo code defines the decoding operation for channel coupling as described by the
function decode_coupling_channel(). First the spectral coefficients of the embedded
single_channel_element are decoded into an internal buffer. Then the spectral coefficients are scaled and
added to the coefficients of the coupled target channels using the appropriate list of gain_element values.
The coupling process to one coupled target channel is described by function couple_channel(). Since the
gain elements for the first coupled target (list_index == 0) are not transmitted, all gain_element values
associated with this target are assumed to be 0, i.e. the coupling channel is added to the coupled target
channel in its natural scaling.

The constant CC_MAX_CHANNELS denotes the maximum number of permitted coupling channels
present in the bitstream. The constant flag CC_PREDICTION indicates whether intra channel prediction is
permitted in the coupling channel („yes“) or not („no“).

decode_coupling_channel()
{

- decode spectral coefficients of embedded single_channel_element
 into buffer "cc_spectrum[]".

/* Couple spectral coefficients onto target channels */
for (c=0; c<num_coupled_elements; c++) {

if (is_single_channel_element(cc_target[c])) {
couple_channel(cc_spectrum, spectrum_m(cc_target[c], cc_domain),

list_index++));
}
if (is_channel_pair_element(cc_target[c]))) {

if (cc_b) {
couple_channel(cc_spectrum, spectrum_l(cc_target[c], cc_domain),

list_index));
couple_channel(cc_spectrum, spectrum_r(cc_target[c], cc_domain),

list_index++));
} else if (cc_l[c]) {

couple_channel(cc_spectrum, spectrum_l(cc_target[c], cc_domain),
list_index++));

} else if (cc_r[c]) {
couple_channel(cc_spectrum, spectrum_r(cc_target[c], cc_domain),

list_index++));
}

}
}

}

couple_channel(source_spectrum[], dest_spectrum[], gain_list_index)
{

idx = gain_list_index;
a = 0;
scale = cc_scale_table[gain_element_scale];
for (g=0; g<num_window_groups; g++) {

/* Decode coupling gain elements for this group */
if (common_gain_element_present[idx]) {

for (sfb=0; sfb<num_sfb_per_window[g]; sfb++) {
cc_sign[idx][g][sfb] = 1;
gain_element[idx][g][sfb] = common_gain_element[idx];

ISO/IEC 13818-7:1996(E) �ISO/IEC

54 MPEG-2 NBC WD / 4:37 PM / 10/21/96

}

} else {

for (sfb=0; sfb<num_sfb_per_window[g]; sfb++) {
if (!scalefactor_present(g,sfb))

continue;

if (gain_element_sign) {
cc_sign[idx][g][sfb] = 1 - 2*(dpcm_gain_element[idx][g][sfb] &

0x1);
gain_element[idx][g][sfb] = a += (dpcm_gain_element[idx][g][sfb]

>> 1);
}
else {

cc_sign[idx][g][sfb] = 1;
gain_element[idx][g][sfb] = a += dpcm_gain_element[c][g][sfb];

}
}

}

/* Do coupling onto target channels */
for (b=0; b<window_group_length[b]; b++) {

for (sfb=0; sfb<num_sfb_per_window[w]; sfb++) {

if (scalefactor_present(g,sfb)) {
cc_gain[idx][g][sfb] =

cc_sign[idx][g][sfb] * cc_scale^gain_element[idx][g][sfb];

for (i=sfb_offset[sfb]; i<sfb_offset[sfb+1]; i++)
dest_spectrum[g][b][sfb][i] +=

cc_gain[idx][g][sfb] * source_spectrum[g][b][sfb][i];

}

}
}

}
}

Note: The function scalefactor_present() evaluates the "present" status of scalefactors with respect to the
embedded single_channel_element (not the coupled target channel).

7.3.4 Diagrams

7.3.5 Tables

Table ???? Scaling resolution for channel coupling

Value of
"gain_element_scale"

Multiplier base
"cc_scale"

Stepsize [dB]

0 2^(1/8) 0.75
1 2^(1/4) 1.50
2 2^(1/2) 3.00
3 2^1 6.00

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 55

7.3.6 Profile Dependent Parameters
According to the used profile, the values for the constants TNS_MAX_LINES and TNS_MAX_ORDER
are set:

Main Profile Low Complexity
Profile

Sampling Rate
Scalable Profile

CC_MAX_CHANNELS 3 per 5 channels 1 0
CC_PREDICTION yes no no

ISO/IEC 13818-7:1996(E) �ISO/IEC

56 MPEG-2 NBC WD / 4:37 PM / 10/21/96

8 Low Frequency Enhancement Channel (LFE)
In order to maintain a regular structure of the decoder, the lfe_channel_element is defined as a standard
individual_channel_stream(0) element, i.e. equal to a single_channel_element. Thus, decoding can be done
using the standard procedure for decoding a single_channel_element.
In order to accomodate a more efficient implementation of the LFE decoder, however, several restrictions
apply to the options used for the encoding this element:

� The window_shape field is always set to 0, i.e. sine window
� The window_sequence field is always set to 0 (ONLY_LONG_SEQUENCE)
� The index of the highest non-zero spectral lines present in the element is 12
� No prediction is used, i.e. predictor_data_present is set to 0.

