
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND ASSOCIATED AUDIO

ISO/IEC JTC1/SC29/WG11 N0950
MPEG 95/

May 1995 (Boston)

Digital Storage Media Command & Control

INFORMATION TECHNOLOGY -

GENERIC CODING OF MOVING PICTURES AND
ASSOCIATED AUDIO: Digital Storage Media
Command and Control

ISO/IEC 13818-6

Committee Draft

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

ii

12-June-1995

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

iii

The Digital Storage Media Command and Control (DSM-CC) specification is a set of protocols intended to
provide the control functions and operations specific to managing ISO/IEC 11172 (MPEG-1) and ISO/IEC
13818 (MPEG-2) bitstreams. Informative Annex A of MPEG-2 Systems (ISO/IEC 13818-1) provides a
specification of the syntax and semantics for a simple environment of single-user-to-single-DSM
applications. MPEG Systems are also deployed, however, in more diverse and heterogeneous network
environments for many applications including, for example, video-on-demand and interactive multimedia.
This draft document contains an extension of the DSM-CC protocol for supporting such applications in both
stand-alone and heterogeneous network environments and is an integral part of the ISO/IEC 13818 (MPEG-
2) standards.

Editorial comments in this document are shown in italics, typically within "[]".

[This document reflects all the technical agreements to date, unless specifically indicated elsewise. Table
and figure labeling and cross referencing have not been completed. Further editing to clean up styling, etc.
is also required.]

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

iv

1. INTRODUCTION .. 1

1.1 Scope .. 1
1.2 DSM-CC Functional Reference Model .. 2

1.2.1 Mapping of Functional Reference Model to DSM-CC.. 2
1.3 DSM-CC Protocol Model... 3

1.3.1 U-N and U-U Download Message Delivery Requirements ... 3
1.3.2 Communications Requirement for Other U-U Functions... 5

1.4 References .. 5
1.5 Definitions .. 5
1.6 Symbols and Abbreviations.. 7

1.6.1 Symbols ... 7
1.6.2 Acronyms... 7

1.7 Methods of Specification.. 8
1.7.1 Remote Procedure Call.. 8

1.7.1.1 Independence of RPC... 9
1.7.1.2 Local Equivalent Functions .. 9

1.7.2 Interface Definition Language ... 9
1.7.3 Message Passing.. 10
1.7.4 Life Cycles... 10

2. DSM-CC MESSAGE HEADER.. 10

2.1 DSM-CC Adaptation Header Format ... 11
2.1.1 DSM-CC Conditional Access Adaptation Header Format .. 11

3. USER-TO-NETWORK CONFIGURATION MESSAGES.. 13

3.1 UNConfigRequest message definition.. 15
3.2 UNConfigConfirm message definition ... 15
3.3 UNConfigIndication message definition .. 16
3.4 UNConfigResponse message definition ... 17
3.5 UNPageRequest message definition ... 18
3.6 UNPageConfirm message definition .. 18
3.7 UNPageIndication message definition.. 19
3.8 UNPageResponse message definition... 19
3.9 User Initiated UNConfigRequest message Sequence ... 20
3.10 Network Initiated UNConfigIndication message Sequence.. 21
3.11 User Initiated UNPageRequest message Sequence... 22
3.12 Network Initiated UNPageIndication message Sequence... 22

4. USER-TO-NETWORK MESSAGES ... 24

4.1 Overview and the General Message Format ... 24
4.2 Session Messages ... 25

4.2.1 ClientSessionSetUpRequest message definition.. 28
4.2.2 ClientSessionSetUpConfirm message definition ... 28
4.2.3 ClientSessionSetUpIndication message definition... 29
4.2.4 ClientSessionSetUpResponse message definition ... 30
4.2.5 ClientReleaseRequest message definition..31
4.2.6 ClientReleaseConfirm message definition ... 31
4.2.7 ClientReleaseIndication message definition .. 32
4.2.8 ClientReleaseResponse message definition ... 32
4.2.9 ClientAddResourceIndication message definition ... 33
4.2.10 ClientAddResourceResponse message definition.. 33
4.2.11 ClientDeleteResourceIndication message definition ... 34
4.2.12 ClientDeleteResourceResponse message definition .. 35

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

v

4.2.13 ClientPassThruRequest message definition ... 35
4.2.14 ClientPassThruIndication message definition.. 36
4.2.15 ClientStatusRequest message definition ..36
4.2.16 ClientStatusConfirm message definition..36
4.2.17 ClientStatusIndication message definition...37
4.2.18 ClientStatusResponse message definition.. 37
4.2.19 ClientSessionClearRequest message definition ... 38
4.2.20 ClientSessionClearIndication message definition.. 38
4.2.21 ClientSessionProceedingIndication message definition... 38
4.2.22 ClientConnectRequest message definition... 38
4.2.23 ServerSessionSetUpRequest message definition ... 39
4.2.24 ServerSessionSetUpConfirm message definition... 40
4.2.25 ServerSessionSetUpIndication message definition.. 40
4.2.26 ServerSessionSetUpResponse message definition... 41
4.2.27 ServerConnectIndication message definition... 41
4.2.28 ServerReleaseRequest message definition... 42
4.2.29 ServerReleaseConfirm message definition .. 42
4.2.30 ServerReleaseIndication message definition.. 43
4.2.31 ServerReleaseResponse message definition .. 43
4.2.32 ServerAddResourceRequest message definition.. 44
4.2.33 ServerAddResourceConfirm message definition ... 44
4.2.34 ServerDeleteResourceRequest message definition .. 45
4.2.35 ServerDeleteResourceConfirm message definition.. 45
4.2.36 ServerPassThruRequest message definition .. 46
4.2.37 ServerPassThruIndication message definition ... 46
4.2.38 ServerStatusRequest message definition..46
4.2.39 ServerStatusConfirm message definition... 47
4.2.40 ServerStatusIndication message definition .. 47
4.2.41 ServerStatusResponse message definition ... 48
4.2.42 ServerSessionForwardRequest message definition.. 48
4.2.43 ServerSessionTransferRequest message definition.. 48
4.2.44 MPEG-2 DSM-CC statusTypes...48

4.3 User-to-Network Message Field Data Types.. 48
4.3.1 OSI NSAP Address Format ... 51

4.4 Resource Descriptors.. 51
4.4.1 Resource Descriptor Definitions.. 56

4.4.1.1 ServerContinuousFeedSession resource descriptor definition.. 56
4.4.1.2 ServerDownstream resource descriptor definition.. 56
4.4.1.3 ServerAtm resource descriptor definition... 56
4.4.1.4 ClientAtm resource descriptor definition.. 57
4.4.1.5 AtmConnection resource descriptor definition ... 57
4.4.1.6 MpegPsiDownstream resource descriptor definition .. 58
4.4.1.7 MpegDownstream resource descriptor definition... 59
4.4.1.8 ServerUpstream resource descriptor definition .. 60
4.4.1.9 ClientDownstream resource descriptor definition .. 60
4.4.1.10 ClientCtrlDownstream resource descriptor definition .. 61
4.4.1.11 ClientUpstream resource descriptor definition ... 62
4.4.1.12 Resource Negotiation ... 62

4.5 Client Initiated Command Sequences... 64
4.5.1 Client Session Set-Up Command Sequence .. 65

4.5.1.1 Client Initiates Session Set-Up ... 66
4.5.1.2 Network does not respond to ClientSessionSetUpRequest... 69
4.5.1.3 Network Rejects Client Session Request .. 69
4.5.1.4 Server Rejects Server Session Indication ... 69
4.5.1.5 Network Unable to Assign MANDATORY and NON-NEGOTIABLE Resource............. 70

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

vi

4.5.1.6 Server Terminates Resource Negotiation ... 70
4.5.1.7 Client Unable to Use Resources ... 71
4.5.1.8 Client Has Final userDataBytes.. 71

4.5.2 Client Connection to Continuous Feed Session Command Sequence.. 71
4.5.2.1 Client initiates connection to a Continuous Feed Session... 73
4.5.2.2 Network does not respond to ClientSessionRequest... 76
4.5.2.3 Network Rejects Client Session Request .. 76
4.5.2.4 Server Rejects Server Session Indication ... 76
4.5.2.5 Network Unable to Assign NON-NEGOTIABLE Resource .. 77
4.5.2.6 Server Terminates Resource Negotiation ... 77
4.5.2.7 Client Unable to Use Resources ... 78
4.5.2.8 Client Sends ClientConnectRequest message... 78
4.5.2.9 Server does not respond to ServerSessionIndication .. 78

4.5.3 Client Session Tear-Down Command Sequence ... 79
4.5.3.1 Client Initiates Release Request ... 79
4.5.3.2 Network Rejects Client Release Request.. 80
4.5.3.3 Server Rejects Server Release Indication ... 80

4.5.4 Client Continuous Feed Session Tear-Down Command Sequence.. 81
4.5.4.1 Client Initiates Release Request ... 82
4.5.4.2 Network Rejects Client Release Request.. 83
4.5.4.3 Server Rejects Client Release Indication.. 83

4.6 Server Initiated Command Sequences .. 84
4.6.1 Server Session Set-Up Command Sequence.. 85

4.6.1.1 Server Initiates Session Set-Up... 85
4.6.1.2 Network rejects ServerSessionSetUpRequest... 87
4.6.1.3 Server terminates resource negotiation... 87
4.6.1.4 Client rejects ClientSessionSetUpIndication .. 88

4.6.2 Server Continuous Feed Session Set-Up Command Sequence.. 88
4.6.2.1 Server Initiates Continuous Feed Session Set-Up... 89
4.6.2.2 Network rejects ServerContinuousFeedSessionSetUpRequest... 91
4.6.2.3 Server terminates resource negotiation... 91

4.6.3 Server Add Resource Command Sequence ... 92
4.6.3.1 Server Initiates Add Resource Request... 92
4.6.3.2 Network Unable to Assign NON-NEGOTIABLE Resource .. 95
4.6.3.3 Server Terminates Resource Negotiation ... 95
4.6.3.4 Client Unable to Use Additional Resources ... 96
4.6.3.5 Network Unable to Assign NON-NEGOTIABLE Resource .. 96

4.6.4 Server Session Delete Resource Command Sequence... 97
4.6.4.1 Network Rejects Delete Resource .. 98
4.6.4.2 Client Rejects Delete Resource .. 98

4.6.5 Server Session Tear-Down Command Sequence... 99
4.6.5.1 Server Initiates Release Request... 99
4.6.5.2 Network Rejects Server Release Request ... 100
4.6.5.3 Client Rejects Client Release Indication... 100

4.6.6 Server Continuous Feed Session Tear-Down Command Sequence... 101
4.6.6.1 Server Initiates Continuous Feed Session Release Request.. 101
4.6.6.2 Network Rejects Server Release Request ... 102
4.6.6.3 Client Rejects Client Release Indication... 102

4.6.7 Server Session Forward Command Sequence.. 103
4.6.8 Server Session Transfer Command Sequence.. 103

4.7 Network Initiated Command Sequences... 103
4.7.1 Network Initiated Session Tear-Down Command Sequence ... 103

4.7.1.1 Network Initiates Session Tear-Down .. 103
4.7.1.2 Client Rejects Client Release Indication... 104
4.7.1.3 Server Rejects Server Release Indication ... 104

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

vii

4.7.2 Network Initiated Continuous Feed Session Tear-Down Command Sequence 105
4.7.2.1 Network Initiates Continuous Feed Session Tear-Down .. 105
4.7.2.2 Client Rejects Client Release Indication... 106
4.7.2.3 Server Rejects Server Release Indication ... 106

4.7.3 Network Initiated session list Client Status Command Sequence.. 107
4.7.3.1 Network Initiates session list Client Status command sequence....................................... 107

4.7.4 Network Initiated session list Server Status Command Sequence ... 107
4.7.4.1 Network Initiates session list Server Status command sequence 108

4.7.5 Network Initiated Audit of Client Session Command Sequence ... 108
4.7.5.1 Network Initiates session audit Client Status command sequence.................................... 108

4.7.6 Network Initiated session audit Server Status Command Sequence .. 109
4.7.6.1 Network Initiates session audit Server Status command sequence 109

4.8 Pass-Thru and Broadcast Messages.. 110
4.8.1 ServerPassThru Message sent to a Client .. 110

4.8.1.1 The Server sends a ServerPassThruRequest message to the Network 110
4.8.2 ClientPassThru Message sent to a Server .. 111

4.8.2.1 The Client sends a ClientPassThruRequest message to the Network 111
4.9 Error Handling.. 111
4.10 Timers... 111
4.11 Reason Codes ... 112
4.12 Response Codes.. 113
4.13 User-Network Messages State Tables .. 115

4.13.1 Client-Related State Tables ... 120
4.13.2 Server- Related State Tables.. 123
4.13.3 Network-Related State Tables ... 129

5. USER-TO-USER INTERFACE .. 132

5.1 Introduction .. 132
5.1.1 Scope ... 133
5.1.2 Requirements... 133
5.1.3 Typographical Conventions... 134

5.2 System Environment... 134
5.2.1 System Hardware User Entities ... 135
5.2.2 System Logical Entities ... 135
5.2.3 Application and Service Interfaces .. 138

5.3 Application Runtime Procedures.. 139
5.3.1 User-to-Network Assumptions and Requirements... 139

5.3.1.1 Session Establishment .. 139
5.3.1.2 Session Teardown... 140

5.3.2 Initial Application State... 141
5.4 DSM-CC User-to-User System Specification... 141

5.4.1 Interface Definition Language ... 141
5.4.2 DSM Primitives Interface Overview..141
5.4.3 DSM Common Types .. 143
5.4.4 Exceptions ... 144
5.4.5 Access Control... 146

5.4.5.1 DSM IDL Definition for Access Control.. 146
5.4.5.2 Setting Permissions... 147

5.5 The Core Client-Service Interfaces... 147
5.5.1 Base ... 147

5.5.1.1 Summary of Base Primitives .. 148
5.5.1.2 DSM Base Close... 148
5.5.1.3 DSM Base Destroy ... 149

5.5.2 Access.. 149
5.5.2.1 Access Definitions.. 149

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

viii

5.5.3 Directory.. 150
5.5.3.1 Directory Definitions, Exceptions .. 150
5.5.3.2 Summary of Directory Primitives ... 153
5.5.3.3 list ... 154
5.5.3.4 resolve .. 155
5.5.3.5 bind... 155
5.5.3.6 bind_context ... 156
5.5.3.7 rebind.. 157
5.5.3.8 rebind_context .. 157
5.5.3.9 unbind... 158
5.5.3.10 new_context.. 159
5.5.3.11 bind_new_context... 159
5.5.3.12 destroy .. 160
5.5.3.13 DSM Directory Open.. 160
5.5.3.14 DSM Directory Close ... 161
5.5.3.15 DSM Directory Get .. 161
5.5.3.16 DSM Directory Put... 162

5.5.4 Stream.. 163
5.5.4.1 Stream Definitions, Exceptions .. 164
5.5.4.2 Normal Play Time Temporal Positioning ... 164
5.5.4.3 Summary of Stream Primitives ... 165
5.5.4.4 Stream State Machine... 166
5.5.4.5 DSM Stream Pause... 170
5.5.4.6 DSM Stream Resume ... 170
5.5.4.7 DSM Stream Status .. 171
5.5.4.8 DSM Stream Reset ... 172
5.5.4.9 DSM Stream Jump.. 172
5.5.4.10 DSM Stream Play ... 173
5.5.4.11 DSM Stream Next .. 174

5.5.5 Event.. 175
5.5.5.1 Event Definitions, Exceptions ..175
5.5.5.2 Summary of Event Primitives ... 176
5.5.5.3 DSM Event Subscribe .. 176
5.5.5.4 DSM Event Unsubscribe ..177

5.5.6 File... 177
5.5.6.1 File Definitions, Exceptions ... 178
5.5.6.2 Summary of File Primitives .. 178
5.5.6.3 DSM File Read... 179
5.5.6.4 DSM File Write .. 180

5.5.7 ServiceGateway ... 181
5.5.7.1 ServiceGateway Definitions, Exceptions.. 181
5.5.7.2 Summary of ServiceGateway Primitives .. 182
5.5.7.3 DSM ServiceGateway Attach ... 182
5.5.7.4 DSM ServiceGateway Detach .. 184
5.5.7.5 DSM ServiceGateway ModResource ... 185

5.6 Extended Interfaces .. 186
5.6.1 View .. 187

5.6.1.1 Non-Database View.. 187
5.6.1.2 Database View.. 188
5.6.1.3 View Procedures... 188
5.6.1.4 View Definitions, Exceptions ...188
5.6.1.5 Summary of View Primitives.. 189
5.6.1.6 DSM View Select ... 190
5.6.1.7 DSM View Read... 191
5.6.1.8 DSM View Fetch .. 192

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

ix

5.6.1.9 DSM View Update ... 193
5.6.2 Service... 193

5.6.2.1 Summary of Service Primitives .. 193
5.6.2.2 DSM Service Launch.. 194
5.6.2.3 DSM Service Unlaunch .. 195

5.6.3 Interfaces ... 196
5.6.3.1 Interfaces Definitions, Exceptions.. 196
5.6.3.2 Summary of Interfaces Primitives... 197
5.6.3.3 DSM Interfaces Define... 197
5.6.3.4 DSM Interfaces Undefine ... 198

5.6.4 LifeCycle ... 199
5.6.4.1 DSM LifeCycle Create ... 199

5.6.5 Security.. 200
5.6.5.1 DSM Security Authenticate ..200

5.7 Application Portability Interfaces... 201
5.7.1 Consumer Client .. 201
5.7.2 Information Provider Client... 201

5.7.2.1 Basic Data Types.. 202
5.7.2.2 Constants .. 202
5.7.2.3 Struct Types.. 202
5.7.2.4 Sequence Types .. 203
5.7.2.5 Strings... 203
5.7.2.6 Any ... 203

5.7.3 Application Synchronous Deferred Operations ... 203
5.7.4 API Definitions.. 205

5.7.4.1 C Mapping for the Synchronous Interface.. 205
5.7.4.2 C Mapping for the Synchronous Deferred Interface... 209

6. USER CAPABILITIES.. 213

6.1 userCapabilities Message Structure .. 214
6.2 Tag_value_list: predefined tags.. 215
6.3 The NETIF Descriptor Tag .. 217
6.4 The NETSTACK Descriptor Tag... 218
6.5 The DOWNLOAD Descriptor Tag ..218
6.6 Example Tag_list.. 218

7. DOWNLOAD...Error! Bookmark not defined.

7.1 Overview .. 223
7.2 Preconditions and Assumptions.. 223

7.2.1 User-to-User Download This should go into the U-U section and the following should only be
generic p’s and a’s... 224

7.2.1.1 Flow Control Case.. 224
7.2.1.2 Broadcast case .. 224

7.2.2 User-to-Network Download (Config).. 224
7.2.2.1 Flow Control Case.. 224
7.2.2.2 Broadcast Case ... 224

7.3 Download Methods .. 224
7.3.1 Flow Controlled... 224

7.3.1.1 Network Models ... 224
7.3.1.2 Scenarios .. 225

7.3.2 Non-Flow Control.. 226
7.3.2.1 Network Models ... 226
7.3.2.2 Scenarios .. 227

7.4 Messages .. 227
7.4.1 Use of DSMCCMessageHeader().. 227

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

x

7.4.2 Other Common Message Fields... 228
7.4.3 DownloadInfoRequest ... 229
7.4.4 DownloadInfoResponse... 230
7.4.5 DownloadStartRequest .. 231
7.4.6 DownloadDataBlock ... 231
7.4.7 DownloadDataResponse.. 231
7.4.8 DownloadCancel ... 232
7.4.9 DownloadServerInitiate... 232

7.5 Flow Controlled Scenario... 232
7.5.1 Getting Download Protocol Parameters .. 232
7.5.2 Starting Download... 233
7.5.3 Acks and Naks... 233
7.5.4 Timers and Retransmission.. 234
7.5.5 Abort.. 235

7.6 Broadcast Scenario ... 235
7.6.1 Image Assembly .. 235
7.6.2 Timers.. 236
7.6.3 Image Coherency... 236

7.7 MPEG-2 Transport Streams ... 236
7.7.1 Encapsulation of Messages.. 236
7.7.2 Broadcast Carousel Directories ... 237

8. NORMAL PLAY TIME, STREAM MODE AND STREAM EVENTS.................................... 238

8.1 Purpose... 238
8.2 Conversion between NPT and STC Timebase.. 238
8.3 NPT Uncertainty... 239
8.4 Descriptors ... 239

8.4.1 NPT Reference Descriptor .. 239
8.4.2 NPT Endpoint Descriptor .. 241
8.4.3 Stream Mode Descriptor.. 241
8.4.4 Stream Event Descriptor.. 242

9. TRANSPORT ... 243

9.1 U-N Messages Transport Requirements ... 243
9.2 U-U Initial Download Transport Requirements.. 243
9.3 U-U Remote Procedure Call Transport Requirements ... 243
9.4 Encapsulation within MPEG-2 Transport Streams... 244

9.4.1 Role of MPEG-2 Transport Stream in Protocol Stack... 244
9.4.2 DSM-CC Sections ... 244
9.4.3 DSM-CC Stream Types... 246
9.4.4 Data Link Flow Control... 246
9.4.5 DSM-CC Multiprotocol Encapsulation ... 246
9.4.6 U-N Messages ... 249
9.4.7 U-U Initial Download.. 249
9.4.8 U-U Remote Procedure Calls .. 249
9.4.9 NPT Time Stamps and DSM-CC Descriptors in MPEG-2 Transport Streams........................ 249

9.5 Encapsulation within MPEG-2 Program Streams... 250
9.5.1 NPT Time Stamps and DSM-CC Descriptors in MPEG-2 Program Streams.......................... 250

9.6 Encapsulation within MPEG-1 System Streams... 251

10. INFORMATIVE ANNEX A..251

10.1 Overview of MHEG ... 251
10.2 Detailed relationship of DSM-CC to MHEG.. 252

11. INFORMATIVE ANNEX B..254

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

xi

11.1 Sample Port and Use of CD-ROM Multimedia Application .. 254
11.2 Sample Creation and Use of a Movie Attributes Database Object ... 255

12. INFORMATIVE ANNEX C..259

12.1 Scope .. 259
12.2 Network configuration and restrictions .. 259
12.3 Application Boot Procedure chosen ... 259
12.4 Application Boot Initiator Actions ... 259
12.5 Application Boot Sequence .. 259
12.6 Application Boot Initiator Actions ... 260