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 57

9 Prediction

9.1 Tool description
Prediction is used for an improved redundancy reduction and is especially effective in case of more or less
stationary parts of a signal which belong to the most demanding parts in terms of required bitrate. Prediction
can be applied to every channel using an intra channel (or mono) predictor which exploits the auto-
correlation between the spectral components of consecutive frames. Because a window_sequence of type
EIGHT_SHORT_SEQUENCE indicates signal changes, i.e. non-stationary signal characteristic, prediction
is only used if window_sequence is of type ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE or
LONG_STOP_SEQUENCE.

For each channel prediction is applied to the spectral components resulting from the spectral decomposition
of the filterbank and is based on preceding spectral components. For each spectral component up to limit
specified by PRED_SFB_MAX, there is one corresponding predictor resulting in a bank of predictors. Due
to the underlying overall coding structure using a filterbank with high spectral resolution, backward
adaptive predictors have to be used where the predictor coefficients are calculated from preceding
quantized spectral components in the encoder as well as in the decoder. Hence, no additional side
information is needed for the transmission of predictor coefficients - as would be required for forward
adaptive predictors. Only a small amount of predictor control information has to be transmitted to the
decoder. If prediction is activated, the quantizer is fed with a prediction error instead of the original spectral
component resulting in a coding gain.

A second order backward-adaptive lattice structure predictor is used for each spectral component. Hence,
each predictor is working on the spectral component values of the two preceding frames. Provisions for
stability control are incorporated.

9.2 Definitions

predictor_data_present 1 bit indicating whether prediction is used in current frame (1) or not (0).
{always present for ONLY_LONG_SEQUENCE,
LONG_START_SEQUENCE and LONG_STOP_SEQUENCE }

pred_reset 1 bit indicating whether predictor reset is applied in current frame (1) or not
(0). {only present if predictor_data_present flag is set!}

pred_reset_index 5 bit index specifying the reset group to be reset in current frame if predictor
reset is enabled. {only present if pred_reset flag is set!}

prediction_used 1 bit for each scalefactor band (sfb) where prediction can be used to switch
on(1)/off(0) prediction in that sfb. {only present if predictor_data_present
flag is set!}

The following constant specifies the upper limit of scale factor bands up to which prediction can be used

PRED_SFB_MAX 41

9.3 Decoding process
For each spectral component up to the limit specified by PRED_SFB_MAX of each channel there is one
predictor. Prediction is controlled on a single_channel_element or channel_pair_element basis by the

ISO/IEC 13818-7:1996(E) �ISO/IEC

58 MPEG-2 NBC WD / 4:37 PM / 10/21/96

transmitted side information in a two step approach, first for the whole frame at all and then conditionally
for each scalefactor band individually, see clause 9.3.1. The predictor coefficients for each predictor are
calculated from preceding reconstructed values of the corresponding spectral component. The details of the
required predictor processing are described in clause 9.3.2. At the start of the decoding process, all
predictors are initialized. The initialization and a predictor reset mechanism are described in clause 9.3.3.

9.3.1 Predictor side information
The following description is valid for either one single_channel_element or one channel_pair_element and
has to be applied to each such element. For each frame the predictor side information has to be extracted
from the bitstream to control the further predictor processing in the decoder. In case of a
single_channel_element the control information is valid for the predictor bank of the channel associated
with that element. In case of a channel_pair_element the control information is valid for the two predictor
banks of the two channels associated with that element.

If window_sequence is of type ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE or
LONG_STOP_SEQUENCE, the predictor_data_present bit is read. If this bit is not set (0) then
prediction is switched off at all for the current frame and there is no further predictor side information
present. In this case the prediction_used bit for each scalefactor band stored in the decoder has to be set to
zero. If the predictor_data_present bit is set (1) then prediction is used for the current frame and the
pred_reset bit is read which determines whether predictor reset is applied in the current frame (1) or not
(0). If pred_reset is set then the next 5 bits are read giving an index specifying the group of predictors to be
reset in the current frame, see also clause 9.3.3 for the details. If the pred_reset is not set then there is no 5
bit index in the bitstream. Next, the prediction_used bits are read from the bitstream, which control the use
of prediction in each scalefactor band individually, i.e. if the bit is set for a particular scalefactor band, then
prediction is enabled for all spectral components of this scalefactor band and the quantized prediction error
of each spectral component is transmitted instead of the quantized value of the spectral component.
Otherwise, prediction is disabled for this scalefactor band and the quantized values of the spectral
components are transmitted.