13. INFORMATIVE ANNEX D..261

13.1 Introduction .. 261
13.2 Associations Between ATM SVC and DSM-CC.. 263

13.2.1 Methods... 263
13.2.1.1 Session Method .. 263
13.2.1.2 Network Method... 264

13.2.2 resourceId Mapping into B-HLI Correlation ID.. 264
13.2.2.1 Immediate Mapping to B-HLI Correlation ID.. 265
13.2.2.2 Subsequent Mapping to B-HLI Correlation ID .. 265

13.3 Hybrid ATM Core-Shared Access MPEG Transport Stream... 265
13.3.1 Session Method Scenarios ... 267

13.3.1.1 Session Set-Up.. 267
13.3.1.2 Resource Request ... 270
13.3.1.3 Resource Deletion .. 272
13.3.1.4 Session Tear-Down... 274

13.3.2 Network Method Scenarios ... 275
13.3.2.1 Session Set-Up.. 276
13.3.2.2 Resource Add Request.. 278
13.3.2.3 Connection Clearing ... 280
13.3.2.4 Session Tear-Down... 282

13.4 Hybrid ATM Core-Shared ATM Access.. 282
13.5 End-to-end ATM segregated with Proxy..284

13.5.1 Session Method Scenario... 286
13.5.1.1 Session Set-Up.. 286
13.5.1.2 Add Resources Request .. 289
13.5.1.3 Resource Deletion .. 290
13.5.1.4 Session Tear-Down... 290

13.5.2 Network Method Scenarios ... 290
13.5.2.1 Session Set-Up.. 290
13.5.2.2 Resource Add Request.. 290
13.5.2.3 Connection Clearing ... 291
13.5.2.4 Session Tear-Down... 291

13.6 End-to-End ATM Segregated Direct .. 291
13.7 End-to-End ATM Integrated .. 292

14. INFORMATIVE ANNEX E ..294

15. INFORMATIVE ANNEX F ..296

15.1 Purpose... 296
15.2 Description ... 296
15.3 3. Non-Blocking RPC with Client Callbacks.. 296
15.4 Multi-Threaded Clients... 296
15.5 General RPC Issues .. 297

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

xii

16. INFORMATIVE ANNEX G..298

17. INFORMATIVE ANNEX H..308

17.1 Purpose... 308
17.2 Introduction .. 308
17.3 IP over Ethernet.. 308

17.3.1 Application interface to UDP .. 309
17.3.2 Internal interfaces .. 310

17.3.2.1 UDP.. 310
17.3.2.2 IP .. 310
17.3.2.3 ARP .. 310
17.3.2.4 Routing ... 311
17.3.2.5 NIC Driver.. 311

17.3.3 Packet transmission flow ... 311
17.3.4 Packet reception flow .. 311

17.4 IP over ATM .. 312
17.4.1 Packet transmission flow ... 312

17.5 IP over ATM with DSM-CC U-N Session Management.. 313
17.5.1 Packet transmission flow ... 314

17.6 IP over DSM-CC U-N Session and Connection Management.. 314
17.7 Example with DSM-CC U-U and WWW... 315
17.8 Observations and Issues.. 315

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

xiii

LIST OF FIGURES

[to be provided when a correct cross reference is established]

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

xiv

LIST OF TABLES

[to be provided when a correct cross reference is established]

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

1

1. Introduction
The Digital Storage Media Command and Control (DSM-CC) specification is a set of protocols intended to
provide the control functions and operations specific to managing ISO/IEC 11172 (MPEG-1) and ISO/IEC
13818 (MPEG-2) bitstreams. Informative Annex A of MPEG-2 Systems (ISO/IEC 13818-1) provides a
specification of the syntax and semantics for a simple environment of single-user-to-single-DSM
applications. MPEG Systems are also deployed, however, in more diverse and heterogeneous network
environments for many applications including, for example, video-on-demand and interactive video. This
draft document contains an extension of the DSM-CC protocol for supporting such applications in both
stand-alone and heterogeneous network environments and is an integral part of the ISO/IEC 13818 (MPEG-
2) standards.

Functional groups of DSM-CC operations are described in this document. An embodiment using DSM-CC
is not required to implement every functional group. However, if an embodiment implements operations of
a group type analogous to those described in this section (e.g., Record and Edit Assembly), then the
embodiment shall implement the complete syntax and semantics of the corresponding DSM-CC function
group. If an embodiment does not implement operations of a group type described in this section, then a
function call to an unimplemented group of functions shall return a status of "Function Not Implemented".
[The exact mechanism is for further study.]

The grouping of required protocol subsets is for further study. The following list shows an example of such
grouping.

� User-to-Network Configuration
� User-to-Network Messages
� User-to-User Playback
� User-to-User Record and Edit Assembly
� User-to-User File Access
� User-to-User Database Access

1.1 Scope
This document provides the specifications for the controls of MPEG-2 bitstreams in both standalone and
distributed environments with the following characteristics:

� Multi-server
� DSM-CC clients may request service from multiple servers. The environment also contains

servers communicating with other servers.
� Multi-session

� A DSM-CC client has the ability to have multiple simultaneous calls in progress.
� Multi-client

� A single piece of material may be accessed concurrently or sequentially by multiple clients.
� Connectivity

� Broadcast
� Point-to-point
� Multicast
� Multi-point to multi-point

� Multiprotocol
� A DSM-CC client may request service of multiple servers, where each communication path

may cross multiple diverse network protocols. These underlying network protocols must be
transparent to the DSM-CC Extension.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

2

1.2 DSM-CC Functional Reference Model

SERVER
User

to
Network

CLIENT
User

to
Network

User
to

User

User
to

User

Connection
(User to Network)

Connection
(User-to-User)

NETWORK

Session
Manager*

(User
to

Network)

*May provide session, connection, and configuration management and control

Figure 1-1. DSM-CC Functional Reference Model

A functional reference model describing the signaling, control and User-User capabilities of the interactive
network is shown in Figure 1-1. The overall set of functions is grouped by functional entities. The figure
illustrates the functions in a platform independant manner and the depiction of any function does not
neccessarily constrain its implementation in hardware or software.

Four functional entity types are defined:
� Session
� Connection
� Configuration
� User-User

The functional entity types Session, Connection and Configuration reside in the client, server and network.
The functional entity type User-User resides in the client and the server only. The functional entities can
interact with each other to provide the services requested, this is illustrated in the interconnections of the
functional entity “bubbles” in the figure. For simplicity and readability the Session, Connection, and
Configuration at each of the Client Server and Network are shown as one bubble rather than three.

1.2.1 Mapping of Functional Reference Model to DSM-CC

The interactions of functional entities are modeled as the exchange of DSM-CC protocol messages and their
associated parameters.

The interactive relationships of the Session, Connection and Configuration functional entities at the client
with their peers in the network are represented as the User-Network protocol. Likewise the mapping of the
Session, Connection and Configuration functional entities at the server with their peers in the network are
represented as the User-Network protocol.

The interactive relationship between the functional entities at the client and the server is represented as the
User-User protocol.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

3

1.3 DSM-CC Protocol Model
The protocol models below show the protocol stack of DSM-CC and its relationship with other protocols.

User-User
Primitives

User-Network
Primitives

RPC

DSM-CC Protocol Stack

 Data Link

Delivery

DSM-CC
 U-N

Scripting
Language

Application

ITU-T
Control

and
Indication
Signals

MHEG

Common
Parts

DSM-CC U-U

RPC

Transport

DSM-CC
 Download

Figure 1-2. DSM-CC Protocol Model

DSM-CC provides access for general applications, MHEG applications, and scripting language application
to primitives for establishing or deleting a network connection using User-Network (U-N) Primitive and
communication between a client and a server accross a network using User-User (U-U) Primitive. U-U
operations may use a Remote Procedure Call (RPC) protocol. Both U-U and U-N operations may employ a
message passing scheme which involves a sequence of bit-pattern exchanges.

DSM-CC may be carried as a stream within an MPEG 1 System Stream, an MPEG 2 Transport Stream, or
an MPEG 2 Program Stream. Alternatively, DSM-CC may be carried over other delivery mechanisms, such
as TCP or UDP.

[The integration of DSM-CC with ITU-T Control and Indication signalling is currently under study. The
uncertain relationship is illustrated by the dotted line in the figure. Possible common parts of DSM-CC
and ITU-T C&I signalling, e.g., capability exchange, is to be defined. It is also possible that the ITU-T
C&I signalling may share the same transport mechanism with DSM-CC.]

1.3.1 U-N and U-U Download Message Delivery Requirements
The delivery mechanism for U-N messages and U-U download messages is user defined. The table below
summarizes the minimum requirements for a message delivery layer (MDL) for DSMCC Clients and
Servers for these two types of messages.

Table 1-1

DeliveryFunction Requirement
Integrity of Data Error detection must be provided. Corrupted messages should be

discarded.
Reliability of Delivery The delivery of the message need not be guaranteed.
Flow Control The delivery mechanism need not regulate the rate of transmission of

messages.
Fragmentation and Reassembly The delivery mechanism is responsible for any required

fragmentation and reassembly of messages, up to some maximum
given by the “maximum transmissible unit” (MTU) for the delivery
mechanism, which may be as low as 4k bytes.

Delivery Order of Messages Delivery mechanism need not be responsible for in order delivery of
messages.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

4

Service Access Point The service access point is an end-system. Message delivery is to the
end-system, not entities within the end system.

Addressing None. There must be some form of connection to the SCCMC
established by mechanisms outside the scope of DSMCC.

Concurrent transactions There must be support for more than one simultaneous outstanding
message transaction on an individual Client or Server system.

Examples of suitable MDLs are UDP/IP with a well known IP address and port for the SCCMC, and
AAL5/ATM over a permanent virtual circuit (PVC) connected to the SCCMC. Both of these have
capabilities that exceed the minimum requirements: UDP/IP supports finer grain service access points and
AAL5 over a single VC guarantees in order delivery. However, DSM-CC U-N will not utilize any
capabilities in excess of those specified above. As a further example, TCP/IP could be used as a DSM-CC
U-N message delivery mechanism, but no advantage would be taken of its reliable delivery guarantee. The
MTU may not be very large: MPEG2 TS, for example, has an MTU of less than 4k bytes.
These capabilities can be expressed with the following semantic interfaces (SI) that describe the facilities
assumed by the network. Although they look like APIs, they are not intended as such; rather, they only
identify the functionality required of the message delivery layer and make explicit all the information that
must be provided to it by the DSM-CC U-N layer.
The SI for sending a DSMCC message (either a request or a response) is as follows:

STATUS SendToSCCMC(
DSMCCMessageHeader * msg);

This SI says that DSMCC assumes the ability to send a message to “the network” (whose representative is
the SCCMC) without knowing anything more than is in a DSMCCMessageHeader (which is defined in
section 2.) In particular, DSMCC need not know any form of address of the SCCMC.
Two kinds of messages can be recieved: indications and confirmations. At a receiver, an indication is the
first message of a message sequence transaction, and a confirmation is the concluding message.

STATUS RcvIndicationFromSCCMC(
DSMCCMessageHeader * hdr,
int maxMsglen);

where

DSMCCMessageHeader is received DSMCC message

maxMsgLen is the maximum length of the incoming message

This SI says that for the DSMCC to receive an indication, it needs to give the message delivery layer
nothing more than the maximum length of the message that it can receive; that information, plus whatever is
in defined to be a DSMCCMessageHeader, must be sufficient for the MDL to get the received message to
the correct recipient.

STATUS RcvConfirmFromSCCMC(
short XID,
DSMCCMessageHeader * hdr,
int maxMsglen);

where

XID is the transaction ID expected on the reply.

DSMCCMessageHeader is received DSMCC message

maxMsgLen is the maximum length of the incoming message

This SI says that the DSMCC needs to specify the transaction ID of the confirmation message it wants to
receive, and the maximum message size it can handle, and it will receive messages with that transaction ID.
The transaction ID is necessary because there can be more than one simultaneous outstanding transaction,
and there must be a way to route the confirmations to the sender of the original request.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

5

1.3.2 Communications Requirement for Other U-U Functions
Other that U-U Download, the other U-U functions are specified in terms of user-defined RPC. The RPC
mechanism must provide the following communications capabilities.

Table 1-1

DeliveryFunction Requirement
Integrity of Data Data integrity is guaranteed.
Reliability of Delivery The delivery of the message is guaranteed.
Flow Control The RPC mechanism regulates the rate of transmission of messages.
Fragmentation and Reassembly The delivery mechanism is responsible for any required

fragmentation and reassembly of messages, for arbitrarily large
messages.

Delivery Order of Messages The RPCmechanism is responsible for in order delivery of messages.
Service Access Point The service access point is process or thread.
Addressing RPC specific.
Concurrent transactions There must be support for more than one simultaneous outstanding

RPC on an individual Client or Server system.

1.4 References
[This list is incomplete and some of the detailed information of the references is still missing.]

1. RFC 1057 Remote Procedure Call (Internet)
2. RFC 1014 External Data Representation Standard (Internet)
3. DCE Distributed Computing Environment
4. NDR Network Data Representation, used by DCE
5. ISO RPC 11578 DIS
6. ITU-T Recommendation X.25
7. ITU-T Recommendation X.500
8. ITU-T Recommendation X.509
9. ITU-T Recommendation Q.931
10. ITU-T Recommendation Q.2931
11. ISO/IEC 14750-1 Working Draft: CORBA IDL as an Interface Definition Language for ODP

Systems
12. ASN.1/BER
13. ITU-T Recommendation E164
14. ISO/IEC 11172 (MPEG-1)
15. ITU-T Rec. H.222.0|ISO/IEC 13818-1
16. TCP/IP (RFC #??)
17. SQL92

[According to 13818-1, a heading level 1 entitled "Technical Elements" starts here and encompasses the
entire Normative text.]

1.5 Definitions
This section contains those definitions that are not yet defined in other MPEG (ISO/IEC 11172 and 13818)
standards.

Client A consumer of a service from one or more Servers.
Connection A transport link that provides the capability to transfer information between two or

more end points.
Network A collection of communicating elements that provides connections and may provide

session control and/or connection control to User(s).

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

6

Server A provider of a service to one or more Clients.
Service A logical entity in the system that provides function(s) and interface(s) in support of

one or more applications. The distinction of a service from other objects is that end-
user access to it is controlled by a Service Gateway.

Session An association between two or more Users providing the capability to group together
the resources needed for an instance of a service.

User An end system that is connected to a network that can transmit information to or
receive information from other such end systems by means of the Network. A User
may function as a Client, Server, or both.

Application Software that executes in a client environment
Application
Download

The procedure by which a server sends the requested application to a client.

Application
Download
Messaging Path

The transport connection by which a client requests and receives a BLOB requested
by the application download initiator. This messaging path may be point-to-point or
point-to-multipoint.

Application
Download Server

The functional part of the server which is responsible for executing the server-side
application download procedure.

Binary Large
OBject (BLOB)

Generic term used for a module that is transferred from one user to another (usually
from a server to a client). This module may be an application, or it could be a
different client specific module used to make updates or additions to resident
software on the client, either by the network or by the server.

BLOB loader The software module resident on the client that is responsible for executing the
client-side application download procedure.
Client: Describes the user that is receiving the BLOB, and therefore presenting the
application to the ultimate user.

Application
Download
Initiator (ADI)

An application on the client which communicates with the network over the user-
network path and the application download server over the application download
messaging path. The ADI communicates with the BLOB loader to perform the
application download procedure.

Network-User
Module Update
Path

The transport connection by which a network can use the application download
procedure to make module updates to resident client software. It is required that the
downloaded modules are able to be dynamically added and subsequently executed at
run time. By the same token, these downloaded modules will be able to permanently
replace existing resident modules on the client dynamically. [to be further discussed]

Ultimate User This term is used for the human element that will interact with the application in
some way. The model is for the server to download an application onto a client. The
client then begins execution of the application which presents the interface to and
handles responses from the ultimate user.

User-Network
messaging path

The transport connection by which a user and network exchange messages. The
protocol used to create this path is not specified. It is intended that the client and
network be able to use this download procedure to load new resident modules or
update older revisions.

User-User
messaging path

The transport connection by which a client and server exchange messages. There are
two sub-types of user-user messaging paths, the application download messaging
path and the application peer-to-peer messaging path. The latter messaging path
refers to the connection between an existing application and its associated server.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

7

1.6 Symbols and Abbreviations
[This section currently contains only those symbols and abbreviations that are not yet defined in other
MPEG Standards. More related definitions will be added later.]

1.6.1 Symbols
[Tbd.]

1.6.2 Acronyms
[This acronym list is still incomplete.]

ABI Application Boot Initiator
ABS Application Boot Server
API Application Programming Interface
ASN.1/BER Abstract Syntax Notation 1/Basic Encoding Rules
BLOB Binary Large OBject
BPDU [tbd] (see Annex C RFC 1483)
CFS Continuous Feed Server
CPDU Common Protocol Data Unit
DAP Directory Access Protocol (X.500)
DCE Distributed Computing Environment
DIB Directory Information Base (X.500)
DSA Directory System Agent (X.500)
DSM Digital Storage Media
DSM-CC Digital Storage Media - Command and Control
DSP Directory System Protocol (X.500)
DUA Directory User Agent (X.500)
FCS Frame Check Sum
GPDU General Protocol Data Unit
IDL Interface Definition Language
IP Internet Protocol
MHEG Multimedia/Hypermedia Experts Group
MPEG Moving Picture Experts Group
MSL Multimedia Scripting Language
NDR Network Data Representation (DCE)
NPT Normal Play Time
OMG Object Management Group
ONC Open Networked Computing
OPE Other Protocol Element (MHEG)
PA Physical Address
PDU Protocol Data Unit
PES Packetized Elementary Stream (13818-1)
PID Packet Identifier (13818-1)
PIN Personal Identification Number
PLL Phase Locked Loop
PMT Program Map Table
PS Program Stream
PSI Program Specific Information
RPC Remote Procedure Call
SDL Service Description Language
SE SubElement
SNAP SubNetwork Attachment Point
SQL Structured Query Language
TCP Transport Control Protocol

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

8

TS Transport Stream
UDP User Datagram Protocol
U-N User-to-Network
U-U User-to-User
XDR External Data Representation

1.7 Methods of Specification

1.7.1 Remote Procedure Call

Client App

RPC
Req Header

Request
Parameters

Server App

Application Portability Interface (function call)

DSM Lib

Msg
Hdr

Network

RPC
Reply Header

Reply
Parameters

Msg
Hdr

Network

MPEG
Encapsulation

Client-Service Interoperability Interface
(IDL)

Figure 1-3. Example Data Flow of an RPC Execution

Digital Storage Media User-to-User (U-U) functionality exploits a Remote Procedure Call (RPC) protocol.
An RPC allows implementation of a client-server model in which applications on a client are written to call
functions that are similar to those that might be used if all actions were to be executed locally. The RPC
includes a compiler which converts the functions to be called into (1) a piece of client code, which accepts
arguments, prepares a packet containing the arguments, sends them to the server, accepts a packet from the
server containing the server's response, and (2) a piece of server code which accepts packets from a client,
performs the appropriate actions, and prepares and sends a packet containing the response to the client. For
those U-U API primitives that use the RPC, the RPC protocol defines the actual bits that are exchanged as

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

9

primitives are executed. Other U-U and U-N API primitives are message based.

Client App

RPC
Req Header

Request
Parameters

Server App

Application Portability Interface (function call)

DSM Lib

Msg
Hdr

Network

RPC
Reply Header

Reply
Parameters

Msg
Hdr

Network

MPEG
Encapsulation

Client-Service Interoperability Interface
(IDL)

Figure 1-3 shows an example of the data flow of an RPC execution.

1.7.1.1 Independence of RPC
DSM-CC can be implemented using any RPC which can implement primitives that are legal within the
Interface Definition Language (IDL). The RPC will include a data representation choice which defines how
data structures are mapped to bits (e.g., Network Data Representation (NDR) or Abstract Syntax Notation 1
/ Basic Encoding Rules (ASN.1/BER)).

Different implementations of RPC may generate different bit patterns on a communication link for the same
primitive. Communication between a client using one RPC and a server using a different RPC would
require a translator (executing on either the server or client side) to convert the RPC packet contents from
one protocol to the other.

1.7.1.2 Local Equivalent Functions
For DSM-CC implementations in which the client and server functions are known to be entirely local (i.e.,
do not require message exchange over a network), those U-U and U-N primitives that use an RPC may be
compiled by an alternative IDL compiler which produces a single equivalent local function call definition.
This allows many applications to be simply ported between networked applications and stand-alone
applications (e.g., CD-player). Alternatively, if separate server and client processes are executing locally,
the RPC protocol may be used without modification.

1.7.2 Interface Definition Language
The U-U API primitives that use the RPC are defined in terms of an Interface Definition Language (IDL).
The IDL provides a grammar for defining the function call like API specification for each primitive.
Primitives written in the IDL are compiled by an IDL compiler to produce client and server stubs
(executable code that implements packet formation, dispatch, receipt, and interpretation) and a header file
used during compilation of the client and server applications.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

10

1.7.3 Message Passing
[To be provided.]

1.7.4 Life Cycles
[To be provided.]

2. DSM-CC Message Header
All MPEG-2 DSM-CC messages begin with the DSM-CC MessageHeader with the exception of DSM-CC
User-to-User primitives which use the RPC mechanism. This header contains information about the type of
message being passed as well as any adaptation data which is needed by the transport mechanism including
conditional access information needed to decode the data. Table 2 defines the format of a DSM-CC
message header.

Table 2 MPEG-2 DSM-CC Message Header Format

Syntax Num. of Bytes
dsmccMessageHeader() {

protocolDiscriminator 1
dsmccType 1
transactionId 8
messageId 2
adaptationLength 1
messageLength 2
for(i=0;i<adaptationLength;i++) {

dsmccAdaptationHeaderBytes
}

}

The protocolDiscriminator field is used to indicate that the message is a MPEG-2 DSM-CC message. The
value of this field shall be [tbd].

[The protocolDiscriminator value is still under investigation. The intent was to align this field with the
same field as that used by ITU-T Q.2931 general message format headers. This value must be assigned by
ISO? ITU?]

The dsmccType field is used to indicate the type of MPEG2 DSM-CC message. Table 3 defines the
possible dsmccTypes.

Table 3 MPEG-2 DSM-CC dsmccType values

dsmccType Description
0x00 ISO/IEC 13818-6 Reserved
0x01 Identifies the message as an MPEG-2 DSM-CC User-to-

Network configuration message.
0x02 Identifies the message as an MPEG-2 DSM-CC User-to-

Network primitive message.
0x03 Identifies the message as an MPEG-2 DSM-CC User-to-

User configuration message.
0x04 Identifies the message as an MPEG-2 DSM-CC User-to-

User primitive message.
0x05-0x7f ISO/IEC 13818-6 Reserved.
0x80-0xff User Defined message type.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

11

The transactionId field is used for session integrity and error processing. If a message is being originated,
this field shall be set to a value which is unique within the network and shall remain unique for a period of
time such that there is no chance that command sequences cannot collide.

The transactionId is constructed of the oringinators deviceId concatenated with a 2 byte transaction number.

[There is currently an issue between the size of the transactionId used in the dsmccMessageHeader() and
the transactionId used by Download which is 2 bytes. This needs to be resolved.]

The messageId field indicates the type of message which is being passed. The values of the messageId are
defined within the scope of the messageType.

[There was agreement to move to a 1 byte messageId field in both the dsmccMessageHeader() and the
Download header. However, the way the messageIds are defined, 2 bytes are required. The messageId
definition must be resolved before we can shrink the size of this field.]

The adaptationLength field indicates the total length of the adaptation headers which follow the message
header. Each adaptation header contains a type and length field which are used to identify the individual
adaptation headers.

The messageLength field is used to indicates the total length of the message which follows the general
message header. This length includes any adaptation headers indicated in the adaptationLength and the
message payload indicated by the messageId field.

The DSMCCAdaptationHeader is defined in Section 2.1.

2.1 DSM-CC Adaptation Header Format
The format of the DSM-CC Adaptation Header is defined in Table 4.

Table 4 Format of the DSM-CC Adaptation Header

Syntax Num. of Bytes
dsmccAdaptationHeader() {

adaptationType 1
adaptationLength 1
for(i=0;i<adaptationLength;i++) {

adaptationDataByte
}

1

}

The adaptationType field is used to indicate the type of adaptation header. Table 5 defines the possible
values of the adaptationType field.

Table 5 DSM-CC adaptationTypes

Adaptation Type Description
0x00 ISO/IEC 13818-6 Reserved.
0x01 Indicates that this is a conditional access header.

0x02-0x7f ISO/IEC 13818-6 Reserved.
0x80-0xff User Defined adaptation header.

The adaptationLength and adaptationDataByte fields contain the adaptation data. The length and content
of the adaptation data depends on the adaptationType.

2.1.1 DSM-CC Conditional Access Adaptation Header Format
Table 6 indicates the format of the conditional access adaptation header.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

12

Table 6 Format of the DSM-CC Conditional Access Adaptation Header

Syntax Num. of Bytes
dsmccConditionalAccessHeader() {

conditionalAccessType 2
conditionalAccessLength 1
for(i=0;i<conditionalAccessLength;i++) {

conditionalAccessDataByte
}

1

}

The conditionalAccessType field specifies the type of conditional access mechanism being used. The
allowable values for this field are defined in [systems document reference].

The conditionalAccessLength and conditionalAccessDataByte fields contain the data required for the
particular type of conditional access mechanism being used. The length and content of the conditional
access data depends on the conditionalAccessType.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

13

3. User-to-Network Configuration Messages
This section refers to a broadcast capability which is used to send these messages. This then becomes a
requirement on the network.

A list of tuples (which include serverIds and possibly other data) may be a postcondition of executing UN
Config messages. This issue should be addressed in the LifeCycle Section [TBD]. It has been agreed that
UNConfigMessages should support a network which does not use upstream signaling.

The following issues were added at Lausanne:

Either a User or the Network may assign the sessionId. There needs to be a method in U-N configuration to
inform the User which method is being used. Only one method may be used in a Network.

Currently, only the Network may assign the resourceId, however, DSM-CC is investigating a method by
which the User could assign this Id. If adopted, there needs to be a method in U-N configuration to inform
the User which method is being used. Only one method may be used in a Network.

In some Network implementations, the User-to Network Configuration messages are not necessary. As in all
parts of DSM-CC, the Network provider may choose not to implement U-N Configuration. However, if this
section is implemented, all of the functions in this section must be implemented.

In addition to the User-to-Network configuration messages which allow the User devices to operate on the
Network, the Users may use the User-to-User primitives may also execute a configuration among
themselves.

The User-to-Network Configurations use the General Message Format defined in section Error! Reference
source not found.. The dsmccType field shall be set to 0x01 to indicate that the message is a U-N
Configuration message.

The User-to-Network (U-N) Configuration messages are used to allow a User device to gain access to a
Network and configure the User device with the parameters which are required for the User Device to
operate on the Network. Table 7 defines the messageIds for use in the U-N Configuration protocol:

Table 7 DSM-CC U-N Configuration messageIds

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

14

messageId Message Name Description

0x0000 Reserved ISO/IEC 13818-6 Reserved.

0x0001 UNConfigRequest Sent from the User to the Network to request the
initial Network configuration.

0x0002 UNConfigConfirm Sent from the Network to the User in response to
the UNConfigRequest.

0x0003 UNConfigIndication Sent from the Network to the User to reconfigure
the User device.

0x0004 UNConfigResponse Sent from the User to the Network in response to a
UNConfigIndication message

0x0005 UNPageRequest Sent from the User to the Network to request a
page of data from the network.

0x0006 UNPageConfirm Sent from the Network to the User in response to a
UNPageRequest message.

0x0007 UNPageIndication Sent from the Network to the User to update a
page of data on the User device.

0x0008 UNPageResponse Sent from the User to the Network in response to a
UNPageIndication message

0x0009 - 0x7fff Reserved ISO/IEC 13818-6 Reserved.

0x8000 - 0xffff User Defined User Defined U-N Configuration message.

The U-N Configuration messages also provide the Network with a means to download pages of data to a
User or group of users. This data may be specific to a particular device type and revision. The User may
also request a data page from the Network at any time after initial configuration. Table 8 defines the page
numbers available in DSM-CC.

Table 8 MPEG-2 DSM-CC User-to-Network Configuration page values

pageNumber Description
0x0000 This page is reserved by the Network for the purpose of

configuring Network specific options on a User device.
The field types and actual values in this page are
determined by the particular Network.

0x0001 This page is reserved by ISO/IEC 13818-6 for the
purpose of configuring the client-specific DSM-CC
parameters. See Table [Page1]

0x0001-0x7fff ISO/IEC 13818-6 Reserved.
0x8000-0xffff User defined pages.

The following table defines the content of Page 1:

Table 9 DSM-CC Page 1 definition

Syntax Num. of Bytes
tCSesCnf 4
tCRelCnf 4
tCDownloadInfoReq 4

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

15

The fields in the table above are defined in Table[timers].

Each Client device which uses the DSM-CC U-N protocol must have a unique Physical Address (PA)
associated with it. The Physical Address is a 6 byte value assigned to the Client device at the time of
manufacture. This address must be unique to all devices which access a Network. In order to assure
uniqueness, this address should be assigned from a block of physical MAC addresses which are assigned to
the manufacturer by the IEEE.

The U-N Configuration messages are assumed to be part of a larger protocol suite which may include U-N
Primitives, U-U Primitives and U-U Configuration. The U-N Configuration messages use the DSM-CC
message header defined on Page Error! Bookmark not defined. of this document. For U-N Configuration
messages, the dsmccType shall be 0x01 which identifies the message as an MPEG-2 DSM-CC User-to-
Network configuration message.

3.1 UNConfigRequest message definition
This message is sent from a User to the Network at initialization to request that the network assign the User
a network address and any network specific information. Table 10 defines the syntax of the
UNConfigRequest message.

Table 10 DSM-CC UNConfigRequest message

Syntax Num. of Bytes
UNConfigRequest(){

deviceId 6
deviceType 2
deviceMajorRev 2
deviceMinorRev 2

}

The deviceId field is defined in Table [User-to-Network Message Field Data Types]. It is a globally unique
number which defines a User or Network device. The Network uses this address to configure the User
device.

The deviceType field shall be set to indicate the type of User device requesting the configuration.

The deviceMajorRev field shall be set to indicate the major revision level of the User device.

The deviceMinorRev field shall be set to indicate the minor revision level of the User device.

3.2 UNConfigConfirm message definition
This message is sent from the Network to the User in response to a UNConfigRequest message. Table 11
defines the syntax of the UNConfigConfirm message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

16

Table 11 DSM-CC UNConfigConfirm message

Syntax Num. of Bytes
UNConfigConfirm(){

reason 2
deviceId 6
clientId 20
networkId 20
pageCount 2
for(i=0;i<pageCount;i++) {

pageNumber
pageLength
for(i=0;i<pageLength;i++) {

pageDataByte
}

}

2
2

1

}

The response field shall be set by the Network to indicate the status of the config request. Codes for this
field are defined in Table [User-to-Network Reason Codes].

The deviceId field is defined in Table [User-to-Network Message Field Data Types]. It is a globally unique
number which defines a User or Network device.

The clientId field is defined in Table [User-to-Network Message Field Data Types]. It is a globally unique
OSI NSAP address which identifies a Client.

The networkId is defined in Table [User-to-Network Message Field Data Types.]. It is a globally unique
OSI NSAP address which is used to send subsequent User-to-Network messages.

The pageCount field shall be set to indicate the number of pages of data which are included in the message.

The pageNumber field shall be set to indicate the number of the page which follows. The content of this
page is determined by the type of User which is indicated in the deviceId, deviceType, deviceMajorRev and
deviceMinorRev fields.

The pageLength field shall be set to indicate the number of bytes of page data for this page.

The pageDataByte field shall be set to contain the data which makes up the page. There shall be exactly
pageLength of pageDataBytes included in the message.

Note that the pageCount and pageLength fields could allow a large amount of data to be downloaded in
this message. However, this message is delivered using the same mechanism as all User-to-Network
messages which may have size constraints. If a large amount of data must be downloaded to the client, the
Download mechanism defined in [Download Section] should be used.

3.3 UNConfigIndication message definition
This message is sent from the Network to the User to reconfigure a User device. Table 12 defines the syntax
of the UNConfigIndication message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

17

Table 12 DSM-CC UNConfigIndication message

Syntax Num. of Bytes
UNConfigIndication(){

response 2
deviceId 6
clientId 20
networkId 20
pageCount 2
for(i=0;i<pageCount;i++) {

pageNumber
pageLength
for(i=0;i<pageLength;i++) {

pageDataByte
}

}

2
2

1

}

The response field shall be set by the Network to indicate the status of the config request. Codes for this
field are defined in Table [User-to-Network Reason Codes].

The deviceId field is defined in Table [User-to-Network Message Field Data Types]. It is a globally unique
number which defines a User or Network device.

The clientId field is defined in Table [User-to-Network Message Field Data Types]. It is a globally unique
OSI NSAP address which identifies a Client

The networkId field is defined in Table [User-to-Network Message Field Data Types]. It is a globally
unique OSI NSAP address used for subsequent User-to-Network messages.

The pageCount field shall be set to indicate the number of pages of data which are included in the message.

The pageNumber field shall be set to indicate the number of the page which follows. The content of this
page is determined by the type of User which is indicated in the deviceId, deviceType, deviceMajorRev and
deviceMinorRev fields.

The pageLength field shall be set to indicate the number of bytes of page data for this page.

The pageDataByte field shall be set to contain the data which makes up the page. There shall be exactly
pageLength of pageDataBytes included in the message.

3.4 UNConfigResponse message definition
This message is sent from the User to the Network in response to a UNConfigIndication message. Table 13
defines the syntax of the UNConfigResponse message.

Table 13 DSM-CC UNConfigResponse message

Syntax Num. of Bytes
UNConfigResponse(){

response 2
}

The response field shall be set to indicate the Users response to the UNConfigIndication message. Codes
for this field are defined in Table [User-to-Network Reason Codes].

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

18

3.5 UNPageRequest message definition
This message is sent from a User to the Network at initialization to request that the network send a specific
page or pages of configuration data. Table 14 defines the syntax of the UNPageRequest message.

Table 14 DSM-CC UNPageRequest message

Syntax Num. of Bytes
UNPageRequest(){

deviceId 6
deviceType 2
deviceMajorRev 2
deviceMinorRev 2
pageCount 2
for(i=0;i<pageCount;i++) {

pageNumber
}

2

}

The deviceId field is defined in Table [User-to-Network Message Field Data Types]. It is a globally unique
number which defines a User or Network device.

The deviceType field shall be set to indicate the type of User device requesting the configuration pages.

The deviceMajorRev field shall be set to indicate the major revision level of the User device.

The deviceMinorRev field shall be set to indicate the minor revision level of the User device.

The pageCount and pageNumber fields shall be set to indicate the number of pages of configuration data
being requested and the page number of each page being requested.

3.6 UNPageConfirm message definition
This message is sent from the Network to the User in response to a UNPageRequest message. Table 15
defines the syntax of the UNPageConfirm message.

Table 15 DSM-CC UNPageConfirm message

Syntax Num. of Bytes
UNPageConfirm(){

response 2
deviceId 6
pageCount 2
for(i=0;i<pageCount;i++) {

pageNumber
pageLength
for(i=0;i<pageLength;i++) {

pageDataByte
}

}

2
2

1

}

The response field shall be set by the Network to indicate the status of the config request. Codes for this
field are defined in Table [User-to-Network Reason Codes].

The deviceId field is defined in Table [User-to-Network Message Field Data Types]. It is a globally unique
number which defines a User or Network device.

The pageCount field shall be set to indicate the number of pages of data which are included in the message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

19

The pageNumber field shall be set to indicate the number of the page which follows. The content of this
page is determined by the type of User which is indicated in the deviceId, deviceType, deviceMajorRev and
deviceMinorRev fields.

The pageLength field shall be set to indicate the number of bytes of page data for this page.

The pageDataByte field shall be set to contain the data which makes up the page. There shall be exactly
pageLength of pageDataBytes included in the message.

3.7 UNPageIndication message definition
This message is sent from the Network to the User to update a page or pages of configuration data on a User
device. Table 16 defines the syntax of the UNPageIndication message.

Table 16 DSM-CC UNPageIndication message

Syntax Num. of Bytes
UNPageIndication(){

response 2
deviceType 6
deviceMajorRev 2
deviceMinorRev 2
pageCount 2
for(i=0;i<pageCount;i++) {

pageNumber
pageLength
for(i=0;i<pageLength;i++) {

pageDataByte
}

}

2
2

1

}

The response field shall be set by the Network to indicate the status of the config request. Codes for this
field are defined in Table [User-to-Network Reason Codes].

The deviceId field shall be set to indicate the User device the configuration pages are for.

The deviceType field shall be set to indicate the type of User device the configuration pages are for.

The deviceMajorRev field shall be set to indicate the major revision level of the User device.

The deviceMinorRev field shall be set to indicate the minor revision level of the User device.

The pageCount field shall be set to indicate the number of pages of data which are included in the message.

The pageNumber field shall be set to indicate the number of the page which follows. The content of this
page is determined by the type of User which is indicated in the deviceId, deviceType, deviceMajorRev and
deviceMinorRev fields.

The pageLength field shall be set to indicate the number of bytes of page data for this page.

The pageDataByte field shall be set to contain the data which makes up the page. There shall be exactly
pageLength of pageDataBytes included in the message.

3.8 UNPageResponse message definition
This message is sent from the User to the Network in response to a UNPageIndication message. Table 17
defines the syntax of the UNPageResponse message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

20

Table 17 DSM-CC UNPageResponse message

Syntax Num. of Bytes
UNPageResponse(){

response 2
}

The response field shall be set to indicate the Users response to the UNPageIndication message. Codes for
this field are defined in Table [User-to-Network Reason Codes].

3.9 User Initiated UNConfigRequest message Sequence
When a User device initializes, it sends a UNConfigRequest message to the Network. At the time of
initialization, the User device does not know the address of the Network device so it must broadcast the
request over the network using the broadcast mechanism provided by the Network.

When the Network device which processes U-N Configuration messages receives a configuration request
from a Client device, it first validates the Client device to ensure that the device is authorized to operate on
the Network. This validation may be done locally at the Network device or the Network device may use
external directory services to obtain authorization and configuration information about the User device.
After the Network device validates the User device, it assigns the device a network address that other
devices on the network will use to communicate with the User device. This address may be assigned by the
Network device or by the external directory service.

Figure 4 illustrates the sequence of events that occur for a Client device to request its address and
configuration information from the Network using the User-to-Network bootstrap protocol. The Network
optionally uses the external directory service to obtain address, configuration and authentication
information about the User device.

User Network External Service

UNConfigRequest

External Query

External Response

UNConfigConfirm

1
2

3

4

5

Figure 4 Sequence of events for Client initiated UNConfigRequest

Step 1 (User)

At configuration-time, the User device sends a UNConfRequest message over the network using the
broadcast mechanism of the network. The messageId contains the code for a UNConfigRequest message
and the deviceId field contains the factory assigned address of the Client device. The message also contains
the deviceType, deviceMajorRev, and deviceMinorRev values.

Step 2 (Network)

The Network device that is responsible for configuring the User devices receives the message and
determines if the User device is authorized to operate on the network. If the User device is not authorized,
the Network device sends a UNConfigConfirm message addressed to the deviceId of the User device but
containing a clientId and networkId of all zeros which indicates to the User device that it cannot connect to
the network.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

21

Step 3 (optional external directory service)

The Network may request configuration information for the device from an external directory service which
is outside the scope of this specification.

Step 4 (Network)

If the User device is authorized to operate on the network, the Network device assigns the User device a
network address and sends a UNConfigConfirm message addressed to the deviceId of the User device
which contains the assigned address of the User device and the networkId of the Network device that will
handle subsequent communications between the User device and the Network.

Step 5 (User)

When the User device receives the UNConfigConfirm message, it first checks the clientId field to determine
if it has been assigned a network address. If this field is set to all 0’s, the client shall not continue
communicating on the Network. The User may however retry the UNConfigRequest message.

3.10 Network Initiated UNConfigIndication message Sequence
The Network may initiate a U-N Configuration by issuing a UNConfigIndication message which may be
addressed to either the specific deviceId or broadcast to a group of Users using the broadcast mechanism of
the Network. Only a specifically addressed message may be used to change the clientId of the Client device.
A broadcast message may be used to change the networkId but, if a broadcast message contains a networkId
of all zeros, the networkId at the User is not changed. These messages may be used to change the address of
a User or to signal the User that the Network address has changed.

Figure 5 illustrates the sequence of events that occur during a Network initiated U-N configuration
sequence. The Network optionally uses an external directory service to obtain address, configuration and
authentication information about the User devices.

User Network External Service

UNConfigIndication

External Query

External Response

UNConfigConfirm

1 2

34

5

Figure 5 Sequence of events for Network initiated UNConfigRequest

Step 1 (optional external directory service)

The Network may request configuration information for the device from an external directory service which
is outside the scope of this specification.

Step 2 (optional external directory service)

The external directory service sends a response to the Network which contains configuration information
about the User device.

Step 3 (Network)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

22

The Network issues a UNConfigIndication message to a User or group of Users. This message contains new
configuration parameters which were obtained locally at the Network or optionally via an external directory
service.

Step 4 (User)

The User updates its configuration parameters using the data received in the UNConfigIndication message.
The User then sends a UNConfigResponse message to the Network indicating that it received the message.

Step 5 (Network)

When the Network device receives the UNConfigResponse message, the sequence is terminated.

3.11 User Initiated UNPageRequest message Sequence
The User device may request a specific page of configuration data anytime after it has successfully booted
from the network. To do this it sends a UN Configuration Request message over the network using the
address of the Network device.

 The messageId contains the code for a Network Page Request message. The deviceId field contains the
factory assigned address of the Client device. The deviceType, deviceMajorRev, and deviceMinorRev
values are also used. The page number field is set to the user_data page that is being requested. If the page
number field is all ones, all pages which apply to the deviceType, deviceMajorRev, and deviceMinorRev
are sent sequentially to the Client device.

After a User device has been configured, it may request one or more pages of configuration data for its
particular device type. Figure 6 shows the sequence of events that occur for a Client device to request a
specific page of data.

User Network External Service

UNPageRequest

External Query

External Response

UNPageConfirm

(May be repeated for each page)

1 2

3

4

5

Figure 6. Sequence of events for Client initiated UNPageRequest

3.12 Network Initiated UNPageIndication message Sequence
The Network may send one or more pages of configuration data to a configured User device or it may
broadcast the pages to a group of User devices. Figure 7 shows the sequence of events that occur when the
Network sends unsolicited pages of data to User devices.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

23

User Network External Service

External Query

External Response

UNPageIndication

UNPageResponse

2

1

3

4

Figure 7. Sequence of events for Network initiated page indication

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

24

4. User-to-Network Messages

4.1 Overview and the General Message Format
[Although in principle a mechanism exists to deliver userData from U-N Client and Server SessionSetup
messages to the appropriate User entity, the exact nature of this mechanism is not currently defined. Also,
there may be different users of the userData (e.g. U-U entities, Download) and this use must be
coordinated.]

[The current Network model and resource scenarios assume that the Server knows the resources required
for a session and will make all of the Resource Add/Delete Requests. Further investigation will determine
the need for Resource Add/Delete Request Scenarios from the Client or how a mixed environment of
resource assignment/ownership would work. These capabilities are subjects for further study.]

[Note: Command sequences for ClientClearIndication and ServerClearIndication are tbd.]

The User-to-Network (U-N) messages are assumed to be part of a larger protocol stack. The U-N messages
are designed to be carried on top of various protocols (e.g., UDP/IP, TCP/IP, or none). Constraints on
specific lower level protocols are given in section [Transport].

This section describes the format of all User-to-Network Messages including Network-to-Client and
Network-to-Server messages. Subsequent sections describe how these messages are used in the operation of
Network. User-to-Network messages are used to establish a session (and connections, as resources of the
session) between a Client and a Server. Network assigned resources are described by resource descriptors,
each of which consist of resource data elements.

The syntax has been designed to be extensible. Additional messages, resource descriptors used within those
messages, and resource data elements which make up those resource descriptors may all be defined.

In general, Request messages are generated when the Server or Client initiates a message sequence. The
Network responds to a Request message with a Confirm message. Messages which are sent asynchronously
to the Server or Client from the Network are Indication messages. The Client and Server respond to an
Indication message with a Response message.

Most of the control messages in this document use a request/response mechanism. When a Network, Client
or Server issues a request message, the destination device issues a definite response to the request.

All messages between the Network and Users have a common message format. Table 18 defines the User-
to-Network message format.

Table 18 General Format of DSM-CC User-Network Message

Syntax Num. of Bytes
userNetworkMessagePacket() {

DSMCCMessageHeader()
MessagePayload()

}

The userNetworkMessagePacket is the general message format header defined in section ([DSM-CC
Message Header]).

The MessagePayload differs depending on the function of the particular message; however, all
MessagePayload fields are constructed from resource descriptors (see section [Resource Descriptors]) and
data fields (see section [User-to-Network Message Field Data Types]).