9.3.2 Predictor processing
The following description is valid for one single predictor and has to be applied to each predictor. A second
order backward adaptive lattice structure predictor is used. Figure 9.1 shows the corresponding predictor
flow graph on the decoder side. In principle, an estimate xest(n) of the current value of the spectral
component x(n) is calculated from preceding reconstructed values xrec(n-1) and xrec(n-2), stored in the
register elements of the predictor structure, using the predictor coefficients k1(n) and k2(n). This estimate is
then added to the quantized prediction error eq(n) reconstructed from the transmitted data resulting in the
reconstructed value xrec(n) of the current spectral component x(n). Due to the realization in a lattice
structure, the predictor consists of two so-called basic elements which are cascaded. In each element, the
part xest,m(n), m=1, 2 of the estimate is calculated according to

x n b k n a r nest m m m, () () ()= ⋅ ⋅ ⋅ −−1 1 ,

where
r n r n b k n e nq m q m m q m, , ,() () () ()= − − ⋅ ⋅− −1 11

and e n e n x nq m q m est m, , ,() () ()= −−1 .

Hence, the overall estimate results to: x n x n x nest est est() () (), ,= +1 2

The constants
a and b , 0 1< ≤a b,

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 59

are attenuation factors which are included in each signal path contributing to the recursivity of the structure
for the purpose of stabilization. By this means, possible oscillations due to transmission errors or drift
between predictor coefficients on the encoder and decoder side due to numerical inaccuracy can be faded
out or even prevented.

In the case of stationary signals and with a = b = 1, the predictor coefficient of element m is calculated by

[]
[] []()k n
E e n r n

E e n E r n
m

q m q m

q m q m

()
() ()

() ()

, ,

, ,

=
⋅ −

⋅ + −
− −

− −

1 1

1
2 1

2
1

2

1

1
, m = 1 2, and

e n r n x nq q rec, ,() () ()0 0= =

In order to adapt the coefficients to the current signal properties, the expected values in the above equation
are substituted by time average estimates measured over a limited past signal period. A compromise has to
be chosen between a good convergence against the optimum predictor setting for signal periods with quasi
stationary characteristic and the ability of fast adaptation in case of signal transitions. In this context
algorithms with iterative improvement of the estimates, i.e. from sample to sample, are of special interest.
Here, a "least mean square" (LMS) approach is used and the predictor coefficients are calculated as follows

k n
COR n

VAR nm
m

m

()
()

()
=

with
COR n COR n r n e nm m q m q m() () () (), ,= ⋅ − + − ⋅− −α 1 11 1

()VAR n VAR n r n e nm m q m q m() () . () (), ,= ⋅ − + ⋅ − +− −α 1 0 5 11
2

1
2

where α is an adaptation time constant which determines the influence of the current sample on the
estimate of the expected values. The value of α is chosen to

α = 0 90. .

The optimum values of the attenuation factors a and b have to be determined as a compromise between high
prediction gain and small fade out time. The chosen values are

a b= = 0 95. .

Independent of whether prediction is disabled - either at all or only for a particular scalefactor band - or not,
all the predictors are run all the time in order to always adapt the coefficients to the current signal statistics.

If window_sequence is of type ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE and
LONG_STOP_SEQUENCE only the calculation of the reconstructed value of the quantized spectral
components differs depending on the value of the prediction_used bit:
� If the bit is set (1), then the quantized prediction error reconstructed from the transmitted data is added

to the estimate xest(n) calculated by the predictor resulting in the reconstructed value of the quantized
spectral component, i.e. x n x n e nrec est q() () ()= +

� If the bit is not set (0), then the quantized value of the spectral component is reconstructed directly
from the transmitted data.

ISO/IEC 13818-7:1996(E) �ISO/IEC

60 MPEG-2 NBC WD / 4:37 PM / 10/21/96

In case of short blocks, i.e. window_sequence is of type EIGHT_SHORT_SEQUENCE, prediction is
always disabled and a reset is carried out, see clause 9.3.3.

9.3.3 Predictor reset

When the decoding process is started, all predictors are initialized. This means that all predictor
coefficients, all registers and all variables are set to zero with one exception: the variables VARm(n) are set
to one.

A cyclic reset mechanism is applied by the encoder, where all predictors are initialized again in a certain
time interval in an interleaved way. On one hand this increases the stability by re-synchronizing the
predictors of the encoder and the decoder and on the other hand it allows defined entry points in the
bitstream.

The whole set of predictors is subdivided into 30 so-called reset groups (Group 1: P1, P31, P61, ...; Group 2:
P2, P32, P62, ...; ...; Group 30: P30, P60,...) which are then periodically reset, one after the other with a certain
spacing. For example, if one group is reset every fourth frame, then all predictors are reset within an
interval of 4 x 30 = 120 frames.

Whether or not a reset has to be applied is determined by the pred_reset bit. If this bit is set then the index
of the predictor group to be reset is specified in pred_reset_index. All predictors belonging to that group
are then initialized as described above. This initialization has to be done after the normal predictor
processing for the current frame has been carried out.

In case of a single_channel_element the reset has to be applied to the predictor bank of the channel
associated with that element. In case of a channel_pair_element the reset has to be applied to the two
predictor banks of the two channels associated with that element.

An encoder is required to carry out a group reset as described above at least every 8 frames resulting in a
reset interval of 8 x 30 = 240 frames.

9.4 Diagrams

z-1

+ +

a

x

x

+

b

x

b

z-1 a

eq,0(n) = xrec(n)

xest,2(n) xest,1(n)

rq,0(n)=xrec(n)rq,1(n)rq,1(n-1) rq,0(n-1)

eq,1(n)eq(n)=eq,2(n)

k2(n) k1(n)

-

Figure 9.1 Flow graph of intra channel predictor for one spectral component in the decoder

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 61

9.5 Tables

ISO/IEC 13818-7:1996(E) �ISO/IEC

62 MPEG-2 NBC WD / 4:37 PM / 10/21/96

10 Temporal Noise Shaping (TNS)

10.1 Tool description
Temporal Noise Shaping is used to control the temporal shape of the quantization noise within each window
of the transform. This is done by applying a filtering process to parts of the spectral data of each channel.

10.2 Definitions

n_filt[w] number of noise shaping filters used for window w
coef_res[w] token indicating the resolution of the transmitted filter coefficients for

window w, switching between a resolution of 3 bits (0) and 4 bits (1)
coef_compress[w][filt] 1 bit indicating whether the most significant bit of the coefficients of the

noise shaping filter filt in window w are omitted from transmission (1) or
not (0)

length[w][filt] length of the region to which one filter is applied in window w (in units of
scalefactor bands)

direction[w][filt] 1 bit indicating whether the filter is applied in upward (0) or downward (1)
direction

order[w][filt] order of one noise shaping filter applied to window w.
coef[w][filt][i] coefficients of one noise shaping filter applied to window w

n_windows number of windows present in the respective frame and channel (depends on
the selected window_sequence)

Note: Depending on the window_sequence the size of the following bitstream fields is switched for each
transform window according to its window size:

 Name Window with 128 spectral lines Other window size
 'n_filt' 1 2
 'length' 4 6
 'order' 3 5

10.3 Decoding Process
The decoding process for Temporal Noise Shaping is carried out separately on each window of the current
frame by applying all-pole filtering to selected regions of the spectral coefficients (see function
tns_decode_frame).
The number of noise shaping filters applied to each window is specified by "n_filt". The target range of
spectral coefficients is defined in units of scalefactor bands counting down "length" bands from the top
band (or the bottom of the previous noise shaping band).
First the transmitted filter coefficients have to be decoded, i.e. conversion to signed numbers, inverse
quantization, conversion to LPC coefficients as described in function tns_decode_coef().
Then the all-pole filters are applied to the target frequency regions of the channel's spectral coefficients (see
function tns_ar_filter()). The token "direction" is used to determine the direction the filter is slid across the
coefficients (0=upward, 1=downward).
The constant TNS_MAX_BANDS defines the maximum number of scalefactor bands to which Temporal
Noise Shaping is applied. The maximum possible filter order is defined by the constant
TNS_MAX_ORDER. Both constants are profile dependent parameters.

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 63

The decoding process for one channel can be described as follows pseudo code:

/* TNS decoding for one channel and frame */
tns_decode_frame()
{

for (w=0; w<n_windows; w++) {

bottom = TNS_MAX_BANDS[w];
for (f=0; f<n_filt[w]; f++) {

top = bottom;
bottom = top - length[w][f];
order[w][f] = min(order[w][f], TNS_MAX_ORDER);
if (!order[w][f]) continue;

tns_decode_coef(order[w][f], coef_res[w]+3, coef_compress[w],
coef[w][f], lpc[]);

start = sfb_offset[bottom];
end = sfb_offset[top];
if ((size = end - start) <= 0) continue;

if (direction) {
inc = -1; start = end - 1;

} else {
inc = 1;

}

tns_ar_filter(&spec[start], size, inc, lpc[], order[w][f]);

}

}
}

/* Decoder transmitted coefficients for one TNS filter */
tns_decode_coef(order, coef_res, coef_compress, coef[], a[])
{

/* Some internal tables */
sgn_mask[] = { 0x2, 0x4, 0x8 };
neg_mask[] = { ~0x3, ~0x7, ~0xf };

coef_res2 = coef_res - coef_compress; /* size used for transmission */
s_mask = sgn_mask[coef_res2 - 2]; /* mask for sign bit */
n_mask = neg_mask[coef_res2 - 2]; /* mask for padding neg. values

*/

/* Conversion to signed integer */
for (i=0; i<order; i++)

tmp[i] = (coef[i] & s_mask) ? (coef[i] | n_mask) : coef[i];

/* Inverse quantization */
iqfac = ((1 << (coef_res-1)) - 0.5) / (PI/2.0);
iqfac_m = ((1 << (coef_res-1)) + 0.5) / (PI/2.0);
for (i=0; i<order; i++) {

tmp2[i] = sin(tmp[i] / ((tmp[i] >= 0) ? iqfac : iqfac_m));
}

/* Conversion to LPC coefficients */
a[0] = 1;
for (m=1; m<=order; m++) {

b[0] = 1;
b[m+1] = 0;
for (i=1; i<=m; i++) {

b[i] = a[i] + tmp2[m-1] * a[m-i];