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

25

4.2 Session Messages
This section defines the User-to-Network messages. Each message is identified by a specific messageId
which is encoded to indicate the class and direction of the message. Table 19 defines the encoding of the
messageId fields used in User-to-Network messages:

Table 19 Encoding of DSM-CC User-to-Network messageid

Bit Value Description

14-15 messageDiscriminator.

2-13 messageScenario

0-1 messageType

The messageDiscriminator field is used to indicate if the message flow is between the Network and the
Client or between the Network and the Server. Table 20 defines the possible values for the
messageDiscriminator field.

Table 20 messageDiscriminator field values

messageDiscriminator Message Flow

0x00 ISO/IEC 13818-6 Reserved.

0x01 Client and Network

0x02 Server and Network

0x03 ISO/IEC 138181-6 Reserved.

The messageScenario field is used to indicate the message sequence that the message is in. Table 21
defines the possible values for the messageScenario field.

[The following table may be removed -- is the information redundant with the messageId field in the U-N
Messages table?]

Table 21 messageScenario field values

messageScenario Description

0x000 ISO/IEC 13818-6 Reserved.

0x001 SessionSetUp

0x002 SessionRelease

0x003 AddResource

0x004 DeleteResource

0x005 PassThruMessage

0x006 StatusMessage

0x007 Clear

0x008 Proceeding

0x009 Connect

0x00a-7ff ISO/IEC 138181-6 Reserved.

0x800-0xfff User Defined Message Scenario

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

26

The messageType field is used to indicate the directionality of the message. Table 22 defines the possible
values for the messageScenario field.

Table 22 messageType field values

messageType Description

0x0 Request Message. This indicates that the message is
being sent from the user to the Network to begin a
scenario.

0x1 Confirm Message. This indicates that the message is
being sent from the Network to the User in response to
a Request message.

0x2 Indication Message. This indicates that the message is
being sent from the Network to the User.

0x3 Response Message. This indicates that the message is
being sent from the User to the Network in response to
an Indication Message.

Table 23 defines the messageIds which are used in the DSM-CC User-to-Network messages.

Table 23 MPEG-2 DSM-CC U-N Messages

Command messageId messageId Command

ISO/IEC 13818-6 reserved. 0x0000-
0x400f

0x8000-
0x800f

ISO/IEC 13818-6 reserved.

ClientSessionSetUpRequest 0x4010 0x8010 ServerSessionSetUpRequest

ClientSessionSetUpConfirm 0x4011 0x8011 ServerSessionSetUpConfirm

ClientSessionSetUpIndication 0x4012 0x8012 ServerSessionSetUpIndication

ClientSessionSetUpResponse 0x4013 0x8013 ServerSessionSetUpResponse

ISO/IEC 13818-6 reserved 0x4014-
0x401f

0x8014-
0x801f

ISO/IEC 13818-6 reserved

ClientReleaseRequest 0x4020 0x8020 ServerReleaseRequest

ClientReleaseConfirm 0x4021 0x8021 ServerReleaseConfirm

ClientReleaseIndication 0x4022 0x8022 ServerReleaseIndication

ClientReleaseResponse 0x4023 0x8023 ServerReleaseResponse

ISO/IEC 13818-6 reserved 0x4024-
0x402f

0x8024-
0x802f

ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4030 0x8030 ServerAddResourceRequest

ISO/IEC 13818-6 reserved 0x4031 0x8031 ServerAddResourceConfirm

ClientAddResourceIndication 0x4032 0x8032 ISO/IEC 13818-6 reserved

ClientAddResourceResponse 0x4033 0x8033 ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4034-
0x403f

0x8034-
0x803f

ISO/IEC 13818-6 reserved

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

27

Command messageId messageId Command

ISO/IEC 13818-6 reserved 0x4040 0x8040 ServerDeleteResourceRequest

ISO/IEC 13818-6 reserved 0x4041 0x8041 ServerDeleteResourceConfirm

ClientDeleteResourceIndication 0x4042 0x8042 ISO/IEC 13818-6 reserved

ClientDeleteResourceResponse 0x4043 0x8043 ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4044-
0x404f

0x8044-
0x804f

ISO/IEC 13818-6 reserved

ClientPassThruRequest 0x4050 0x8050 ServerPassThruRequest

ISO/IEC 13818-6 reserved 0x4051 0x8051 ISO/IEC 13818-6 reserved

ClientPassThruIndication 0x4052 0x8052 ServerPassThruIndication

ISO/IEC 13818-6 reserved 0x4053 0x8053 ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4054-
0x405f

0x8054-
0x805f

ISO/IEC 13818-6 reserved

ClientStatusRequest 0x4060 0x8060 ServerStatusRequest

ClientStatusConfirm 0x4061 0x8061 ServerStatusConfirm

ClientStatusIndication 0x4062 0x8062 ServerStatusIndication

ClientStatusResponse 0x4063 0x8063 ServerStatusResponse

ISO/IEC 13818-6 reserved 0x4064-
0x406f

0x8064-
0x806f

ISO/IEC 13818-6 reserved

ClientClearRequest 0x4070 0x8070 ServerClearRequest

ISO/IEC 13818-6 reserved 0x4071 0x8071 ISO/IEC 13818-6 reserved

ClientClearIndication 0x4072 0x8072 ServerClearIndication

ISO/IEC 13818-6 reserved 0x4073 0x8073 ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4074-
0x407f

0x8074-
0x807f

ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4080 0x8080 ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4081 0x8081 ISO/IEC 13818-6 reserved

ClientProceedingIndication 0x4082 0x8082 ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4083 0x8083 ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4084-
0x408f

0x8084-
0x808f

ISO/IEC 13818-6 reserved

ClientConnectRequest 0x4090 0x8090 ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4091 0x8091 ISO/IEC 13818-6 reserved

ISO/IEC 13818-6 reserved 0x4092 0x8092 ServerConnectIndication

ISO/IEC 13818-6 reserved 0x4093 0x8093 ISO/IEC 13818-6 reserved

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

28

Command messageId messageId Command

ISO/IEC 13818-6 reserved 0x4094-

0x5fff

0x8094 -
0x9fff

ISO/IEC 13818-6 reserved

User defineable message ids 0x6000-

0x7fff

0xa000 -
0xffff

User defineable message ids

[Note: Command sequences for ClientClearIndication and ServerClearIndication are tbd.]

4.2.1 ClientSessionSetUpRequest message definition
This message is sent from a Client to the Network to request that a session be established with the requested
serverId. The Network responds with a ClientSessionSetUpConfirm message. Before sending the
ClientSessionSetUpConfirm message, the Network may send 0 or more ClientSessionProceedingIndication
messages. Table 24 defines the syntax of the ClientSessionSetUpRequest message.

Table 24 DSM-CC U-N ClientSessionSetUpRequest message

Syntax Num. of Bytes
ClientSessionSetUpRequest(){

sessionId 10
clientId 20
serverId 20
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

If the Network configuration indicates that the User (the originator of the command sequence) is
responsible for generating the sessionId, the sessionId field shall be generated by the Client and be unique
within the domain of the Network. If the Network configuration indicates that the Network is responsible
for generating the sessionId, the sessionId field shall be set to 0 and the Network shall assign the sessionId
in the ClientSessionSetUpConfirm message. The Network shall use the identical sessionId in all messages
sent to the Client which refer to this session and the Client shall use the identical sessionId in all messages
sent which refer to this session.

The clientId field shall be set by the Client and shall contain a value which uniquely identifies the the
Client within the domain of the Network.

The serverId field shall be set by the Client and shall contain a value which uniquely identifies the Server
with which the Client is establishing a session.

The userDataCount field specifies the number of userDataBytes that follow. The Client shall set the
userDataCount to the number of userDataBytes that are included in the message. The userDataCount field
shall be a value between 0 and 0x0400.

The userDataByte field is used to transport data transparently from the Client to the Server. When the
Network sends the ServerSessionSetUpIndication message to the Server, the userDataByte field in the
message shall be identical to the user data in the ClientSessionSetUpRequest message.

4.2.2 ClientSessionSetUpConfirm message definition
This message is sent from the Network to a Client in response to a ClientSessionRequest message. Table 25
defines the syntax of the ClientSessionSetUpConfirm message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

29

Table 25 DSM-CC U-N ClientSessionSetUpConfirm message

Syntax Num. of Bytes
ClientSessionSetUpConfirm(){

sessionId 10
response 2
resourceCount 2
for(i=0;i<resourceCount;i++) {

resourceDescriptor()
}
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

If the Network configuration indicates that the User is responsible for assigning the sessionId, the Network
shall set the sessionId field to the exact value of the sessionId which was received in the
ClientSessionSetUpRequest message. If the Network configuration indicates that the Network is responsible
for assigning the sessionId, the sessionId field shall be set to a unique value which identifies the session in
the Network if the response field indicates that the session set-up request succeeded.

The response field shall be set by the Network to indicate the status of the session request. If this field is set
to rspOK, this is an indication to the Client that the requested service has been established.

resourceCount and resourceDescriptor fields define the downstream and upstream resources which are
assigned to the Client for this session. The resourceDescriptor fields shall be assigned by the Network. The
number and type of resource descriptors that are passed depend on the User application and the type of
service being requested. For all Client resources the requestType shall be non-negotiable.

The userDataCount field specifies the number of userDataBytes that follow. The Network shall set the
userDataCount to the number of userDataBytes that are included in the message. The userDataCount field
shall be a value between 0 and 0x0400.

The userDataByte field is used to transport data transparently from the Client to the Server. When the
Network sends the ServerSessionSetUpIndication message to the Server, the userDataByte field in the
message shall be identical to the user data in the ClientSessionSetUpRequest message.

4.2.3 ClientSessionSetUpIndication message definition
This message is sent from the Network to a Client to establish a session which was requested by the Server.
Table 9 defines the syntax of the ClientSessionSetUpIndication message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

30

Table 26 DSM-CC U-N ClientSessionSetUpIndication message

Syntax Num. of Bytes
ClientSessionSetUpIndication(){

sessionId 10
clientId 20
serverId 20
resourceCount 2
for(i=0;i<resourceCount;i++) {

resourceDescriptor()
}
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

If the Network configuration indicates that the User is responsible for assigning the sessionId, the Network
shall set the sessionId field to the exact value of the sessionId which was received in the
ServerSessionSetUpRequest message. If the Network configuration indicates that the Network is
responsible for assigning the sessionId, the sessionId field shall be set to a unique value which identifies the
session in the Network. The Client shall use this sessionId to identify this session in future messages.

The clientId field shall be set by the Network to the value of the clientId field which was received in the
ServerSessionSetUpRequest message when the session was initially requested.

The serverId field shall be set by the Network to the value of the serverId field which was received in the
ServerSessionSetUpRequest message when the session was initially requested. The Client shall use this
field to identify the server which requested the session.

resourceCount and resourceDescriptor fields define the downstream and upstream resources which are
assigned to the Client for this session. The resourceDescriptor fields shall be assigned by the Network. The
number and type of resource descriptors that are passed depend on the User application and the type of
service being requested.

userDataCount and userDataByte fields shall be set by the Network to be identical to the values of the
same fields received in the ServerSessionSetUpRequest message. The userDataCount field shall be a value
between 0x0 and 0x0400. The value of the userDataByte field is not restricted to content but, the length of
this field shall be the length specified by the userDataCount field.

4.2.4 ClientSessionSetUpResponse message definition
This message is sent from a Client to the Network in response to a ClientSessionSetUpIndication message.
Table 27 defines the syntax of the ClientSessionSetUpResponse message.

Table 27 DSM-CC U-N ClientSessionSetUpResponse message

Syntax Num. of Bytes
ClientSessionSetUpResponse(){

sessionId 10
response 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set to the value of the sessionId field received in the
ClientSessionSetUpIndication message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

31

The response field shall be set by the Client to a value which indicates the Client’s response to the
ClientSessionSetUpIndication message.

userDataCount and userDataByte fields shall be set by the Client to a value which shall be passed by the
Network to the requesting Server in the ServerSessionSetUpConfirm message.

4.2.5 ClientReleaseRequest message definition
This message is sent from a Client to the Network to request that a session be torn-down. The Network
responds with a ClientReleaseConfirm message. Before sending the ClientReleaseConfirm message, the
Network shall also tear-down the session between the Network and the Server. Table 28 defines the syntax
of the ClientReleaseRequest message.

Table 28 DSM-CC U-N ClientReleaseRequest message

Syntax Num. of Bytes
ClientReleaseRequest(){

sessionId 10
reason 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Client to the sessionId of the session that the Client is requesting to
be torn-down.

The reason field shall be set by the Client to indicate the reason that the session is being requested to be
torn-down.

The userDataCount and userDataByte fields are used to transport data transparently from the Client to the
Server with the tear-down request. The Client shall set the userDataCount to the number of userDataBytes
that are included in the message. When the Network sends the ServerReleaseIndication message to the
Server, the userDataCount and userDataByte fields in the message shall be identical to those in the
ClientReleaseRequest message. The userDataCount field shall be a value between 0x0 and 0x0400. The
value of the userDataByte field is not restricted to content but, the length of this field shall be the length
specified by the userDataCount field.

4.2.6 ClientReleaseConfirm message definition
This message is sent from the Network to a Client in response to a ClientReleaseRequest message. Table 29
defines the syntax of the ClientReleaseConfirm message.

Table 29 DSM-CC U-N ClientReleaseConfirm message

Syntax Num. of Bytes
ClientReleaseConfirm(){

sessionId 10
response 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network to the value of the sessionId which was received in the
ClientReleaseRequest message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

32

The response field shall be set by the Network to indicate the status of the session tear-down request. If this
field is set to rspOK, this is an indication to the Client that the requested session has been released.

userDataCount and userDataByte fields shall be set by the Network to be identical to the values of the
fields received in the ServerReleaseResponse message. The userDataCount field shall be a value between
0x0 and 0x0400. The value of the userDataBytes field is not restricted to content but, the length of this field
shall be the length specified by the userDataCount field.

4.2.7 ClientReleaseIndication message definition
This message is sent from the Network to a Client initiate a session tear-down. Table 30 defines the syntax
of the ClientReleaseIndication message.

Table 30 DSM-CC U-N ClientReleaseIndication message

Syntax Num. of Bytes
ClientReleaseIndication(){

sessionId 10
reason 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network to the value of the sessionId which is being requested to be
torn-down.

The reason field shall be set by the Network to indicate the reason that the session is being torn-down. If
the tear-down was initiated by the Server, this field shall be identical to the reason field which was received
in the ServerReleaseRequest message.

userDataCount and userDataByte fields shall be set by the Network to be identical to the values of the
same fields received in the ServerReleaseRequest message if the release was initiated by the server. If the
release request was initiated by the Network the userDataCount field shall be set to 0 and no userDataBytes
shall be sent. The userDataCount field shall be a value between 0x0 and 0x0400. The value of the
userDataByte field is not restricted to content but, the length of this field shall be the length specified by the
userDataCount field.

4.2.8 ClientReleaseResponse message definition
This message is sent from a Client to the Network in response to a ClientReleaseIndication message to
indicate the Clients response to the request. Table 31 defines the syntax of the ClientReleaseResponse
message.

Table 31 DSM-CC U-N ClientReleaseResponse message

Syntax Num. of Bytes
ClientReleaseResponse(){

sessionId 10
response 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set to the value of the sessionId field received in the ClientReleaseIndication
message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

33

The response field shall be set by the Client to a value which indicates the Clients response to the
ClientReleaseIndication message.

userDataCount and userDataByte fields shall be set by the Client to values which shall be sent to the
Server in the ServerReleaseConfirm message.

4.2.9 ClientAddResourceIndication message definition
This message is sent from the Network to a Client to indicate that new resources have been added to the
session as requested by the Server. Table 32 defines the syntax of the ClientAddResourceIndication
message.

Table 32 DSM-CC U-N ClientAddResourceIndication message

Syntax Num. of Bytes
ClientAddResourceIndication(){

sessionId 10
resourceCount 2
for(i=0;i<resourceCount;i++) {

resourceDescriptor()
}
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network to the value of the sessionId to which the resources are
being added.

resourceCount and resourceDescriptor fields define any new resources which have been added to the
Client side of the session. The resourceDescriptor fields shall be assigned by the Network. The number and
type of resource descriptors that are passed depend on the User application and the type of service being
requested.

userDataCount and userDataByte fields shall be set by the Network to be identical to the values of the
same fields received in the ServerAddResourceRequest message. The userDataCount field shall be a value
between 0x0 and 0x0400. The value of the userDataByte field is not restricted to content but, the length of
this field shall be the length specified by the userDataCount field.

4.2.10 ClientAddResourceResponse message definition
This message is sent from a Client to the Network in response to a ClientAddResourceIndication message to
indicate the Clients response to the request. Table 33 defines the syntax of the ClientAddResourceResponse
message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

34

Table 33 DSM-CC U-N ClientAddResourceResponse message

Syntax Num. of Bytes
ClientAddResourceResponse(){

sessionId 10
response 2
resourceCount 2
for(i=0;i<resourceCount;i++) {

resourceDescriptor()
}
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set to the value of the sessionId field received in the
ClientAddResourceIndication message.

The response field shall be set by the Client to a value which indicates the Client’s response to the
ClientAddResourceIndication message.

resourceCount and resourceDescriptor fields contain the new resource descriptors which were added by
the Network.

userDataCount and userDataByte fields shall be set by the Client to a value which shall be passed by the
Network to the requesting Server in the ServerAddResourceConfirm message.

4.2.11 ClientDeleteResourceIndication message definition
This message is sent from the Network to a Client to indicate that resources have been deleted from the
session as requested by the Server. Table 31 defines the syntax of the ClientDeleteResourceIndication
message.

Table 34 DSM-CC U-N ClientDeleteResourceIndication message

Syntax Num. of Bytes
ClientDeleteResourceIndication(){

sessionId 10
reason 2
resourceCount 2
for(i=0;i<resourceCount;i++) {

resourceNum
}

2

userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network to the value of the sessionId from which the resources are
being deleted.

The reason field shall be set by the Network to be identical to the reason field received in the
ServerDeleteResourceRequest message.

resourceCount and resourceNum fields define the resources which are being deleted from the Client side
of the session. The sessionId in combination with the resourceNum comprise the resourceId.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

35

userDataCount and userDataByte fields shall be set by the Network to be identical to the values of the
same fields received in the ServerDeleteResourceRequest message. The userDataCount field shall be a
value between 0x0 and 0x0400. The value of the userDataByte field is not restricted to content, but the
length of this field shall be the length specified by the userDataCount field.

4.2.12 ClientDeleteResourceResponse message definition
This message is sent from a Client to the Network in response to a ClientDeleteResourceIndication message
to indicate the Client’s response to the request. Table 35 defines the syntax of the
ClientDeleteResourceResponse message.

Table 35 DSM-CC U-N ClientDeleteResourceResponse message

Syntax Num. of Bytes
ClientDeleteResourceResponse(){

sessionId 10
response 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set to the value of the sessionId field received in the
ClientDeleteResourceIndication message.

The response field shall be set by the Client to a value which indicates the Client’s response to the
ClientDeleteResourceIndication message.

userDataCount and userDataByte fields shall be set by the Client to a value which shall be passed by the
Network to the requesting Server in the ServerDeleteResourceConfirm message.

4.2.13 ClientPassThruRequest message definition
This message is sent from a Client to the Network to request that the network deliver a message to the
requested Server. Table 36 defines the syntax of the ClientPassThruRequest message.

Table 36 DSM-CC U-N ClientPassThruRequest message

Syntax Num. of Bytes
ClientPassThruRequest(){

clientId 20
serverId 20
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The clientId field shall be set by the client to indicate the identifier of the Client which is sending the
message.

The serverId field shall be set by the client to indicate the identifier of the Server which the message is
being sent to.

The userDataCount and userDataByte fields are used to transport the message to the indicated serverId.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

36

4.2.14 ClientPassThruIndication message definition
This message is sent from the Network to a Client to deliver a message from the indicated Server. Table 37
defines the syntax of the ClientPassThruIndication message.

Table 37 DSM-CC U-N ClientPassThruIndication message

Syntax Num. of Bytes
ClientPassThruIndication(){

clientId 20
serverId 20
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The clientId field shall be set by the Network to indicate the identifier of the Client to which the message
was sent.

The serverId field shall be set by the Network to indicate the identifier of the Server which sent the
message.

The userDataCount and userDataByte fields are used to transport the message from the indicated
serverId.

4.2.15 ClientStatusRequest message definition
This message is sent from a Client to the Network to request a status message. Table 38 defines the syntax
of the ClientStatusRequest message.

Table 38 DSM-CC U-N ClientStatusRequest message

Syntax Num. of Bytes
ClientStatusRequest(){

statusType 2
statusCount 2
for(i=0;i<statusCount;i++) {

statusByte
}

1

}

The statusType field shall be set by the client to indicate the type of status being requested.

The statusCount and statusByte fields are used to transport any data which is required to indicate
additional information about the status being requested.

4.2.16 ClientStatusConfirm message definition
This message is sent from the Network to a Client in response to a ClientStatusRequest message. Table 39
defines the syntax of the ClientStatusConfirm message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

37

Table 39 DSM-CC U-N ClientStatusConfirm message

Syntax Num. of Bytes
ClientStatusConfirm(){

statusType 2
statusCount 2
for(i=0;i<statusCount;i++) {

statusByte
}

1

}

The statusType field shall be set by the Network to indicate the type of status being returned.

statusCount and statusByte fields shall be set by the Network to contain the status information indicated
by the statusType field.

4.2.17 ClientStatusIndication message definition
This message is sent from the Network to a Client to request a status message from the Client. Table 40
defines the syntax of the ClientStatusIndication message.

Table 40 DSM-CC U-N ClientStatusIndication message

Syntax Num. of Bytes
ClientStatusIndication(){

statusType 2
statusCount 2
for(i=0;i<statusCount;i++) {

statusByte
}

1

}

The statusType field shall be set by the Network to indicate the type of status being requested.

The statusCount and statusByte fields are used to transport any additional data which is required to
indicate additional information about the status being requested..

4.2.18 ClientStatusResponse message definition
This message is sent from a Client to the Network in response to a ClientStatusIndication message to
indicate the Clients response to the request. Table 41 defines the syntax of the ClientStatusResponse
message.

Table 41 DSM-CC U-N ClientStatusResponse message

Syntax Num. of Bytes
ClientStatusResponse(){

statusType 2
statusCount 2
for(i=0;i<statusCount;i++) {

statusByte
}

1

}

The statusType field shall be set by the Network to indicate the type of status being returned.

statusCount and statusByte fields shall be set by the Network to contain the status information indicated
by the statusType field.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

38

4.2.19 ClientSessionClearRequest message definition
This message is sent from a Client to the Network to unconditionally terminate a session at the Network.
The Network shall also send a ServerSessionClearIndication to the Server upon receiving this message.
Table 42 defines the syntax of the ClientSessionClearRequest message.