ISO/IEC 13818-7:1996(E) �ISO/IEC

64 MPEG-2 NBC WD / 4:37 PM / 10/21/96

}
for (i=0; i<=m; i++) {

a[i] = b[i];
}

}

}

tns_ar_filter(spectrum[], size, inc, lpc[], order)
{

- Simple all-pole filter of order "order" defined by
 y(n) = x(n) - a(2)*y(n-1) - ... - a(order+1)*y(n-order)

- The state variables of the filter are initialized to zero every time

- The output data is written over the input data ("in-place operation")

- An input vector of "size" samples is processed and the index increment
 to the next data sample is given by "inc"

}

10.4 Diagrams

10.5 Tables

10.6 Profile Dependent Parameters
According to the used profile, the values for the constants TNS_MAX_LINES and TNS_MAX_ORDER
are set:

Main Profile Low Complexity
Profile

Sampling Rate
Scalable Profile

TNS_MAX_BANDS
for short windows

14 14 14

TNS_MAX_BANDS
for other windows

49 40 @ fs=48kHz
42 @ fs=44.1kHz
49 @ fs<=32kHz

26

TNS_MAX_ORDER 20 12 12

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 65

11 Filterbank and block switching

11.1 Tool Description
The time-frequency representation of the signal is mapped onto the time domain by feeding it into the
filterbank module. This module consists of an inverse modified discrete cosine transform (IMDCT), and a
window and an overlapp-add function. In order to adapt the time/frequency resolution of the filterbank to
the characteristics of the input signal, a block switching tool is also adopted . In the following, N is the
window length, where N is a function of the window sequence, see xxx. For each channel, the N/2 time-
frequency values Xik are transformed into the N time domain values xin via the IMDCT. After applying the
window function, in each channel the first half of the x’in sequence is added to the second half of the
previous block windowed sequence x’(i-1)n to reconstruct the output samples for each channel.

11.2 Definitions

The syntax elements for filterbank are specified in the raw data stream for both the basic
channel_pair_element and the coupling_channel. They consist of the control information
window_sequence and window_shape.

window_sequence 3 bit indicating which window sequence (i.e. block size) is used.

window_shape 1 bit indicating which window function is selected.

11.3 Decoding Process

11.3.1 IMDCT

 The analytical expression of the IMDCT is:

()x X
N

n n kin ik
k

N

= + +









=

−

∑ cos
2 1

20
0

2
1

π
 for n = 0 to N-1

where:

n = sample index

i = block index

N = window length based on the window_ sequence value

n = (N / 2 1) / 2
0

+

Currently only the following values for window_sequence are used:

ONLY_LONG_SEQUENCE 0x0 N = 2048
LONG_START_SEQUENCE 0x1 N = 2048
EIGHT_SHORT_SEQUENCE 0x2 N = 256
LONG_STOP_SEQUENCE 0x3 N = 2048

ISO/IEC 13818-7:1996(E) �ISO/IEC

66 MPEG-2 NBC WD / 4:37 PM / 10/21/96

11.3.2 Windowing and block switching

For window_sequence = ONLY_LONG_SEQUENCE, N = 2048, the window coefficients are given by the
following equations:

()
() ()[]

()[]
W

s p W n p

W p

n p

N

p

N=
−

=

−

=

∑

∑

' ,

' ,
/

α

α

0

1

0

2 for 0 ≤ <n N

 s
 for

 otherwis
()

/
p

p N

e
=

≤ <


1 0 2

0

where:

Kaiser - Bessel kernel window function

 kernel window alpha factor

synthesis window

 =

=

 =

W

W

'

α

The selection of the window shape depends on the window_shape value. For ONLY_LONG_SEQUENCE
α = 4.0 is employed when window_shape = 1, otherwise (window_shape = 0) the following window is
employed.

()W n
N

n= +sin(())
π 1

2
for 0 ≤ <n N

For window_sequence = EIGHT_SHORT_SEQUENCE, N = 256, the window coefficients are given by
the following equations:

()W n
N

n= +sin(())
π 1

2
for 0 ≤ <n N

In this case eight windows (and transforms) of length N = 256 are concatenated.

For window_sequence = LONG_START_SEQUENCE, N = 2048, the window coefficients are given by
the following equations:

()
() ()[]

()[]
W

s p W n p

W p

n p

N

p

N=
−

=

−

=

∑

∑

' ,

' ,
/

α

α

0

1

0

2 for 0 ≤ <n N / 2

()W n = 1.0 for N / 2 n N 9N / 32≤ < −

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 67

()W n
N

N
n= + +sin(())

π

8

3
32

1

2
for N 9N / 32 n N 7N / 32− ≤ < −

()W n = 0 for N 7N / 32 n N− ≤ <

For window_sequence = LONG_STOP_SEQUENCE, N = 2048, the window coefficients are given by the
following equations:

()W n = 0 for 0 7 32≤ <n N /

()W n
N

N
n= + +sin(())

π

8

32

1

2
for 7 32 9 32N n N/ /≤ <

()W n = 1.0 for 9 32 2N n N/ /≤ <

()
() ()[]

()[]
W

s p W n p

W p

n p

N

p

N=
−

=

−

=

∑

∑

' ,

' ,
/

α

α

0

1

0

2 for N n N/ 2 ≤ <

11.3.3 Overlapping and adding

For ONLY_LONG_SEQUENCE and EIGHT_SHORT_SEQUENCE sequences, to obtain the output
sequence outin, the first half of the windowed sequence, x’in, is overlapped and added with the second half
of the windowed sequence , x’(i-1)n. The second half of the windowed sequence x’in is stored to be
overlapped/add with the first half of the next block windowed sequence, x’(i+1).

For EIGHT_SHORT_SEQUENCE preceeded by a LONG_START_SEQUENCE, to obtain the output
sequence outin, the first half of the short windowed sequence, x’in, is overlapped and added with the second
half of the windowed sequence , x’(i-1)n starting at sample 448 . The second half of the short windowed
sequence x’in is stored to be overlapped/add with the first half of the next short windowed sequence, x’(i+1).

For LONG_STOP_SEQUENCE preceeded by EIGHT_SHORT_SEQUENCE, to obtain the output
sequence outin, the first half of the windowed sequence, x’in, starting at sample 448, is overlapped and
added with the second half of the last short windowed sequence , x’(i-1)n. The second half of the windowed
sequence x’in is stored to be overlapped/add with the first half of the next long windowed sequence, x’(i+1).

ISO/IEC 13818-7:1996(E) �ISO/IEC

68 MPEG-2 NBC WD / 4:37 PM / 10/21/96

12 Gain Control

12.1 Tool description

The gain control is a tool that has gain compensator, overlapping and IPQF (Inverse Polyphase Quadrature
Filter). This tool receives non-overlapped time signal sequence after IMDCT, window_sequence and
gain_control_data, and then reproduces the output PCM data. The block diagram of the gain control tool is
shown in Figure 12.1.

The IPQF combines four unique band width frequency bands and produces decoded signal. The aliasing
components introduced PQF in the encoder are canceled by IPQF.

The gains for four band signals can be controlled independently. The step size of gain control is 2 ^ n where
n is an integer.

12.2 Definitions

gain control data sub information data that indicate the gain and a gain changed position.

IPQF band each splitted band of IPQF.

adjust_num 3-bit data that indicate the number of gain control data for each IPQF band.
The maximum number of gain control data is seven.

max_band 2-bit data that indicate the number of IPQF bands from the lowest frequency
to higher frequency regions which have spectrum data. The number of IPQF
bands which have spectrum data is max_band + 1.

alevcode 4-bit data that indicate the gain for gain control.

aloccode data that indicate a gain-changed position. The length of this data varies
depending on the window sequence.

12.3 Decoding Process

The following four processes are required for decoding.
(1) Gain control data decoding
(2) Gain control function setting
(3) Gain control windowing and overlapping
(4) Synthesis filter

12.3.1 Gain Control Data Decoding

Gain control data are reconstructed as follows.

(1)

[][]NAD B WW B, = adjust_ num

(2)

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 69

() [][][]()ALOC m AdjLoc B W m m NADW B W B, ,,= − ≤ ≤aloccode 1 1

() [][][]()ALEV m m NADW B
AdjLev B W m

W B, ,,= ≤ ≤−
2 1

1alevcode

(3)

()ALOCW B, 0 0=

() ()ALEV
if NAD

ALEV elseW B
W B

W B
,

,

,

,

,
0

1 0

1
=

=



(4)

()ALOC NAD

W if

W

W
if

W if

W

W
if

W B W B, ,

,

,

,

,

,

,

+ =

=
=

=




≤ ≤
=
=






















1

256 0

112 0

32 1

32 0 7

112 0

256 1

ONLY_ LONG_SEQUENCE

LONG_START_SEQUENCE

EIGHT_SHORT_SEQUENCE

LONG_STOP_SEQUENCE

()ALEV NADW B W B, , + =1 1

where

NADW B, : Gain Control Information Number, an integer

()ALOC mW B, : Gain Control Location, an integer

()ALEV mW B, : Gain Control Level, an integer-valued real number

B: Band ID, an integer from 0 to 3
W: Window ID, an integer from 0 to 7
m: an integer

aloccode[B][W][m] must be set so that (){ }ALOC mW B, satisfy the following conditions.

() ()ALOC m ALOC m m m NADW B W B W B, , ,,1 2 1 21 1< ≤ < ≤ +

AdjLoc() is defined in Table 12.1. AdjLev() is defined in Table 12.2.

12.3.2 Gain Control Function Setting

The Gain control function is obtained as follows.