Table 42 DSM-CC U-N ClientSessionClearRequest message

Syntax Num. of Bytes
ClientSessionClearRequest(){

sessionId 10
reason 2

}

The sessionId field shall be set by the client to indicate the session which is being cleared.

The reason field is used to indicate the reason that the session is being cleared.

4.2.20 ClientSessionClearIndication message definition
This message is sent from the Network to a Client to unconditionally terminate a session on the Client.
Table 43 defines the syntax of the ClientSessionClearIndication message.

Table 43 DSM-CC U-N ClientSessionClearIndication message

Syntax Num. of Bytes
ClientSessionClearIndication(){

sessionId 10
reason 2

}

The sessionId field shall be set by the Network to indicate the session which is being cleared.

The reason shall be set by the Network to indicate the reason that the session is being cleared.

4.2.21 ClientSessionProceedingIndication message definition
This message is sent from the Network to a Client in response to a ClientSessionSetUpRequest message to
inform the client that the request is being processed. The Network may send this message 0 or more times
before sending the ClientSessionSetUpConfirm message. The Client shall reset timer Error! Reference
source not found. to its initial value upon receipt of this message. Table 44 defines the syntax of the
ClientSessionProceedingIndication message.

Table 44 DSM-CC U-N ClientSessionProceedingIndication message

Syntax Num. of Bytes
ClientSessionProceedingIndication(){

reason 2
}

The reason field shall be set by the Network to indicate the reason that the ClientSessionProceeding
message is being sent.

4.2.22 ClientConnectRequest message definition
This is an optional message which is sent from a Client to the Network to signal the network that the Client
has connected to a session and is ready to proceed with User-to-User messages. Table 45 defines the syntax
of the ClientConnectRequest message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

39

Table 45 DSM-CC U-N ClientConnectRequest message

Syntax Num. of Bytes
ClientConnectRequest(){

sessionId 10
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Client to indicate the session which has been connected.

The userDataCount and userDataByte fields are used to transport data transparently from the Client to the
Server with the connect indication. The userDataCount field shall be a value between 0x0 and 0x0400. The
value of the userDataByte field is not restricted to content but, the length of this field shall be the length
specified by the userDataCount field.

4.2.23 ServerSessionSetUpRequest message definition
This message is sent from a Server to the Network to request that a session be established with the
requested clientId. The Network responds with a ServerSessionSetUpConfirm message. Table 46 defines
the syntax of the ServerSessionSetUpRequest message.

Table 46 DSM-CC U-N ServerSessionSetUpRequest message

Syntax Num. of Bytes
ServerSessionSetUpRequest(){

sessionId 10
serverId 20
clientId 20
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Server and be unique within the domain of the Network if the
Network configuration indicates that the User is responsible for generating the sessionId. The Network shall
use the identical sessionId in all messages sent to the Server which refer to this session and the Server shall
use the identical sessionId in all messages sent which refer to this session. If the Network configuration
indicates that the Network is responsible for generating the sessionId, this field shall be set to 0 and the
Network shall assign the sessionId in the ServerSessionSetUpConfirm message.

The serverId field shall be set by the Server and uniquely identify the Server within the domain of the
Network.

The clientId field shall be set by the Server and uniquely identify the client with which the Server is
requesting a session be established.

The userDataCount and userDataByte fields are used to transport data transparently from the Server to
the Client with the set-up request. The Server shall set the userDataCount to the number of userDataBytes
that are included in the message. When the Network sends the ClientSessionSetUpIndication message to the
Client, the userDataCount and userDataByte fields in the message shall be identical to those in the
ServerSessionSetUpRequest message. The userDataCount field shall be a value between 0x0 and 0x0400.
The value of the userDataByte field is not restricted to content but, the length of this field shall be the length
specified by the userDataCount field.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

40

4.2.24 ServerSessionSetUpConfirm message definition
This message is sent from the Network to a Server in response to a ServerSessionSetUpRequest message.
Table 47 defines the syntax of the ServerSessionSetUpConfirm message.

Table 47 DSM-CC U-N ServerSessionSetUpConfirm message

Syntax Num. of Bytes
ServerSessionSetUpConfirm(){

sessionId 10
response 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network. If the Network configuration indicates that the User is
responsible for assigning the sessionId, this field shall be set to the exact value of the sessionId which was
received in the ServerSessionSetUpRequest message. If the Network configuration indicates that the
Network is responsible for assigning the sessionId, this field shall be set to a unique value which identifies
the session in the Network if the response field indicates that the session set-up request succeeded.

The response field shall be set by the Network to indicate the status of the session request. If this field is set
to rspOK, this is an indication to the Server that the requested service has been established.

userDataCount and userDataByte fields shall be set by the Network to be identical to the values of the
fields received in the ClientResourceResponse message. The userDataCount field shall be a value between
0x0 and 0x0400. The value of the userDataBytes field is not restricted to content but, the length of this field
shall be the length specified by the userDataCount field.

4.2.25 ServerSessionSetUpIndication message definition
This message is sent from the Network to a Server to establish a session which was requested by a Client.
Table 48 defines the syntax of the ServerSessionSetUpIndication message.

Table 48 DSM-CC U-N ServerSessionSetUpIndication message

Syntax Num. of Bytes
ServerSessionSetUpIndication(){

sessionId 10
clientId 20
serverId 20
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

If the Network configuration indicates that the User is responsible for assigning the sessionId, the Network
shall set the sessionId field to the exact value of the sessionId which was received in the
ClientSessionSetUpRequest message. If the Network configuration indicates that the Network is responsible
for assigning the sessionId, the sessionId field shall be set to a unique value which identifies the session in
the Network. The Server shall use this sessionId to identify this session in future messages.

The clientId field shall be set by the Network to the value of the clientId field which was received in the
ClientSessionSetUpRequest message when the session was initially requested. The Server shall use this
field to identify the client which has requested the session.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

41

The serverId field shall be set by the Network to the value of the serverId field which was received in the
ClientSessionSetUpRequest message when the session was initially requested.

userDataCount and userDataByte fields shall be set by the Network to be identical to the values of the
same fields received in the ClientSessionSetUpRequest message. The userDataCount field shall be a value
between 0x0 and 0x0400. The value of the userDataByte field is not restricted to content but, the length of
this field shall be the length specified by the userDataCount field.

4.2.26 ServerSessionSetUpResponse message definition
This message is sent from a Server to the Network in response to a ServerSessionSetUpIndication message.
Table 49 defines the syntax of the ServerSessionSetUpResponse message.

Table 49 DSM-CC U-N ServerSessionSetUpResponse message

Syntax Num. of Bytes
ServerSessionSetUpResponse(){

sessionId 10
response 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set to the value of the sessionId field received in the
ServerSessionSetUpIndication message.

The response field shall be set by the Server to a value which indicates the Server’s response to the
ServerSessionSetUpIndication message.

userDataCount and userDataByte fields shall be set by the Server to a value which shall be passed by the
Network to the requesting Client in the ClientSessionSetUpConfirm message.

4.2.27 ServerConnectIndication message definition
This is an optional message which is sent from a Network to the Server to signal the network that the Client
has connected to a session and is ready to proceed with User-to-User messages. The Network sends this
message upon receipt of the ClientConnectIndication message. Table 50 defines the syntax of the
ServerConnectIndication message.

Table 50 DSM-CC U-N ServerConnectIndication message

Syntax Num. of Bytes
ServerConnectIndication(){

sessionId 10
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network to the sessionId which was received in the
ClientConnectRequest message.

The userDataCount and userDataByte fields are used to transport data transparently from the Client to the
Server with the connect indication. The userDataCount field shall be a value between 0x0 and 0x0400. The
value of the userDataByte field is not restricted to content but, the length of this field shall be the length
specified by the userDataCount field.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

42

4.2.28 ServerReleaseRequest message definition
This message is sent from a Server to the Network to request that a session be torn-down. The Network
responds with a ServerReleaseConfirm message. Before sending the ServerReleaseConfirm message, the
Network shall also tear-down the session between the Network and the Client. Table 51 defines the syntax
of the ServerReleaseRequest message.

Table 51 DSM-CC U-N ServerReleaseRequest message

Syntax Num. of Bytes
ServerReleaseRequest(){

sessionId 10
reason 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Server to the sessionId of the session that the Server is requesting to
be torn-down.

The reason field shall be set by the Server to indicate the reason that the session is being requested to be
torn-down.

The userDataCount field specifies the number of userDataBytes that follow. The Server shall set the
userDataCount to the number of userDataBytes that are included in the message. The userDataCount field
shall be a value between 0 and 0x0400.

The userDataByte field is used to transport data transparently from the Server to the Client. When the
Network sends the ClientSessionSetUpIndication message to the Client, the userDataByte field in the
message shall be identical to the user data in the ServerSessionSetUpRequest message.

4.2.29 ServerReleaseConfirm message definition
This message is sent from the Network to a Server in response to a ServerReleaseRequest message. Table
52 defines the syntax of the ServerReleaseConfirm message.

Table 52 DSM-CC U-N ServerReleaseConfirm message

Syntax Num. of Bytes
ServerReleaseConfirm(){

sessionId 10
response 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network to the value of the sessionId which was received in the
ServerReleaseRequest message.

The response field shall be set by the Network to indicate the status of the session tear-down request. If this
field is set to rspOK, this is an indication to the Server that the requested session has been released.

The userDataCount field specifies the number of userDataBytes that follow. The Network shall set the
userDataCount to the number of userDataBytes that are included in the message. The userDataCount field
shall be a value between 0 and 0x0400.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

43

The userDataByte field is used to transport data transparently from the Server to the Client. When the
Network sends the ClientSessionSetUpIndication message to the Client, the userDataByte field in the
message shall be identical to the user data in the ServerSessionSetUpRequest message.

4.2.30 ServerReleaseIndication message definition
This message is sent from the Network to a Server to initiate a session tear-down which was requested by
the Client. Table 53 defines the syntax of the ServerReleaseIndication message.

Table 53 DSM-CC U-N ServerReleaseIndication message

Syntax Num. of Bytes
ServerReleaseIndication(){

sessionId 10
reason 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network to the value of the sessionId which is being requested to be
torn-down.

The reason field shall be set by the Network to indicate the reason that the session is being torn-down. If
the tear-down was initiated by the Client, this field shall be identical to the reason field which was received
in the ClientReleaseRequest message.

userDataCount and userDataByte fields shall be set by the Network to be identical to the values of the
same fields received in the ClientReleaseRequest message. The userDataCount field shall be a value
between 0x0 and 0x0400. The value of the userDataByte field is not restricted to content but, the length of
this field shall be the length specified by the userDataCount field.

4.2.31 ServerReleaseResponse message definition
This message is sent from a Server to the Network in response to a ServerReleaseIndication message. Table
54 defines the syntax of the ServerReleaseResponse message.

Table 54 DSM-CC U-N ServerReleaseResponse message

Syntax Num. of Bytes
ServerReleaseResponse(){

sessionId 10
response 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set to the value of the sessionId field received in the ServerReleaseIndication
message.

The response field shall be set by the Server to a value which indicates the Server’s response to the
ServerReleaseIndication message.

userDataCount and userDataByte fields shall be set by the Server to values which shall be sent to the
Client in the ClientReleaseConfirm message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

44

4.2.32 ServerAddResourceRequest message definition
This message is sent from a Server to the Network to request that resources be added to a session. The
Network responds with a ServerAddResourceConfirm message. Table 55 defines the syntax of the
ServerAddResourceRequest message.

Table 55 DSM-CC U-N ServerAddResourceRequest message

Syntax Num. of Bytes
ServerAddResourceRequest(){

sessionId 10
resourceCount 2
for(i=0;i<resourceCount;i++) {

resourceDescriptor()
}
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Server to the sessionId of the session to which the resources are
being added.

The resourceCount and resourceDescriptor fields indicate the resources that the server is requesting that
the Network add to the session.

userDataCount and userDataByte fields shall be set by the Server to values which shall be sent to the
Client in the ClientAddResourcesIndication message.

4.2.33 ServerAddResourceConfirm message definition
This message is sent from the Network to a Server in response to a ServerAddResourceRequest message.
Table 56 defines the syntax of the ServerAddResourceConfirm message.

Table 56 DSM-CC U-N ServerAddResourceConfirm message

Syntax Num. of Bytes
ServerAddResourceConfirm(){

sessionId 10
response 2
resourceCount 2
for(i=0;i<resourceCount;i++) {

resourceDescriptor()
}
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network to the value of the sessionId which was received in the
ServerAddResourceRequest message.

The response field shall be set by the Network to indicate the result of the add resource request.

resourceCount and resourceDescriptor fields shall be set by the Network to values which were assigned
to the requested resources.

userDataCount and userDataByte fields shall be set by the Network to the values which were received in
the ClientAddResourceResponse message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

45

4.2.34 ServerDeleteResourceRequest message definition
This message is sent from a Server to the Network to request that resources be deleted from a session. The
Network responds with a ServerDeleteResourceConfirm message. Table 57 defines the syntax of the
ServerDeleteResourceRequest message.

Table 57 DSM-CC U-N ServerDeleteResourceRequest message

Syntax Num. of Bytes
ServerDeleteResourceRequest(){

sessionId 10
reason 2
resourceCount 2
for(i=0;i<resourceCount;i++) {

resourceNum
}

2

userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Server to the sessionId of the session that the resources are being
deleted from.

The reason field shall be set to indicate the reason that the resources are being deleted.

The resourceCount and resourceNum fields indicate the resources that the server is requesting that the
Network delete from the session. The sessionId field in conjunction with the resourceNum field comprise
the resourceId.

The userDataCount and userDataByte fields are used to transport data transparently from the Server to
the Client in the ClientDeleteResourceIndication message. The Server shall set the userDataCount to the
number of userDataBytes that are included in the message. The userDataCount field shall be a value
between 0x0 and 0x0400.

4.2.35 ServerDeleteResourceConfirm message definition
This message is sent from the Network to a Server in response to a ServerDeleteResourceRequest message.
Table 58 defines the syntax of the ServerDeleteResourceConfirm message.

Table 58 DSM-CC U-N ServerDeleteResourceConfirm message

Syntax Num. of Bytes
ServerDeleteResourceConfirm(){

sessionId 10
response 2
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The sessionId field shall be set by the Network to the value of the sessionId which was received in the
ServerDeleteResourceRequest message.

The response field shall be set by the Network to indicate the result of the ServerDeleteResourceRequest
message.

The userDataCount and userDataByte fields shall be set by the Network to the values received in the
ClientDeleteResourceResponse message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

46

4.2.36 ServerPassThruRequest message definition
This message is sent from a Server to the Network to request that the network deliver a message to the
requested User. Table 59 defines the syntax of the ServerPassThruRequest message.

Table 59 DSM-CC U-N ServerPassThruRequest message

Syntax Num. of Bytes
ServerPassThruRequest(){

clientId 20
serverId 20
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The clientId field shall be set by the server to indicate the identifier of the User which the message is being
sent to.

The serverId field shall be set by the server to indicate the identifier of the User which is sending the
message.

The userDataCount and userDataByte fields are used to transport the message to the indicated clientId.
The userDataCount field shall be a value between 0x0 and 0x0400.

4.2.37 ServerPassThruIndication message definition
This message is sent from the Network to a Server to deliver a message from the indicated User. Table 60
defines the syntax of the ServerPassThruIndication message.

Table 60 DSM-CC U-N ServerPassThruIndication message

Syntax Num. of Bytes
ServerPassThruIndication(){

clientId 20
serverId 20
userDataCount 2
for(i=0;i<userDataCount;i++) {

userDataByte
}

1

}

The clientId field shall be set by the Network to indicate the identifier of the User which sent the message.

The serverId field shall be set by the Network to indicate the identifier of the User to which the message
was sent.

The userDataCount and userDataByte fields are used to transport the message from the indicated
serverId. The userDataCount field shall be a value between 0x0 and 0x0400.

4.2.38 ServerStatusRequest message definition
This message is sent from a Server to the Network to request a status message. Table 61 defines the syntax
of the ServerStatusRequest message.

[The association of the request parameter with data returned needs to be defined explicitly.]

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

47

Table 61 DSM-CC U-N ServerStatusRequest message

Syntax Num. of Bytes
ServerStatusRequest(){

statusType 2
statusCount 2
for(i=0;i<statusCount;i++) {

statusByte
}

1

}

The statusType field shall be set by the server to indicate the type of status being requested.

The statusCount and statusByte fields are used to transport any additional data which is required to
indicate additional information about the status being requested.

4.2.39 ServerStatusConfirm message definition
This message is sent from the Network to a Server in response to a ServerStatusRequest message. Table 62
defines the syntax of the ServerStatusConfirm message.

Table 62 DSM-CC U-N ServerStatusConfirm message

Syntax Num. of Bytes
ServerStatusConfirm(){

statusType 2
statusCount 2
for(i=0;i<statusCount;i++) {

statusByte
}

1

}

The statusType field shall be set by the Network to indicate the type of status being returned.

statusCount and statusByte fields shall be set by the Network to contain the status information indicated
by the statusType field.

4.2.40 ServerStatusIndication message definition
This message is sent from the Network to a Server to request a status message from the Server. Table 63
defines the syntax of the ServerStatusIndication message.

Table 63 DSM-CC U-N ServerStatusIndication message

Syntax Num. of Bytes
ServerStatusIndication(){

statusType 2
statusCount 2
for(i=0;i<statusCount;i++) {

statusByte
}

1

}

The statusType field shall be set by the Network to indicate the type of status being requested.

The statusCount and statusByte fields are used to transport any additional data which is required to
indicate additional information about the status being requested.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

48

4.2.41 ServerStatusResponse message definition
This message is sent from a Server to the Network in response to a ServerStatusIndication. Table 64 defines
the syntax of the ServerStatusResponse message.

Table 64 DSM-CC U-N ServerStatusResponse message

Syntax Num. of Bytes
ServerStatusResponse(){

statusType 2
statusCount 2
for(i=0;i<statusCount;i++) {

statusByte
}

1

}

The statusType field shall be set by the Network to indicate the type of status being returned.

statusCount and statusByte fields shall be set by the Network to contain the status information indicated
by the statusType field.

4.2.42 ServerSessionForwardRequest message definition
[To be provided]

4.2.43 ServerSessionTransferRequest message definition
[To be provided]

4.2.44 MPEG-2 DSM-CC statusTypes
The statusType field is used to indicate the type of status being requested or returned. Table 65 defines the
possible statusTypes.

Table 65 MPEG-2 DSM-CC statusType values

statusType Description User Status
Request /
Indication

User Status Response /
Confirm

0x0000 ISO/IEC 13818-6 Reserved
0x0001 ISO/IEC 13818-6 Reserved
0x0002 Identify Session Status. This status

indicates the current status of a
session.

sessionId sessionId
response
serverId
resourceCount
for(resourceCount)
{

resourceDescriptor()
}

0x0003 Identify Configuration. This status
indicates the current configuration.

[TBD] [TBD]

0x0004-0x7fff ISO/IEC 13818-6 Reserved.
0x8000-0xffff User Defined statusType.

4.3 User-to-Network Message Field Data Types
This table may be omitted after the data types have been moved into the message descriptions

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

49

Table 66 defines the data fields used in the User-to-Network messages.

Table 66 User-to-Network Message Field Data Types

Field Name Length
(Bytes)

Range Description

cfSessionId 10 composite field This field is identical to the sessionId
field. It is used to connect a session to a
continuous feed session. It contains the
sessionId of the continuous feed session
which is to be connected to the session.

clientId 20 As specified by OSI
NSAP.

A globally unique OSI NSAP address
which identifies a Client. The clientId
must be a specific address or be able to be
resolved to a specific address by the
Network. [reference ISO OSI NSAP
Specification].

deviceId 6 0x000000000000 -

0x3fffffffffff

A globally unique number which defines a
User or Network device.

For networks which use the ATM BHLI
field, the second most significant bit of the
deviceId is set to 1 to indicate that the last
three octets contain the deviceNum. For
example, in the IEEE 802 MAC if the
second most significant bit is set to 1 in the
OUI (Organization Unique Identifier), the
last three octets are set by the OU
(Organizational Unit).

NetworkId

[use is still tbd]

20 As specified by OSI
NSAP.

A globally unique OSI NSAP address
which identifies the Network. The serverId
must be a specific address or be able to be
resolved to a specific address by the
Network. [reference ISO OSI NSAP
Specification].

originatorId [TBD] [TBD] [TBD]

reason 2 0x0000 - 0xffff This field indicates the reason for a failure
or action.

resourceCount 1 0x00 - 0xff This field contains the number of resource
descriptors which follow the
resourceCount field in the message.

resourceDescriptor variable descriptor dependent An array of resource descriptors of size
resourceCount. See section [resource
descriptors].

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

50

Field Name Length
(Bytes)

Range Description

serverId 20 As specified by OSI
NSAP.

A globally unique OSI NSAP address
which identifies a Server. The serverId
must be a specific address or be able to be
resolved to a specific address by the
Network. [reference ISO OSI NSAP
Specification].

sessionId 10 composite The sessionId field shall consist of a
unique 6 byte deviceId and a 4 byte
session number. The sessionId may be
assigned by either the User who initiates a
session request or by the Network. This is
determined by the U-N configuration
protocol or by some other network
configuration method.

sessionNum 4 0x00000000 -
0xffffffff

A number which uniquely identifies a
session on the device which assigns the
sessionId.

statusCount 2 0x0000 - 0xffff This field indicates the number of status
records that are being returned in a status
response.

statusType 1 enumerated This field indicates the type of status that
is being requested or returned in a status
transaction.

TransactionId

[Part of Message
Header now, so may
be removed from this
table]

[TBD
pending
resolution of
originatorId]

[TBD pending
resolution of
originatorId]

This field is used to correlate request
messages with confirm messages and
indication messages with response
messages. The transactionId is composed
of the originatorId and the
transactionNum.

transactionNum 2 0x0000 - 0xffff The transactionNum combined with the
originatorId forms the transactionId. The
transactionNum is unique to the device
which generates the message.

userDataByte userDataCount binary data The userDataByte field contains data
which is passed through the Network to
the destination User device.

userDataCount 2 varies depending on
message length and
type of message

The userDataCount field contains the
number of bytes of data which are
included in a message.

userId [tbd] [tbd] This field uniquely identifies an individual
User device.
[Use of this parameter?]

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

51

4.3.1 OSI NSAP Address Format
This section applies to the clientId, serverId, and networkId. These fields will always be a fixed 20-byte
OSI NSAP. A generic OSI NSAP address consists of two domains:

1. Initial Domain Part (IDP) which consists of two sub-parts:

a. 1-byte Authority and Format Identifier (AFI)

b. variable-length Initial Domain Identifier (IDI) which depends on the value of the AFI.

2. Domain Specific Part (DSP) which depends on the value of the IDI.

The NSAP address type described here is already defined in ISO/IEC 8348. While any AFI is acceptable
for DSM-CC (i.e., inter-networking is beyond the scope of DSM-CC), an example is the ATM End System
Address as defined in ATM Forum's UNI Specification, Version 3.1. The characteristics of this format are
as follows:

IDP
IDI DSP

AFI
1-byte

E.164
8-byte

HO-DSP
4-byte

ESI
6-byte

SEL
1-byte

where the

Total length: 20 bytes
AFI: 45 (ISO/IEC 8348 registered)
IDI: 8-byte BCD-encoded E.164 address
DSP: Contains the Internet Protocol (IP) address in the 4-byte High Order-DSP

(HO-DSP), the MAC address in the 6-byte End System Identifier (ESI),
and a subscriber's identifier in the 1-byte Selector (SEL).

For Clients, the E.164 address in the IDI identifies an ATM-to-the-curb drop. The MAC address identifies
the set-top terminal that is serviced by the drop. The SEL byte allows the set-top terminal to support up to
256 logical subscribers from one hardware platform, such as in a dormitory environment where one terminal
may be shared by more than one roommate.

For servers, the E.164 address identifies the ATM address of the server. The ESI identifies a service that
runs in that server.

IP addresses can be embedded within the above format to be used by the interactive multi-media
applications between the Client and Server (User-to-User communication).[(It is assumed that Ipv6 will be
acommadated into the OSI NSAP. This work is outside the scope of DSM-CC)]

4.4 Resource Descriptors
Session Set-Up and Resource Allocation message classes use resource descriptors to request and assign the
various resources to a session. Table 67 defines the general format of a resource descriptor:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

52

Table 67 DSM-CC User-Network Resource Descriptor

Syntax Num. of Bytes
userNetworkResourceDescriptor() {

resourceRequestId 2
requestType 2
resourceType 2
resourceNum 2
resourceLength 2
for(i=0;i<resourceLength;i++) {

resourceDataByte 1
}

}

The resourceRequestId field is set by the User to correlate the resource specified in the Request message
with the result given in the Confirm message. The Network shall return this resourceRequestId the Confirm
message.

[If the User can set the ResourceNum, then a separate resourceRequestId to track individual resources is
not needed -- this is under study]

The requestType field defines how the Server and Network will negotiate a resource. This field shall be
defined as 0xff in ClientIndication and ClientResponse message types. The requestType field may have the
following values:

Table 68 DSM-CC U-N Resource Descriptor requestTypes

requestType In Message Type Value Description

Mandatory &
Non-Negotiable

Request 0x00 Indicates that the Network must either
satisfy the requested value exactly or the
entire Resource Request command
sequence fails.

Mandatory, but
Negotiable

Request 0x01 Indicates that the Network must either
satisfy the negotiable range/list of values or
the entire resource request sequence fails.
If the range/list has value tbd, then the
sequence only fails if no resources are
available.

Non-Mandatory,
but Non-Negotiable

Request 0x02 Indicates that the Network must either
satisfy the requested value exactly or the
resource assignment fails (does not affect
that state of the Resource Request
command sequence).

Non-Mandatory,
& Negotiable

Request 0x03 Indicates that the Network may either
satisfy the negotiable range/list of values
value exactly or the resource assignment
fails (does not affect that state of the
Resource Request command sequence). If
the range/list has value tbd, then any
resource value may be assigned (“don’t
care” condition).

Recommended Confirm 0x10 Indicates that an alternative value within
the specified range/list was assigned in
response to a Negotiable resource.

Assigned Confirm 0x30 Indicates that the exact resource value was

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

53

requestType In Message Type Value Description
assigned

Failed Confirm 0x31 Indicates that the Network was unable to
assign a resource to satisfy the
requestType.

Unprocessed Confirm 0x32 Indicates that the Network did not process
the request because a Mandatory resource
failed prior to the processing of this
descriptor.

Invalid Confirm 0x33 Indicates that the resource requested is not
valid.

reserved 0x0a -
0xfe

ISO/IEC 13818-6 reserved.

reserved Indication,
Response

0xff ISO/IEC 13818-6 reserved.

For each requested resource descriptor that the User sends to the SM to request a new resource, the User
shall indicate its resquestType as:

1. Mandatory&Non-Negotiable
2. Mandatory&Negotiable
3. Non-Mandatory&Non-Negotiable
4. Non-Mandatory&Negotiable

A resource's attribute is conveyed through the requestType parameter field in the requested resource
descriptor. When multiple resources are included in the AddResourceRequest, the requested resources
should be grouped and processed in the above listed order.

A User specifies a resource as Mandatory&Non-Negotiable when it will not consider an alternative offered
by the SM in case of failure. Thus, the SM will not propose one. The failure of a Mandatory&Non-
Negotiable resource will cause the failure of this resource and the remaining resource requests within the
same AddResourceRequest message shall not be processed.

A User specifies a resource as Mandatory&Negotiable when it will consider an alternative offered by the
SM in case of failure. Thus, if possible, the SM will propose one within the range given in the resource
descriptor. For any Mandatory&Negotiable resource that the SM fails to allocate, the SM will if possible
provide an alternative based on the capability of the network and any policy set up by the network provider.
The failure of a Mandatory&Negotiable resource (i.e., the SM cannot offer a resource within the requested
range) will cause the failure of this resource and the remaining resource requests within the same
AddResourceRequest message shall not be processed.

A User specifies a resource as Non-Mandatory&Non-Negotiable when it will not consider an alternative
offered by the SM in case of failure. Thus, the SM will not propose one. The failure of a Non-
Mandatory&Non-Negotiable resource does not stop the SM from processing other resource requests within
the same AddResourceRequest message.

A User specifies a resource as Non-Mandatory&Negotiable when it is willing to consider an alternative
offered by the SM in case of failure. Thus, if possible, the SM will propose one within the range given in
the resource descriptor. For any Non-Mandatory&Negotiable resource that the SM fails to allocate, the SM
will do its best to provide an alternative based on the capability of the network and any policy set up by the
network provider. The failure of a Non-Mandatory&Negotiable resource (i.e., the SM cannot provide a
resource within the requested range) does not stop the SM from processing other resource requests within
the same AddResoursceRequest message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

54

Within each AddResourceRequest message sent to the SM, the User can have a mixture of each of the
resourceTypes. The SM will always process Mandatory&Non-Negotiable resource requests first and
Mandatory&Negotiable resource requests second since failure in one such resource means the service
cannot be provided and the remaining resource requested within the same AddResourceRequest will not be
processed.

A User can always re-negotiate the Mandatory&Non-Negotiable or Mandatory&Negotiable resource that
fails by initiating a new Resource Addition command sequence with new values.

The resourceType field defines the specific resource being requested. The resourceType field may have the
following values:

Table 69 DSM-CC U-N Resource Descriptor resourceTypes

resourceType Value Description

Reserved 0x0000 ISO/IEC 13818-6 reserved.

ServerAtm 0x0001 Sent from the Server to the
Network to request the
downstream ATM resources
required to deliver a session and
from the Network to the Server to
assign the downstream ATM
resources.

ClientAtm 0x0002 Sent from the Client to the
Network to request the
downstream ATM resources
required to deliver a session and
from the Network to the Client to
assign the downstream ATM
resources.

MpegPsiDownstream 0x0003 Sent from the Server to the
Network to request the MPEG
resources required to deliver a
session and from the Network to
the Server to assign the MPEG
resources. This resource is used if
it is necessary that the ISO/IEC
13818-1 program specific
information (PSI) be inserted by
the Network.

MpegDownstream 0x0004 Sent from the Server to the
Network to request the MPEG
resources required to deliver a
session and from the Network to
the Server to assign the MPEG
resources. This resource is used
when a portion of the PSI
information (e.g.,
program_map_sections) is
inserted by the Server.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

55

resourceType Value Description

ServerUpstream 0x0005 This is sent between the Server
and the Network to request/assign
the upstream resources required to
deliver session data.

ServerDownstream 0x0006 Sent from the Server to the
Network to request the
downstream bandwidth necessary
for the Server to deliver session
data.

AtmConnection 0x0007 Sent from either the Client or
Server to the Network, requesting
an ATM connection .

Reserved 0x0008 - 0x00ff ISO/IEC 13818-6 reserved.

ClientDownstream 0x0100 Sent from the Network to the
Client to assign the downstream
resources necessary for the Client
to receive session data.

ClientCtrlDownstream 0x0101 Sent from the Network to the
Client to assign the resources
necessary for the Client to receive
a control stream.

ClientUpstream 0x0102 Sent from the Network to the
Client to assign the upstream
resources necessary for the Client
to deliver session data to the
server.

Reserved 0x0103 - 0x7fff ISO/IEC 13818-6 reserved.
UserDefined 0x8000 - 0xffff Resource descriptors in this range

are user definable.

The resourceNum field is an identifier assigned by the Network [User assignable resourceNum is tbd] to
an assigned resource. The resourceNum values shall be unique within a session. The resourceNum field is
used along with sessionId to derive the resourceId, a unique reference to an assigned resource within the
Network. resourceId is a composite of sessionId and resourceNum and is not explicit syntax. resourceNum
is retained by the Network and Users as long as the resource (and hence the session) to which it is referring
is active, and is used when the User modifies or deletes a resource from a session. The resourceNum field(s)
is/are also returned when the Network performs a session audit on a User. When a User is requesting a
resource from the Network, it shall set the resourceNum to 0x0000. Values 0x0001 through 0xffff are
available to the Network for assignment.

The resourceLength field defines the total length of the resource descriptor. The resourceLength depends
on the particular resourceType being defined and the actual data in the resource descriptor.

The content of the resourceDataByte field depends on the particular resourceType being defined.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

56

4.4.1 Resource Descriptor Definitions
This section defines the individual resource descriptors. These descriptors may be associated under a
session to form the total resources required by the session. It is possible to instantiate more than one of the
same resourceType in a session.

4.4.1.1 ServerContinuousFeedSession resource descriptor definition
The ServerContinuousFeedSession resource descriptor is requested by the Server to connect a Client
session to a continuous feed session. Table 70 defines the format of the ServerContinuousFeedSession
descriptor.

Table 70 ServerContinuousFeedSession resource descriptor

Syntax Num. of Bytes
ServerContinuousFeedSession() {

cfSessionId 10
}

The cfSessionId field is used to indicate the sessionId of the continuous feed session to which the Client
session will be associated. The Network shall be responsible for mapping the continuous feed session
resources to the Client session.

4.4.1.2 ServerDownstream resource descriptor definition
The ServerDownstream resource descriptor is requested by the Server to allocate a portion of the
downstream transport stream for a session. Multiple ServerDownstream descriptors may be requested for a
session. Table 71 defines the format of the ServerDownstream descriptor.

Table 71 ServerDownstream resource descriptor

Syntax Num. of Bytes
ServerDownstream() {

downstreamBandwidth 4
coSessionId 10

}

The downstreamBandwidth field indicates the data rate in bits per second required to deliver the session
over the downstream portion of the network. The entire range of values from 0x00000000 to 0xffffffff for
downstreamBandwidth are valid.

The coSessionId field is used to request that the Network allocate resources for the session on the same
transport stream as an existing session. If this field is set to 0, the Network shall be free to assign the session
to any transport stream which satisfies the requirements of the session.

This field is generally used to locate multiple sessions on the same transport stream to prevent the Client
from having to switch between transport streams to receive multiple sessions.

4.4.1.3 ServerAtm resource descriptor definition
The ServerAtm resource descriptor is requested by the Server to instruct the Network that an ATM PVC
connection should be established from the Network to the Server. This resource descriptor is sent when
requesting a PVC ATM connection resource.

Table 72 defines the format of the ServerAtm resource descriptor.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

57

Table 72 ServerAtm resource descriptor

Syntax Num. of Bytes
ServerAtm () {

serverAtmAddress 16
atmVci 2
atmVpi 2

}

The serverAtmAddress field indicates the ATM address of the Server. The Network may use this address
to establish a connection between the Network and the Server. This field may be sent to the appropriate
Network device to be used in the ATM connection establishment procedure.

The atmVci and atmVpi parameters may be supplied by the Network after an ATM connection has been
established. These fields are used in the case where the Network sets up the connection to the server without
using ATM signaling to the Server. This type of connection is most common in third-party and proxy
signaling methods. The Server shall always set these fields to 0 when requesting a new resource.

4.4.1.4 ClientAtm resource descriptor definition
The ClientAtm resource descriptor is requested by the Client to instruct the Network that an ATM PVC
connection should be established from the Network to the Client. This resource descriptor is sent when
requesting a PVC ATM connection resource.

Table 73 defines the format of the ClientAtm resource descriptor.

Table 73 ClientAtm resource

Syntax Num. of Bytes
ClientAtm() {

clientAtmAddress 16
atmVci 2
atmVpi 2

}

The clientAtmAddress field indicates the ATM address of the Client. The Network may use this address to
establish a connection between the Network and the Client. This field may be sent to the appropriate
Network device to be used in the ATM connection establishment procedure.

The atmVci and atmVpi parameters may be supplied by the Network after an ATM connection has been
established. These fields are used in the case where the Network sets up the connection to the server without
using ATM signaling to the Client. This type of connection is most common in third-party and proxy
signaling methods. The Server shall always set these fields to 0 when requesting a new resource.

4.4.1.5 AtmConnection resource descriptor definition
The AtmConnection resource descriptor is used by the Server or Client to request the Network for an ATM
connection between the Server and Client. The Network may pass this request to the ATM device which
sets up the connection using standard Q.2931 or UNI signaling or the Network may set up the connection
on behalf of the devices. Table x defines the format of the AtmConnection resource descriptor.

This resource descriptor is sent when requesting an ATM connection resource.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

58

Table 74 AtmConnection resource descriptor

Syntax Num. of Bytes
AtmConnection () {

atmVersion 2
serverAtmAddress 20
clientAtmAddress 20
atmTrafficParameter For ATM Forum 3.1, See ATM Forum UNI 3.1 specification,

section 5.4.5.6
broadbandBearerCapability For ATM Forum 3.1, See ATM Forum UNI 3.1 specification,

section 5.4.5.7
qualityOfService3.1 For ATM Forum 3.1, See ATM Forum UNI 3.1 specification,

section 5.4.5.18
 serverVpi 2
 serverVci 2
 clientVpi 2
 clientVci 2
}

The atmVersion defines the ATM version being used.

The serverAtmAddress field indicates the ATM address of UNI interface specified by requestor of the
AddResource. The recipient of the information may use this address to establish a connection between itself
and the Client or Server. This connection may be established using any of several means of ATM
connection establishment including, but not limited to, Q.2931 or UNI associated, non-associated, proxy,
or third-party signaling.

The clientAtmAddress must be the supplied address of the UNI inerface of the other side of the
serverAtmAddress

Table 75 DSM-CC U-N Resource Descriptor AtmSvcConnection atmVersion

atmVersion Value Description
reserved 0x0000 13818-6 reserved
ATM Forum 3.0 0x0001 ATM Forum 3.0 being used
ATM Forum 3.1 0x0002 ATM Forum 3.1 being used
ATM Forum 4.0 0x0003 ATM Forum 4.0 being used
reserved 0x0004-0x0010 ISO/IEC 13818-6 reserved.
ITU-T Q.2931 Capability Set 1 0x0011 ITU-T Q.2931 Capability Set 1 being used
reserved 0x0012-0xffff ISO/IEC 13818-6 reserved.

atmTrafficParameter -- For ATM 3.1, See ATM Forum UNI 3.1 specification, section 5.4.5.6.

broadbandBearerCapability-- For ATM 3.1, See ATM Forum UNI 3.1 specification, section 5.4.5.7.

qualityOfService-- For ATM 3.1, See ATM Forum UNI 3.1 specification, section 5.4.5.18.

4.4.1.6 MpegPsiDownstream resource descriptor definition
The MpegPsiDownstream resource descriptor is requested by the Server to instruct the Network that it is
responsible for inserting the PSI information for the session into the transport stream. Table 76 defines the
format of the MpegPsiDownstream resource descriptor.

[As transport descriptors (other than ATM, for instance) are defined, this descriptor may need to be
reviewed/updated.]

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

59

Table 76 MpegPsiDownstream resource descriptor

Syntax Num. of Bytes
MpegPsiDownstream(){

mpegCaPidReq 2
mpegCaPid 2
mpegPmtLen 2
for(i=0;i<mpegPmtLen;i++) {

mpegPmtByte
}

1

}

The mpegCaPidReq field is a binary field which indicates if the Server is requesting the Network to assign
a PID to the Server which may be used for the insertion of Conditional Access messages at the Server. If
this field is set to 1, the Network shall assign a Conditional Access PID to the session and include the PID
in the Conditional Access Table which is sent over the transport stream(s) which support this session. If this
field is set to 0, the Network shall not assign a Conditional Access PID. All other values for this field are
reserved.

The mpegCaPid field is assigned by the Network if the Server requests a Conditional Access PID to be
assigned to the session. The Network shall include the PID in the Conditional Access Table which is sent
over the transport stream(s) which support this session. If the Server sets this field to 0 and the
mpegCaPidReq field is set to 1, the Network shall assign a PID to this field. If the Server sets this field to
the value of a Conditional Access PID which is already assigned to the Server, the Network shall validate
the PID already belongs to the Server and is assigned as a Conditional Access PID and assure that the PID
is included in the Conditional Access Table which is sent over the transport stream(s) which support this
session. The Server may use a single Conditional Access PID to support multiple sessions. If the
mpegCaPidReq field is set to 0, the Server shall set the mpegCaPid to 0. The Network shall not assign a
value to this field.

The mpegPmtLen field indicates the number of bytes which are included in the Program Map Table which
follows. The Server shall set this field when requesting a resource from the Network.

The mpegPmtByte field includes the Program Map Table for the session. The Network may use the pmt for
purposes of re-mapping and re-timing the elementary streams in the session.

The format of the PMT is defined in the [MPEG-2 systems specification].

4.4.1.7 MpegDownstream resource descriptor definition
The MpegDownstream resource descriptor is requested by the Server to inform the Network that the Server
is responsible for inserting the PSI information for the session into the transport stream. [As transport
descriptors (other than ATM, for instance) are defined, this descriptor may need to be reviewed/updated.]

Table 77 defines the format of the MpegDownstream resource descriptor.

[As transport descriptors (other than ATM, for instance) are defined, this descriptor may need to be
reviewed/updated.]

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

60

Table 77 MpegDownstream resource descriptor

Syntax Num. of Bytes
MpegDownstream (){

mpegProgramNum 2
mpegPmtPid 2
mpegPidCount 2
for(i=0;i<mpegPidCount;i++) {

mpegPid
}

2

}

The mpegProgramNum field is used by the Server to request an MPEG Program Number to be assigned
by the Network. The Server shall set this field to 0 when requesting a new resource. The Network shall
assign an MPEG Program Number to this field which is unique over all transport streams over which the
session is transported.

The mpegPmtPid field is used by the Server to request an MPEG PID to be assigned by the Network. The
Server uses this PID to insert the Program Map Table into the transport stream. The Server shall set this
field to 0 when requesting a new resource. The Network shall assign an MPEG PID to this field which is
unique over all transport streams over which the session is transported. The Network shall also add this
field to the Program Access Table which is sent over the transport stream(s) which support this session.

The mpegPidCount field is used by the Server to request a number of MPEG PIDs to be assigned by the
Network. The Server uses these PIDs for the elementary streams which are used to deliver the session. The
Server shall set this field to the required number of PIDs when requesting a new resource. The Network
shall assign MPEG PIDs for each PID requested.

The mpegPid field includes the MPEG PIDs which are assigned by the Network. There shall be
mpegPidCount MPEG PID fields included in the descriptor. The Server shall set these fields to 0 when
requesting a new resource. The Network shall assign MPEG PIDs to these fields which are unique over all
transport streams over which the session is transported. The Network shall also route these PIDs over the
transport stream(s) which support this session.

4.4.1.8 ServerUpstream resource descriptor definition
The ServerUpstream resource descriptor is requested by the Server to allocate a portion of the upstream
transport stream for a session. Multiple ServerUpstream resource descriptors may be requested for a
session. Table 78 defines the format of the ServerUpstream resource descriptor.

Table 78 ServerUpstream resource descriptor

Syntax Num. of Bytes
ServerUpstream (){

upstreamBandwidth 4
}

The upstreamBandwidth field indicates the data rate in bits per second required to deliver the session over
the upstream portion of the network. The entire range of values from 0x00000000 to 0xffffffff for
downstreamBandwidth are valid.

4.4.1.9 ClientDownstream resource descriptor definition
The ClientDownstream resource descriptor is assigned by the Network and sent to the Client to instruct the
Client about how/where to receive the downstream transport information The Server may also request this
resource if it has a need for this information (for informational purposes only). Table 79 defines the format
of the ClientDownstream resource descriptor.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

61

Table 79 ClientDownstream resource descriptor

Syntax Num. of Bytes
ClientDownstream (){

mpegProgramNum 4
downstreamTransportId 4

}

The mpegProgramNum field indicates the MPEG Program Number that has been assigned to the session.
The Client should use this program number to look-up the Program Map Table in the Program Association
Table (see ISO/IEC 13818-1 for details). The Network assigns this resource as a result of creating a
ServerDownstream resource descriptor and an associated MPEG downstream resource. If the Server
includes this resource, this field shall be set to 0 and the Network shall assign the field when an MPEG
program number is assigned to the session.

The downstreamTransportId field indicates the transport stream that the Client should monitor to receive
the PAT, PMT, and all associated elementary streams for the session. The Network assigns this resource as
a result of creating a ServerDownstream resource descriptor. If the Server includes this resource, this field
shall be set to 0 and the Network shall assign the value of this field at the time when the session is
associated with a transport stream.

4.4.1.10 ClientCtrlDownstream resource descriptor definition
The ClientCtrlDownstream resource descriptor is assigned by the Network to the Client to instruct the
Client how to receive session data. This descriptor is used in the case that the Client device is unable to
process PSI information or to expedite acquisition of a session. The Server may also request this resource if
it has a need for this information however, this resource is informational only on the Server side. Table 80
defines the format of the ClientCtrlDownstream resource descriptor.