(1)

(){ }M Max m ALOC m jW B j W B, , ,: ,= ≤
0 255 0≤ ≤ =j W if, ONLY_ LONG_SEQUENCE

0 111 0

0 31 1

≤ ≤ =
≤ ≤ =





j W

j W
if

,

,
LONG_START_SEQUENCE

0 31 0 7≤ ≤ ≤ ≤j W if, EIGHT_SHORT_SEQUENCE

0 111 0

0 255 1

≤ ≤ =
≤ ≤ =





j W

j W
if

,

,
LONG_STOP_SEQUENCE

ISO/IEC 13818-7:1996(E) �ISO/IEC

70 MPEG-2 NBC WD / 4:37 PM / 10/21/96

(2)

()

()
()

()
() ()

()

FMD j

Inter

ALEV M

ALEV M

j ALOC M

if ALOC M j ALOC M

ALEV M else

W B

W B W B j

W B W B j

W B W B j

W B W B j W B W B j

W B W B j

,

, ,

, ,

, ,

, , , , ,

, ,

=

+

−



















≤ ≤ +

+

















,

,

,

,

,

,

, ,

,

1

7

1

(3)

if ONLY_LONG_SEQUENCE

() () ()
()MOD j

ALEV PFMD j j

FMD j jB
B B

B
0

0

0

0 0 255

256 256 511,
,

,

,

,
=

× ≤ ≤
− ≤ ≤





() ()PFMD j FMD j jB B= ≤ ≤0 0 255, ,

if LONG_START_SEQUENCE

()
() () ()
() ()

()MOD j

ALEV ALEV PFMD j j

ALEV FMD j j

FMD j j

j

B

B B B

B B

B
0

0 1

1 0

1

0 0 0 255

0 256 256 367

368 368 399

1 400 511

,

, ,

, ,

,

,

,

,

,

=

× × ≤ ≤
× − ≤ ≤

− ≤ ≤
≤ ≤











() ()PFMD j FMD j jB B= ≤ ≤1 0 31, ,

if EIGHT_SHORT_SEQUENCE

()
() ()
() ()

()
MOD j

ALEV PFMD j W j

ALEV FMD j W j

FMD j W j
W B

W B B

W B W B

W B

,

,

, ,

,

, ,

, ,

, ,

=
× = ≤ ≤
× ≤ ≤ ≤ ≤

− ≤ ≤ ≤ ≤









−

0 0 0 31

0 1 7 0 31

32 0 7 32 63
1

() ()PFMD j FMD j jB B= ≤ ≤7 0 31, ,

if LONG_STOP_SEQUENCE

() () () ()
() ()

()

MOD j

j

ALEV ALEV PFMD j j

ALEV FMD j j

FMD j j

B
B B B

B B

B

0
0 1

1 0

1

1 0 111

0 0 112 112 143

0 144 144 255

256 256 511

,
, ,

, ,

,

,

,

,

,

=

≤ ≤
× × − ≤ ≤
× − ≤ ≤

− ≤ ≤











() ()PFMD j FMD j jB B= ≤ ≤1 0 255, ,

 (4)

() ()AD j
MOD jW B

W B
,

,

,= 1

0 511 0≤ ≤ =j W if, ONLY_ LONG_SEQUENCE

0 511 0≤ ≤ =j W if, LONG_START_SEQUENCE

0 63 0 7≤ ≤ ≤ ≤j W if, EIGHT_SHORT_SEQUENCE

0 511 0≤ ≤ =j W if, LONG_STOP_SEQUENCE

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 71

where

()FMD jW B, : Fragment Modification Function, a real number

()PFMD jB : Fragment Modification Function of previous frame, a real number

()MOD jW B, : Modification Function, a real number

()AD jW B, : Gain Control Function, a real number

()ALOC mW B, : Gain Control Location defined in 12.3.1, an integer

()ALEV mW B, : Gain Control Level defined in 12.3.1, an integer-valued real number

B: Band ID, an integer from 0 to 3
W: Window ID, an integer from 0 to 7
MW B j, , : an integer

m: an integer

and

()
() () ()

Inter a b j

j a j b

, ,

log log

=
− +

2

8

8
2

12.3.3 Gain Control Windowing and Overlapping

Band Sample Data are obtained through the processes (1) to (2) shown below.

(1) Gain Control Windowing

() () ()T j AD j U jW B W B W B, , , ,= ×
0 511 0≤ ≤ =j W if, ONLY_ LONG_SEQUENCE

0 511 0≤ ≤ =j W if, LONG_START_SEQUENCE

0 63 0 7≤ ≤ ≤ ≤j W if, EIGHT_SHORT_SEQUENCE

0 511 0≤ ≤ =j W if, LONG_STOP_SEQUENCE

(2) Overlapping

if ONLY_LONG_SEQUENCE

() () ()V j PT j T j jB B B= + ≤ ≤0 0 255, ,

() ()PT j T j jB B= + ≤ ≤0 256 0 255, ,

if LONG_START_SEQUENCE

() () ()V j PT j T j jB B B= + ≤ ≤0 0 255, ,

() ()V j T j jB B+ = + ≤ ≤256 256 0 1110, ,

() ()PT j T j jB B= + ≤ ≤0 368 0 31, ,

if EIGHT_SHORT_SEQUENCE

() () ()V j PT j T j W jB B W B= + = ≤ ≤, , ,0 0 31

() () ()V W j T j T j W jB W B W B32 32 1 7 0 311+ = + + ≤ ≤ ≤ ≤− , , , ,

() ()PT j T j W jB w B= + = ≤ ≤, , ,32 7 0 31

ISO/IEC 13818-7:1996(E) �ISO/IEC

72 MPEG-2 NBC WD / 4:37 PM / 10/21/96

if LONG_STOP_SEQUENCE

() () ()V j PT j T j jB B B= + + ≤ ≤0 112 0 31, ,

() ()V j T j jB B+ = + ≤ ≤32 144 0 1110, ,

() ()PT j T j jB B= + ≤ ≤0 256 0 255, ,

where

()U iW B, : Band Spectrum Data, a real number

()T jW B, : Gain Controlled Block Sample Data, a real number

()PT jB : Gain Controlled Block Sample Data of previous frame, a real number

()V jB : Band Sample Data, a real number

()AD jW B, : Gain Control Function defined in 12.3.2, a real number

B: Band ID, an integer from 0 to 3
W: Window ID, an integer from 0 to 7
j: an integer