Table 80 ClientCtrlDownstream resource descriptor

Syntax Num. of Bytes
ClientCtrlDownstream (){

mpegProgramNum 4
downstreamTransportId 4
mpegPidCount 2
for(i=0;i<mpegPidCount;i++) {

mpegPid
}

2

}

The mpegProgramNum field indicates the MPEG Program Number that has been assigned to the session.
The Client should use this program number to look-up the Program Map Table in the Program Association
Table (see ISO/IEC 13818-1 for details). The Network assigns this resource as a result of creating a
ServerDownstream resource descriptor and an associated MPEG downstream resource. If the Server
includes this resource, this field shall be set to 0 and the Network shall assign the field when an MPEG
program number is assigned to the session.

The downstreamTransportId field indicates the transport stream that the Client should monitor (in the use
of this descriptor, the the PAT and PMT present may be bypassed; the PIDs are specified by mpegPid).
The Network assigns this resource as a result of creating a ServerDownstream resource descriptor. If the
Server includes this resource, this field shall be set to 0 and the Network shall assign the field when the
session is assigned to a transport stream.

The mpegPidCount and mpegPid fields indicate the number of elementary streams and the PIDs assigned
to the elementary streams. The Network shall assign the mpegPidCount field and the mpegPid fields.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

62

4.4.1.11 ClientUpstream resource descriptor definition
The ClientUpstream resource descriptor is assigned by the Network to the Client to instruct the Client how
to send session data to the Server. Table 81 defines the format of the ClientUpstream resource descriptor.

Table 81 ClientUpstream resource descriptor

Syntax Num. of Bytes
ClientUpstream(){

upstreamBandwidth 4
upstreamTransportId 4

}

The upstreamBandwidth field indicates the data rate in bits per second which have been allocated to the
session for delivery of application data to the Server. The entire range of values from 0x00000000 to
0xffffffff for upstreamBandwidth are valid. The Server shall set this field to the desired bandwidth to
instruct the Network to assign this bandwidth to the session. The Network shall set this field to the actual
bandwidth assigned to the session.

The upstreamTransportId field indicates the transport stream that the Client should use to send the
upstream application data to the Server. The Server shall set this field to 0 when requesting a
ClientUpstream resource descriptor. The Network shall assign this field.

[How are values allocated when a non-MPEG TS is used for the upstream?]

4.4.1.12 Resource Negotiation

4.4.1.12.1 Request Phases
The session layer messages that the User exchanges with the Session Manager (SM) in order to request
resources can be divided into two phrases:

AddResourceRequest phase
AddResourceConfirm phase

4.4.1.12.2 AddResourceRequest Phase
The AddResourceRequest phase consists of one message, AddResourceRequest message, sent from the
User to the SM. In this message, the User lists the resources that it is requesting by specifying the
corresponding requested resource descriptors.

When the SM receives the AddResourceRequest message, it shall process the request in the following
order:

1. Mandatory&Non-Negotiable:
� If the SM can satisfy the Mandatory&Non-Negotiable resource, the scenario shall proceed

with the processing of the Mandatory&Non-Negotiable resources.
� If the SM fails at least one Mandatory&Negotiable resource, the remaining resources shall not

be processed and the scenario shall proceed to the AddResoureConfirm phase.
� If the SM has processed all the Mandatory&Negotiable requested resources, the scenario shall

proceed with the processing of the Mandatory&Negotiable resources.
2. Mandatory&Negotiable:

� If the SM can satisfy the Mandatory&Negotiable resource, the scenario shall continue with the
processing of the Mandatory&Negotiable resources.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

63

� If the SM fails at least one Mandatory&Negotiable resource for which there is an alternative
within the range given by the requestor, the alternative should be returned and the scenario
shall continue with the processing of the Mandatory&Negotiable.

� If the SM fails at least one Mandatory&Negotiable resource for which there is not an
alternative within the range given by the requestor, the remaining resources shall not be
processed and the scenario shall continue to the AddResourceConfirm phase.

� If the SM has processed all the Mandatory&Negotiable resources, the scenario shall proceed
with the processing of the of the Non-Mandatory&Non-Negotiable resources.

3. Non-Mandatory&Non-Negotiable
� If the SM can satisfy the Non-Mandatory&Non-Negotiable resource, the scenario shall

continue with the processing of the Non-Mandatory&Non-Negotiable resources.
� If the SM fails one Non-Mandatory&Non-Negotiable resource, the remaining resources shall

be processed and the scenario shall continue with the processing of the Non-Mandatory&Non-
Negotiable resources.

� If the SM has processed all the Mandatory&Negotiable resources, the scenario shall proceed
with the processing of the Non-Mandatory&Negotiable resources.

4. Non-Mandatory&Negotiable
� If the SM can satisfy the Non-Mandatory&Negotiable resource the scenario shall continue

with the processing of the Non-Mandatory&Negotiable resources.
� If the SM fails one NonMandatory&Negotiable resource for which there is an alternative

within the range given by the requestor, the alternative should be returned and the scenario
shall continue with the processing of the NonMandatory&Negotiable.

� If the SM fails one Mandatory&Negotiable resource for which there is not an alternative
within the range given by the requestor, the remaining resources shall be processed and the
scenario shall with the processing of the Non-Mandatory&Negotiable.

� If the SM has processed all the Non-Mandatory&Negotiable resources, the scenario shall
proceed with the processing of the of the Non-Mandatory&Negotiable resources.

During the AddResourceRequest phase, all resources that the SM can satisfy, shall be allocated by the SM
and returned via the AddResourceConfirm message with their corresponding assigned resource descriptors.
The resourceId field contains a valid non-null identifier assigned by the SM, and the requestType field shall
be labeled Assigned.

For any Negotiated resource that the SM fails to allocate, the SM will do a best effort to provide an
alternative based on the capability of the network and any policy set up by the network provider. The
resource descriptor of an alternative will be encoded the same as the original requested resource descriptor
with the necessary data fields modified to reflect values supported by the SM. For example, a User may
request a negotiable transport resource with the bandwidth field containing 10 (Mbps); if the maximum
bandwidth allowed in the network is 6 (Mbps), the SM will return the original requested resource descriptor
with the bandwidth field changed to 6 (Mbps).

The resourceId field in the recommended resource descriptor contains a valid non-null identifier assigned
by the SM and the requestType field shall be labeled Recommended.

If a Negotiable resource fails and the SM does not have a alternative, the resource descriptor returned will
be an assigned resource descriptor with a null resourceId and a Failed requestType.

4.4.1.12.3 AddResourceConfirm Phase
The purpose of the AddResourceConfirm phase is to (1) inform the far-end User (e.g., Client if the Server
has been requesting resources) of any successively assigned resources and (2) inform the requesting User of
the final result of its resource request.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

64

The AddResourceConfirm phase is labeled negative if the SM has failed to allocate (1) all the Mandaatory
resource requested or (2) if there are no Mandatory resource requests, at least one Non-Mandatory resource.
In this case, the far-end User shall not be informed (i.e., the SM shall not send an AddResourceIndication
message to the far-end User).

The AddResourceComfirm phase is labeled positive if the SM has successfully allocated (1) all the
Mandatory resource requests or (2) if there are no Mandatory resource requests, at least one Non-
Mandatory resource. In this case, depending on the resources, the SM may send an AddResourceIndication
message to the far-end User to inform it of any resources successively assigned.

The far-end User shall acknowledge the AddResourceIndication message with an AddResourceResponse
message. If the far-end User does not accept any of the indicated resources, it will indicate this in the
AddResourceResponse with a response code set to XX.

Upon receipt of the AddResourceResponse message from the far-end User, the SM shall send a concluding
AddResourceConfirm message to the requesting User, containing the resource descriptors of all resources
that the User has requested.

For the concluding AddResourceConfirm message sent to the requesting User, the requestType field of each
resource descriptor shall be encoded as follows:

1. Assigned, if the resource has been successfully allocated by the SM and informed to the far-end User.

2. Failed, if the resource has failed to be allocated by the SM.

3. Unprocessed, if the resource request has not been processed by the SM due to a failure of a
Mandatory&Non-Negotiable or Mandatory&Negotiable resource.

4. Invalid, if the requested resource descriptor contains invalid values in one of the parameters, either in
the Header section or Data section.

It is also the responsibility of the requesting User to handle Failed resources based on its knowledge of the
running interactive application. The requesting User options are (1) to ignore this resource or (2) to initiate
a Session Tear-Down scenario to close the session.

4.5 Client Initiated Command Sequences
The following Client initiated command sequences are defined in this section:

� Session set-up command sequence.
� Connection to a continuous feed session command sequence.
� Tear-down of a session command sequence.
� Tear-down of a connection to a continuous feed session command sequence.

There are two types of sessions possible between the Client and a Server. The first type is a session where
the Server delivers a service to a Client using network resources dedicated to that service. If an interactive
service is desired, each Client session is allocated an upstream resource. A session may be requested by
either the Client or the Server.

The second type of session is a Continuous Feed Session (CFS) which is set up by the Server. A CFS is not
connected to a particular Client. Any number of Clients on the network may connect to a CFS after it has
been set up. Theoretically, all Client sessions which connect to the CFS are allocated the same downstream
resources thereby sharing a single channel and MPEG program between all Clients; however, actual
network implementations may require some segmentation. If interactive connection to a CFS is desired,
each Client will be given dedicated upstream resources allowing each Client to communicate with the
Server.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

65

The Server may notify the Clients that a Continuous Feed Session has been set-up via the broadcast or pass-
thru messages described in section [Broadcast and Pass-Thru Messages] or User-to-User messages
described in section [User-to-User Interface]. The Client connects to a CFS using the User-to-Network
messages for session set-up. It passes the information about the CFS in userDataByte portion of the set-up
request.

4.5.1 Client Session Set-Up Command Sequence
Figure 8 illustrates the procedure for session establishment initiated by the Client.

Client Network Server

ClientSessionSetUpRequest

ServerAddResourceRequest
sessionId
resourceCount
loop(resourceCount, descriptor)

1

2

3

sessionId
clientId
serverId
userDataCount
loop(userDataCount, userDataByte)

ServerSessionSetUpIndication

sessionId
clientId
serverId
userDataCount
loop(userDataCount, userDataByte)

4

ClientSessionProceedingIndication

sessionId
reason

ServerAddResourceConfirm
sessionId
response
resourceCount
loop(resourceCount, descriptor)

7

ServerSessionSetUpResponse

sessionId
response
userDataCount
loop(userDataCount, userDataByte)

8

ClientConnectRequest

sessionId
response
resourceCount
loop(resourceCount, descriptor)
userDataCount
loop(userDataCount, userDataByte)

sessionId
userDataCount
loop(userDataCount, userDataByte)

ClientSessionSetUpConfirm

ServerConnectIndication

sessionId
userDataCount
loop(userDataCount, userDataByte)

Indicates Optional Data FlowIndicates Command May Be
Sent Zero Or More Times.

5
6

Indicates Command May Be
Sent Zero or Only Once.

Figure 8 Sequence of Events for Client Session Set-up

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

66

4.5.1.1 Client Initiates Session Set-Up
Step 1 (Client):

To begin establishing a new session, the Client shall send ClientSessionSetUpRequest to the Network and
start timer Error! Reference source not found.. The value of the transactionId shall be selected by the
Client and shall be used to correlate replies from the Network if there are multiple outstanding
ClientSessionSetUpRequest messages. If the Client is assigning the sessionId, the value of the sessionId
field shall be selected by the Client and shall contain the client’s deviceId plus a sessionNum which is
unique to the Client. If the Network is assigning the sessionId, then the Client shall set the value of the
sessionId to 0. The value of the serverId field shall identify the Server with which the Client is requesting to
establish a session. The value of the userDataCount field shall be equal to the number of userDataBytes
present in the remainder of the message.

If timer Error! Reference source not found. expires before the ClientSessionSetUpConfirm message is
received, flow shall shift to the “Network does not respond to ClientSessionSetUpRequest” scenario.

Step 2 (Network):

On receipt of ClientSessionSetUpRequest, the Network shall verify that the clientId and serverId fields
represent entities known to the Network. If the values of these fields are valid and the Network believes that
the network can support a new session, the Network shall send the ServerSessionSetUpIndication to the
Server identified in the serverId field and shall start timers Error! Reference source not found. and
Error! Reference source not found.. If the sessionId was set to 0 by the Client, the value of the sessionId
field shall be selected by the Network. The sessionId shall be used to identify the new session throughout its
duration. The value of the clientId field identifies the Client that requested the session and shall be identical
to the value received from the Client. The values of the userDataCount and userDataByte fields shall be
identical to the values received in the ClientSessionSetUpRequest (i.e., the Network passes this information
transparently through to the Server).

If the value of the serverId field is invalid or if the network cannot support a new session, flow shall shift to
the “Network rejects ClientSessionSetUpRequest” scenario.

If timer Error! Reference source not found. expires before the either ServerSessionSetUpResponse
message is received, the Network shall send ClientSessionProceedingIndication to the Client. The reason
field shall be set to rsn. Timer Error! Reference source not found. shall then be restarted.

If timer Error! Reference source not found. expires before the ServerSessionSetUpResponse message is
received, flow shall shift to the “Server does not respond to ServerSessionSetUpIndication” scenario.

Step 3 (Server):

On receipt of ServerSessionSetUpIndication, the Server may validate the clientId field to ensure that it
represents a Client known to the Server. If the value of the clientId field is acceptable and the Server can
support a new session, it shall begin resource negotiation for the session by sending
ServerAddResourceRequest to the Network. The value of the sessionId field shall be identical to the value
received from the Network in ServerSessionSetUpIndication. The value of the response field shall be set to
rspOK. The Server shall set the value of the resourceCount to the number of resource types required to
initially establish the session. For each type of resource requested, the Server shall include a
resourceDescriptor field in ServerAddResourceRequest. Within each resource descriptor:

� The value of the resourceRequestId field shall be selected by the Server and can be used to
correlate replies from the Network.

� The value of the requestType field shall be encoded to indicate whether the specific values
requested for the resource are MANDATORY NEGOTIABLE, MANDATORY NON-
NEGOTIABLE, NON-MANDATORY NEGOTIABLE, or NON-MANDATORY NON-
NEGOTIABLE. If the resource is tagged MANDATORY NEGOTIABLE, the Server will accept
alternative values with in its suggested range proposed by the Network. If the resource is tagged
MANDATORY NON-NEGOTIABLE, the Server will not accept any other value for the resource,
and session establishment shall fail if the Network cannot assign the requested value. If the

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

67

resource is tagged NON-MANDATORY NEGOTIABLE, the Server will accept any alternative
including not getting the resource at all. If the resource is tagged NON-MANDATORY NON-
NEGOTIABLE, the Server will accept only the requested resource or no resource at all.

� The value of the resourceId field shall be encoded as all 0’s.
� The value of the resourceType field shall be encoded to indicate the specific type of resource being

requested for the session.
� The value of the resourceLength field shall indicate the number of bytes remaining in the

resourceDescriptor.
� The values of the resourceDataByte field shall be encoded as appropriate for the specific type of

resource requested.

If the value of the clientId field is not acceptable or if the Server cannot support a new session, flow shall
shift to the “Server rejects ServerSessionIndication” scenario.

Step 4 (Network):

On receipt of ServerAddResourceRequest, the Network shall iterate through the list of requested resources
to determine if the network can fulfill each individual resource request. If the Network can assign the
requested values for all resources that the Server tagged MANDATORY NON-NEGOTIABLE, the
Network shall then attempt to assign values to those resources that the Server tagged MANDATORY
NEGOTIABLE, NON-MANDATORY NEGOTIABLE, and NON-MANDATORY NON-NEGOTIABLE
and shall construct a ServerAddResourceConfirmation message. The value of the resourceCount field shall
be identical to the value received from the Server in ServerAddResourceRequest. For each resource
requested, the Network shall include a resourceDescriptor field in ServerAddResourceConfirmation. Within
the resourceDescriptor:

� The value of the resourceRequestId field shall be identical to the value received from the Server.
� The value of the responseType field shall be encoded as one of the following values:

1. rspResourceOK to indicate that the Network is able to assign the exact resource values
requested by the Server.

2. rspResourceNegotiate to indicate that the Network is not able to assign the exact resource
values requested by the Server but has assigned the values included in the remainder of the
descriptor. The Network shall not use this response if the Server indicated that the resource
values requested was NON-NEGOTIABLE.

3. rspResourceFailed to indicate that the Network is not able to assign the exact resource
values requested by the Server, and the Server indicated that the resource values requested
was NON-NEGOTIABLE. rspResourceFailed shall also indicate that the Network cannot
assign the resource at all regardless of whether the Server tagged the request as
NEGOTIABLE or NON-NEGOTIABLE.

� If the responseType field is encoded as either rspResourceOK or rspResourceNegotiate
the value of the resourceId field shall be assigned by the Network to uniquely identify the assigned
resources for their duration within the session. If the responseType field is encoded as
rspResourceFailed, the value of the resourceId field shall be encoded as all 0’s.

� The value of the resourceType field shall indicate a specific type of resource and shall be identical
to the value received from the Server.

� The value of the resourceLength field shall indicate the number of bytes remaining in the
descriptor.

�� The values of the resourceDataByte field shall be encoded as appropriate for the specific type of
resource being assigned. If the requestType field is encoded as rspResourceOK or

rspResourceFailed, the values shall match those received from the Server. If the response field

is encoded as rspResourceNegotiate, one or more values shall differ from those received from
the Server.

The value of the response field in ServerAddResourceConfirm message shall be encoded as one of the
following values:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

68

� rspOK if, for all of the requested resources, the requestType field is encoded as ASSIGNED or
RECOMMENDED.

�� rspResourceFailed if for any of the requested resources, the responseType field was encoded as

rspResourceFailed.
If the Network cannot assign the requested values for any resource that the Server has tagged as
MANDATORY NON-NEGOTIABLE, flow shall shift to the ”Network Unable to Assign MANDATORY
NON-NEGOTIABLE Resource” scenario.

Step 5 (Server):

On receipt of ServerAddResourceConfirm with the response field encoded as rspOK, the Server shall iterate
through the resource list and provision itself to use the assigned resources for the session. It shall send
ServerSessionSetUpResponse to the Network with the response field encoded as rspResourceCompleted.
The value of the userDataCount field shall indicate the number of userDataBytes in the remainder of the
message.

The Server may consider the session established at this point.

Step 6 (Network):

On receipt of ServerSessionSetUpResponse with the response field encoded as rspResourceCompleted, the
Network shall terminate timers Error! Reference source not found. and Error! Reference source not
found. and then send ClientSessionSetUpConfirm to the Client. The value of the transactionId field shall be
identical to the value received from the Client in ClientSessionSetUpRequest. The value of the sessionId
field shall be identical to the value received in ServerResourceResponse. The value of the response field
shall be rspOK. The value of the resourceCount field shall indicate the total number of resources initially
assigned to the Client side of the session. For each type of resource assigned, the Network shall include a
resourceDescriptor field. Within each resourceDescriptor:

� The value of the resourceId field shall be assigned by the Network to uniquely identify the
assigned resources for their duration within the session.

� The value of the resourceType field shall be encoded to indicate the specific type of resource being
assigned for the session.

� The value of the resourceLength field shall indicate the number of bytes remaining in the
resourceDescriptor.

� The values of the resourceDataByte field shall be encoded as appropriate for the specific type of
resource being assigned.

The values of the userDataCount and userDataByte fields sent in ClientSessionSetupConfirm shall be
identical to those received in the ServerResourceResponse message.

Step 7 (Client):

On receipt of ClientSessionProceedingIndication with a valid transactionId, the Client shall reset timer
Error! Reference source not found..

On receipt of ClientSessionSetUpConfirm, the Client shall determine if it is capable of using the resources
assigned for the session by the Network. If the Client can use all of the assigned resources, the Client shall
determine if it has userDataBytes to be delivered to the Server. If the Client does not have userDataBytes to
be delivered to the Server, the session shall be considered to be active and shall start timer Error!
Reference source not found..

If the Client cannot use one or more of the assigned resources, flow shall shift to the “Client Unable to Use
Resources” scenario.

If the Client has userDataBytes to be delivered to the Server, flow shall shift to the “Client Has Final
userDataBytes” scenario.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

69

4.5.1.2 Network does not respond to ClientSessionSetUpRequest
If timer Error! Reference source not found. expires before the ClientSessionSetUpConfirm message is
received, the Client shall consider the session set-up sequence to be terminated and the session request
failed. If after the Client has terminated the Session Request, the ClientSessionSetUpConfirm message is
received (or anytime a ClientSessionSetUpConfirm is received with an unknown transactionId) the Client
shall send a ClientReleaseRequest message to the Network with the sessionId field set to the value of the
sessionId in the ClientSessionSetUpConfirm message and the reason code field set to rsnClUnkRequestID.

4.5.1.3 Network Rejects Client Session Request
Step 2 (Network):

On receipt of ClientSessionSetUpRequest, if the value of the clientId or serverId field is invalid or if the
network cannot support a new session, the Network shall send ClientSessionSetUpConfirm to the Client.
The value of the transactionId field shall be identical to the value received in ClientSessionSetUpRequest,
and the value of the response field shall indicate why session establishment is rejected. The value of the
userDataCount field shall be 0, and no userDataByte shall be sent. The following response codes shall
apply:

� rspNeNoCalls - Indicates that the Network is unable to accept new sessions.

� rspNeInvalidClient - Indicates that the Network rejected the request due to an invalid clientId.

� rspNeInvalidServer - Indicates that the Network rejected the request due to an invalid serverId.

Step 3 (Client):

On receipt of ClientSessionSetupConfirm with a valid sessionRequestId, and a response code which
indicates that the session was rejected, the Client shall terminate session establishment.

4.5.1.4 Server Rejects Server Session Indication
Step 3 (Server):

If the value of the clientId field is invalid or if the Server cannot support a new session, the Server shall
send ServerSessionSetUpResponse to the Network. The value of the sessionId field shall be identical to the
value received from the Network, the value of the reason field shall indicate why the session establish
request is rejected, and the value of the resourceCount field shall be set to 0 and there shall be no resource
descriptors. The following response codes shall apply:

� rspSeNo- Indicates that the Server is unable to accept new sessions.

� rspSeInvalidClient- Indicates that the Server rejected the request due to an invalid clientId.

� rspSeNoService - Indicates that the Server could not be provide the requested service.

Step 4 (Network):

On receipt of ServerSessionSetUpResponse with a valid sessionId and a response field which indicates that
the Server rejected the session request, the Network shall terminate session establishment with the Server
and send ClientSessionSetUpConfirm to the Client. The value of the transactionId field shall be identical to
the value in ClientSessionSetUpRequest received from the Client, and the value of the reason field shall
indicate why the session establish request is rejected. The values of the userDataCount field shall be 0 and
no userDataByte shall be sent.