12.3.4 Synthesis Filter

Audio Sample Data are obtained from the following equations.

(1)

() ()~ , ,

,
V j

V k if j k

else
BB

B=
=

≤ ≤




4

0
0 3

(2)

() () ()()
Q j Q j

B j
j BB = ×

+ −







 ≤ ≤ ≤ ≤cos , ,

2 1 2 3

16
0 95 0 3

π

(3)

() () ()AS n Q j V n jB B

jB

= × −
==

∑∑ ~

0

95

0

3

where

()AS n : Audio Sample Data

()V nB : Band Sample Data defined in 12.3.3, a real number

()~
V jB : Interpolated Band Sample Data, a real number

()Q jB : Synthesis Filter Coefficients, a real number

()Q j : Prototype Coefficients given below, a real number

B: Band ID, an integer from 0 to 3
W: Window ID, an integer from 0 to 7
n: an integer
j: an integer
k: an integer

�ISO/IEC ISO/IEC 13818-7:1996(E)

MPEG-2 NBC WD / 4:37 PM / 10/21/96 73

The values of Q(0) to Q(47) are shown in Table 12.3. The values of Q(48) to Q(95) are obtained from the
following equation.

() ()Q j Q j j= − ≤ ≤95 48 95,

12.4 Diagrams

IPQF

Gain Compensator
& Overlapping

gain_
control_
data

gain control tool

Gain Compensator
& Overlapping

Gain Compensator
& Overlapping

Gain Compensator
& Overlapping

window_
sequence

non-
overlapped
time signal

output
PCM
data

256 or 32
IMDCT

256 or 32
IMDCT

256 or 32
IMDCT

256 or 32
IMDCT

Figure 12.1 -- Block diagram of gain control tool

12.5 Tables

Table 12.1 -- AdjLoc()

AC AdjLoc(AC) AC AdjLoc(AC)
0 0 16 128
1 8 17 136
2 16 18 144
3 24 19 152
4 32 20 160
5 40 21 168
6 48 22 176
7 56 23 184
8 64 24 192
9 72 25 200
10 80 26 208
11 88 27 216
12 96 28 224
13 104 29 232
14 112 30 240

ISO/IEC 13818-7:1996(E) �ISO/IEC

74 MPEG-2 NBC WD / 4:37 PM / 10/21/96

15 120 31 248

Table 12.2 -- AdjLev()

AV AdjLev(AV)
0 -4
1 -3
2 -2
3 -1
4 0
5 1
6 2
7 3
8 4
9 5
10 6
11 7
12 8
13 9
14 10
15 11

Table 12.3 -- Q()

j Q(j) j Q(j)
0 9.7655291007575512E-05 24 -2.2656858741499447E-02
1 1.3809589379038567E-04 25 -6.8031113858963354E-03
2 9.8400749256623534E-05 26 1.5085400948280744E-02
3 -8.6671544782335723E-05 27 3.9750993388272739E-02
4 -4.6217998911921346E-04 28 6.2445363629436743E-02
5 -1.0211814095158174E-03 29 7.7622327748721326E-02
6 -1.6772149340010668E-03 30 7.9968338496132926E-02
7 -2.2533338951411081E-03 31 6.5615493068475583E-02
8 -2.4987888343213967E-03 32 3.3313658300882690E-02
9 -2.1390815966761882E-03 33 -1.4691563058190206E-02
10 -9.5595397454597772E-04 34 -7.2307890475334147E-02
11 1.1172111530118943E-03 35 -1.2993222541703875E-01
12 3.9091309127348584E-03 36 -1.7551641029040532E-01
13 6.9635703420118673E-03 37 -1.9626543957670528E-01
14 9.5595442159478339E-03 38 -1.8073330670215029E-01
15 1.0815766540021360E-02 39 -1.2097653136035738E-01
16 9.8770514991715300E-03 40 -1.4377370758549035E-02
17 6.1562567291327357E-03 41 1.3522730742860303E-01
18 -4.1793946063629710E-04 42 3.1737852699301633E-01
19 -9.2128743097707640E-03 43 5.1590021798482233E-01
20 -1.8830775873369020E-02 44 7.1080020379761377E-01
21 -2.7226498457701823E-02 45 8.8090632488444798E-01
22 -3.2022840857588906E-02 46 1.0068321641150089E+00
23 -3.0996332527754609E-02 47 1.0737914947736096E+00