Step 5 (Client):

On receipt of ClientSessionSetupConfirm with a valid transactionId and a response field which indicates
that the session request was rejected, the Client shall terminate session establishment.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

70

4.5.1.5 Network Unable to Assign MANDATORY and NON-NEGOTIABLE
Resource

Step 4 (Network):

If the Network cannot assign the requested values for any resource that the Server has tagged as
MANDATORY and NON-NEGOTIABLE or cannot assign any values for one or more resources regardless
of how the Server tagged the resource(s), the Network shall send ServerAddResourceConfirm to the Server.
The value of the reason field shall be set to rsnNeNoResource to indicate that the Network could not assign
the requested values for the resource indicated by the resourceRequestId field.

Step 5 (Server):

On receipt of ServerAddResourceConfirm with the reason code set to rsnNeNoResource, the Server shall
terminate session establishment and send ServerResourceResponse to the Network. The value of the reason
field shall be set to rsnSeNoResource to indicate that there are no resources available. The value of the
userDataCount shall indicate the number of userDataByte in the remainder of the message.

Step 6 (Network):

On receipt of ServerSessionSetUpResponse, the Network shall terminate session establishment with the
Server and send ClientSessionSetUpConfirm to the Client. The value of the transactionId field shall be
identical to the value received from the Client in ClientSessionRequest. The value of the reason field shall
be set to rsnSeNoResource to indicate that the session could not be established. The values of the
userDataCount and userDataByte fields shall be identical to those received in
ServerSessionSetUpResponse.

Step 7 (Client):

On receipt of ClientSessionSetUpConfirm with the response code which indicates that the session was
rejected, the Client shall terminate session establishment.

4.5.1.6 Server Terminates Resource Negotiation
Step 5 (Server):

On receipt of ServerAddResourceConfirm with the response field encoded as rspResourceCompleted or
rspResourceContinue, if the Server decides to terminate resource negotiation because one or more resource
values assigned by the Network are unacceptable, the Server shall send ServerResourceResponse to the
Network. The value of the sessionId field shall be identical to the value received in
ServerResourceIndication, and the reason field shall indicate why the Server has terminated resource
negotiation. The value of the userDataCount field shall indicate the number of userDataByte in the
remainder of the message. The Server shall consider the session as terminated at this point.

Step 6 (Network):

On receipt of ServerSessionSetUpResponse with the response field set to indicate that the resources were
rejected, the Network shall terminate session establishment with the Server and send
ClientSessionSetupConfirm to the Client. The value of the transactionId field shall be identical to the value
received from the Client in ClientSessionSetUpRequest. The value of the reason field shall indicate why the
requested session could not be established. The values of the userDataCount and userDataByte fields shall
be identical to those received in ServerSessionSetUpResponse. At this point, the Network shall consider the
session as terminated.

Step 7 (Client):

On receipt of ClientSessionSetUpConfirm with the response field set to indicate that the session was
rejected, the Client shall terminate session establishment.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

71

4.5.1.7 Client Unable to Use Resources
Step 7 (Client):

On receipt of ClientSessionSetUpConfirm, if the Client cannot use one or more of the assigned resources, it
shall send ClientReleaseRequest to the Network. The value of the sessionId field shall be identical to the
value received in ClientSessionSetupConfirm, and the reason field shall be set to rsnClNoResource to
indicate that the Client cannot use one or more of the assigned resources.

Step 8 (Network):

On receipt of ClientReleaseRequest, the Network shall release all Client interface resources assigned to the
session and shall send ClientReleaseConfirm and ServerReleaseIndication. The value of the sessionId field
shall be identical to the value received from the Client in ClientReleaseRequest, and the value of the reason
field shall indicate that the Client was unable to provision itself to use the resources assigned to the session.
The value of the userDataCount field shall be 0.

Step 9 (Server):

On receipt of ServerReleaseIndication, the Server shall first release all resources assigned to the session and
then send ServerReleaseResponse to the Network. The value of the sessionId field shall be identical to the
value received from the Network, and the value of the userDataCount field shall be 0. At this point, the
session is terminated from the Server’s perspective.

Step 10 (Network):

On receipt of ServerReleaseResponse, the Network shall release all Server interface resources assigned to
the session, and shall consider the session to be terminated.

Step 11 (Client):

On Receipt of the ClientReleaseConfirm, the Client shall consider the session to be released.

4.5.1.8 Client Has Final userDataBytes
Step 7 (Client):

If the Client has userDataBytes to be delivered to the Server, it shall send ClientConnectRequest to the
Network. The value of the sessionId field shall be identical to the value received from the Network, and the
value of the userDataCount field shall indicate the number of userDataByte present.

Step 8 (Network):

On receipt of ClientConnectRequest with a valid sessionId, the Network shall send ServerConnectIndication
to the Server. The values of the sessionId, userDataCount, and userDataByte fields shall be identical to the
corresponding values received from the Client. After sending the message. There is no change of state for
the session at the Network.

Step 9 (Server):

On receipt of ServerConnectIndication, the Server shall consider the session to be established end-to-end
through the network.

4.5.2 Client Connection to Continuous Feed Session Command Sequence
A continuous feed session is where a Server is delivering continuous session information to the Network.
One or more Clients may connect to this session and receive this shared data. In addition, each Client
session which is connected to the continuous feed session may also be allocated additional Client-specific
resources.

The Client connects to a continuous feed session using the same method as the client initiated session set up
command sequence. The userDataBytes that are passed to the Server may be used by the applications
running on the Server to determine if the Client is requesting a connection to a continuous feed session. If

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

72

the Server determines that the Client is requesting a connection to a continuous feed session, it connects the
Client session to the continuous feed session by adding a continuous feed session resource descriptor to the
client session.

Due to the nature of a shared session, only the continuous feed resource descriptor and Client-specific
resource descriptors may be included in the ServerAddResourceRequest message.

The ClientSessionRequest sequence is a confirmed service. The Network connects the session to the CFS
before confirming the request.

Figure 9 describes the sequence of events that occur when a Client connects to a Continuous Feed Session.

Client Network Server

ClientSessionSetUpRequest

ServerAddResourceRequest
sessionId
response
resourceCount
loop(resourceCount, descriptor)

1

2

3

sessionId
clientId
serverId
userDataCount
loop(userDataCount, userDataByte)

ServerSessionSetUpIndication

sessionId
clientId
serverId
userDataCount
loop(userDataCount, userDataByte)

4

ClientSessionProceedingIndication

sessionId
reason

ServerAddResourceConfirm
sessionId
response
resourceCount
loop(resourceCount, descriptor)

7

ServerSessionSetUpResponse

sessionId
response
userDataCount
loop(userDataCount, userDataByte)

8

ClientConnectRequest

sessionId
response
resourceCount
loop(resourceCount, descriptor)
userDataCount
loop(userDataCount, userDataByte)

sessionId
userDataCount
loop(userDataCount, userDataByte)

ClientSessionSetUpConfirm

ServerConnectIndication

sessionId
userDataCount
loop(userDataCount, userDataByte)

Indicates Optional Data FlowIndicates Command May Be
Sent Zero Or More Times.

5
6

Indicates Command May Be
Sent Zero or Only Once.

Figure 9 Sequence of events for Client connection to a Continuous Feed Session

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

73

4.5.2.1 Client initiates connection to a Continuous Feed Session
Step 1 (Client):

To begin the connection to a continuous feed session, the Client shall send ClientSessionRequest to the
Network and start timer Error! Reference source not found.. The value of the sessionRequestId field shall
be selected by the Client and shall be used to correlate replies from the Network if there are multiple
outstanding ClientSessionRequest messages. The value of the clientId field is the MAC address of the
Client. The value of the serverId field shall identify the Server that the Client is requesting to establish a
session with. The value of the userDataCount field shall be equal to the number of userDataBytes present in
the remainder of the message. The userDataBytes field may contain the data required to inform the Server
that this is a request to connect to a continuous feed session.

If timer Error! Reference source not found. expires before the ServerSessionResponse message is
received, flow shall shift to the “Network does not respond to ClientSessionRequest” scenario.

Step 2 (Network):

On receipt of ClientSessionRequest, the Network shall verify that the clientId and serverId fields represent
entities known to the Network. If the values of these fields are valid and the Network believes that the
network can support a new session, the Network shall send the ServerSessionIndication to the Server
identified in the serverId field and shall start timers Error! Reference source not found. and Error!
Reference source not found.. The value of the sessionId field shall be selected by the Network and shall
be used to identify the new session throughout its duration. The value of the clientId field identifies the
Client that requested the session and shall be identical to the value received from the Client. The values of
the userDataCount and userDataByte fields shall be identical to the values received in the
ClientSessionRequest (i.e., the Network passes this information transparently through to the Server).

If the value of the serverId field is invalid or if the network cannot support a new session, flow shall shift to
the “Network rejects ClientSessionRequest” scenario.

If timer Error! Reference source not found. expires before the ServerSessionResponse message is
received, the Network shall send ClientSessionProceeding to the Client. The value of the sessionRequestId
field shall be identical to the value received in ClientSessionRequest and the reason field shall be set to rsn.
Timer Error! Reference source not found. shall then be restarted.

If timer Error! Reference source not found. expires before the ServerSessionResponse message is
received, flow shall shift to the “Server does not respond to ServerSessionIndication” scenario.

Step 3 (Server):

On receipt of ServerSessionIndication, the Server may validate the clientId field to ensure that it represents
a Client known to the Server. The Server determines that the request is a connection to a continuous feed
session based on the data contained in the userDataBytes field. If the value of the clientId field is valid and
the Server can support a connection to the requested continuous feed session, it may begin resource
negotiation for additional resources for the session the session by sending
ServerContinuousFeedSessionResponse to the Network. The value of the sessionId field shall be identical
to the value received from the Network in ServerSessionIndication. The value of the cfSessionId field shall
be set to the sessionId that the session is to be connected. The value of the response field shall be set to
rspOK. The Server shall set the value of the resourceCount to the number of additional resource types
required for the session. For each type of resource requested, the Server shall include a resourceDescriptor
field in ServerSessionResponse. Within each resource descriptor:

� The value of the resourceRequestId field shall be selected by the Server and can be used to
correlate replies from the Network.

� The value of the request field shall be encoded to indicate whether the specific values requested for
the resource are NEGOTIABLE or NON-NEGOTIABLE. If the resource is tagged
NEGOTIABLE, the Server may accept alternative values proposed by the Network. If the resource
is tagged NON-NEGOTIABLE, the Server will not accept any other value for the resource, and
session establishment shall fail if the Network cannot assign the requested value.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

74

� The value of the resourceId field shall be encoded as all 0’s.
� The value of the resourceType field shall be encoded to indicate the specific type of resource being

requested for the session.
� The value of the resourceLength field shall indicate the number of bytes remaining in the

resourceDescriptor.
� The values of the resource field shall be encoded as appropriate for the specific type of resource

requested.
If the value of the clientId field is invalid or if the Server cannot support a connection to the requested
continuous feed session, flow shall shift to the “Server rejects ServerSessionIndication” scenario.

Step 4 (Network):

On receipt of ServerContinuousFeedSessionResponse, the Network shall iterate through the list of
requested resources to determine if the network can fulfill each individual resource request. If the Network
can assign the requested values for all resources that the Server tagged NON-NEGOTIABLE, the Network
shall then attempt to assign values to those resources that the Server tagged NEGOTIABLE and shall
construct a ServerResourceIndication message. The value of the resourceCount field shall be identical to the
value received from the Server in ServerSessionResponse. For each resource requested, the Network shall
include a resourceDescriptor field in ServerResourceIndication. Within the resourceDescriptor:

� The value of the resourceRequestId field shall be identical to the value received from the Server.
� The value of the response field shall be encoded as one of the following values:

1. rspResourceOK to indicate that the Network is able to assign the exact resource values
requested by the Server.

2. rspResourceNegotiate to indicate that the Network is not able to assign the exact resource
values requested by the Server but has assigned the values included in the remainder of the
descriptor. The Network shall not use this response if the Server indicated that the resource
values requested was NON-NEGOTIABLE.

3. rspResourceFailed to indicate that the Network is not able to assign the exact resource
values requested by the Server, and the Server indicated that the resource values requested
was NON-NEGOTIABLE. rspResourceFailed shall also indicate that the Network cannot
assign the resource at all regardless of whether the Server tagged the request as
NEGOTIABLE or NON-NEGOTIABLE.

� If the response field is encoded as rspResourceOK, the value of the resourceId field shall be
assigned by the Network to uniquely identify the assigned resources for their duration within the
session. If the response field is encoded as either rspResourceNegotiate or

rspResourceFailed, the value of the resourceId field shall be encoded as all 0’s.
� The value of the resourceType field shall indicate a specific type of resource and shall be identical

to the value received from the Server.
� The value of the resourceLength field shall indicate the number of bytes remaining in the

descriptor.

�� The values of the resource field shall be encoded as appropriate for the specific type of resource
being assigned. If the response field is encoded as rspResourceOK or rspResourceFailed,
the values shall match those received from the Server. If the response field is encoded as
rspResourceNegotiate, one or more values shall differ from those received from the Server.

The value of the response field in ServerResourceIndication message shall be encoded as one of the
following values:

� rspOK if, for all of the requested resources, the response field is encoded as ASSIGN.

� rspResourceContinue if, for all of the requested resources indicated as NON-NEGOTIABLE
by the Server, the response field is encoded as ASSIGN, and for one or more of the requested
resources indicated as NEGOTIABLE by the Server, the response field is encoded as
NEGOTIATE.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

75

�� rspResourceFailed if for any of the requested resources, the response field was encoded as

rspResourceFailed.
If the Network cannot assign the requested values for any resource that the Server has tagged as NON-
NEGOTIABLE, flow shall shift to the ”Network Unable to Assign NON-NEGOTIABLE Resource”
scenario.

Step 5 (Server):

On receipt of ServerResourceIndication with the response field encoded as rspOK, the Server shall iterate
through the resource list and provision itself to use the assigned additional resources for the session. It shall
send ServerResourceResponse to the Network with the response field encoded as rspResourceCompleted.
The value of the userDataCount field shall indicate the number of userDataByte in the remainder of the
message.

On receipt of ServerResourceIndication with the response field encoded as rspResourceContinue, the
Server shall iterate through the resource list to determine which resources the Network was able to assign as
requested by the Server and which resources the Network has assigned alternate values for. If the Server
accepts the alternate resource values assigned by the Network, the Server shall provision itself to use the
assigned additional resources for the session and shall send ServerResourceResponse to the Network with
the response field encoded as rspResourceCompleted. The value of the userDataCount field shall indicate
the number of userDataByte in the remainder of the message.

If the alternate resource values assigned by the Network are unacceptable to the Server, the Server shall
terminate the session establish procedure, the flow shall shift to the “Server Terminates Resource
Negotiation” scenario.

Step 6 (Network):

On receipt of ServerResourceResponse with the response field encoded as rspResourceCompleted, the
Network shall terminate timers Error! Reference source not found. and Error! Reference source not
found. and then send ClientSessionSetupConfirm to the Client. The value of the sessionRequestId field
shall be identical to the value received from the Client in ClientSessionRequest. The value of the sessionId
field shall be identical to the value received in ServerResourceResponse. The value of the response field
shall be rspOK. The value of the resourceCount field shall indicate the total number of resources from the
continuous feed session and additional resources assigned to the Client side of the session. For each type of
resource assigned, the Network shall include a resourceDescriptor field. Within each resourceDescriptor:

� The value of the resourceId field shall be assigned by the Network to uniquely identify the
assigned resources for their duration within the session.

� The value of the resourceType field shall be encoded to indicate the specific type of resource being
assigned for the session.

� The value of the resourceLength field shall indicate the number of bytes remaining in the
resourceDescriptor.

� The values of the resource field shall be encoded as appropriate for the specific type of resource
being assigned.

The values of the userDataCount and userDataByte fields sent in ClientSessionSetupConfirm shall be
identical to those received in the ServerResourceResponse message.

Step 7 (Client):

On receipt of ClientSessionProceedingIndication with a valid sessionRequestId, the Client shall reset timer
Error! Reference source not found..

On receipt of ClientSessionSetupConfirm, the Client shall determine if it is capable of using the resources
assigned for the session by the Network. If the Client can use all of the assigned resources, the Client shall
determine if it will be using the optional ClientConnectRequest message. If it will not, the session shall be
considered to be active and shall start timer Error! Reference source not found..

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

76

If the Client cannot use one or more of the assigned resources, flow shall shift to the “Client Unable to Use
Resources” scenario.

If the Client is using the optional ClientConnectRequest message, flow shall shift to the “Client sends
ClientConnectRequest” scenario

4.5.2.2 Network does not respond to ClientSessionRequest
If timer Error! Reference source not found. expires before the ClientSessionResponse message is
received, The Client shall consider the session set-up sequence to be terminated and the session request
failed. If after the Client has terminated the Session Request, the ClientSessionResponse message is
received (or anytime a ClientSessionResponse is received with an unknown sessionRequestId) the Client
shall send a ClientReleaseRequest message to the Network with the sessionId field set to the value of the
sessionId in the ClientSessionResponse message and the reason code field set to rsnClUnkRequestID.

4.5.2.3 Network Rejects Client Session Request
Step 2 (Network):

On receipt of ClientSessionRequest, if the value of the clientId or serverId field is invalid or if the network
cannot support a new session, the Network shall send ClientSessionSetupConfirm to the Client. The value
of the sessionRequestId field shall be identical to the value received in ClientSessionRequest, and the value
of the response field shall indicate why session establishment is rejected. The value of the userDataCount
field shall be 0, and no userDataByte shall be sent. The following response codes shall apply:

� rspNeNoCalls - Indicates that the Network is unable to accept new sessions.

� rspNeInvalidClient - Indicates that the Network rejected the request due to an invalid clientId.

� rspNeInvalidServer - Indicates that the Network rejected the request due to an invalid serverId.

Step 3 (Client):

On receipt of ClientSessionSetupConfirm with a valid sessionRequestId, and a response code which
indicates that the session was rejected, the Client shall terminate session establishment.

4.5.2.4 Server Rejects Server Session Indication
Step 3 (Server):

If the value of the clientId field is invalid or if the Server cannot support a connection to a continuous feed
session, the Server shall send ServerSessionResponse to the Network. The value of the sessionId field shall
be identical to the value received from the Network, the value of the reason field shall indicate why the
session establish request is rejected, and the value of the resourceCount field shall be set to 0 and there shall
be no additional resource descriptors. The following response codes shall apply:

� rspSeNo- Indicates that the Server is unable to accept new sessions.

� rspSeInvalidClient- Indicates that the Server rejected the request due to an invalid clientId.

� rspSeNoCFS- Indicates that the Server could not connect the session to the requested CFS.

Step 4 (Network):

On receipt of ServerContinuousFeedSessionResponse with a valid sessionId and a response field which
indicates that the Server rejected the session request, the Network shall terminate session establishment with
the Server and send ClientSessionSetupConfirm to the Client. The value of the sessionRequestId field shall
be identical to the value in ClientSessionRequest received from the Client, and the value of the reason field
shall indicate why the session establish request is rejected. The values of the userDataCount field shall be 0
and no userDataByte shall be sent.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

77

Step 5 (Client):

On receipt of ClientSessionSetupConfirm with a valid sessionRequestId and a response field which
indicates that the session request was rejected, the Client shall terminate session establishment.

4.5.2.5 Network Unable to Assign NON-NEGOTIABLE Resource
Step 4 (Network):

If the Network cannot assign the requested values for any resource that the Server has tagged as NON-
NEGOTIABLE or cannot assign any values for one or more resources regardless of how the Server tagged
the resource(s), the Network shall send ServerResourceIndication to the Server. The value of the reason
field shall be set to rsnNeNoResource to indicate that the Network could not assign the requested values for
the resource indicated by the requestId field.

Step 5 (Server):

On receipt of ServerResourceIndication with the reason code set to rsnNeNoResource, the Server shall
terminate session establishment and send ServerResourceResponse to the Network. The value of the reason
field shall be set to rsnSeNoResource to indicate that there are no resources available. The value of the
userDataCount shall indicate the number of userDataByte in the remainder of the message.

Step 6 (Network):

On receipt of ServerResourceResponse, the Network shall terminate session establishment with the Server
and send ClientSessionSetupConfirm to the Client. The value of the sessionRequestId field shall be
identical to the value received from the Client in ClientSessionRequest. The value of the reason field shall
be set to rsnSeNoResource to indicate that the session could not be established. The values of the
userDataCount and userDataByte fields shall be identical to those received in ServerResourceResponse.

Step 7 (Client):

On receipt of ClientSessionSetupConfirm with the response code which indicates that the session was
rejected, the Client shall terminate session establishment.

4.5.2.6 Server Terminates Resource Negotiation
Step 5 (Server):

On receipt of ServerResourceIndication with the response field encoded as rspResourceCompleted or
rspResourceContinue, if the Server decides to terminate resource negotiation because one or more resource
values assigned by the Network are unacceptable, the Server shall send ServerResourceResponse to the
Network. The value of the sessionId field shall be identical to the value received in
ServerResourceIndication, and the reason field shall indicate why the Server has terminated resource
negotiation. The value of the userDataCount field shall indicate the number of userDataByte in the
remainder of the message. The Server shall consider the session as terminated at this point.

Step 6 (Network):

On receipt of ServerResourceResponse with the response field set to indicate that the resources were
rejected, the Network shall terminate session establishment with the Server and send
ClientSessionSetupConfirm to the Client. The value of the sessionRequestId field shall be identical to the
value received from the Client in ClientSessionRequest. The value of the reason field shall indicate why the
requested session could not be established. The values of the userDataCount and userDataByte fields shall
be identical to those received in ServerResourceResponse. At this point, the Network shall consider the
session as terminated.

Step 7 (Client):

On receipt of ClientSessionSetupConfirm with the response field set to indicate that the session was
rejected, the Client shall terminate session establishment.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

78

4.5.2.7 Client Unable to Use Resources
Step 7 (Client):

On receipt of ClientSessionSetupConfirm, if the Client cannot use one or more of the assigned resources, it
shall send ClientReleaseRequest to the Network. The value of the sessionId field shall be identical to the
value received in ClientSessionSetupConfirm, and the reason field shall be set to rsnClNoResource to
indicate that the Client cannot use one or more of the assigned resources.

Step 8 (Network):

On receipt of ClientReleaseRequest, the Network shall release all Client interface resources assigned to the
session and shall send ClientReleaseConfirm and ServerReleaseIndication. The value of the sessionId field
shall be identical to the value received from the Client in ClientReleaseRequest, and the value of the reason
field shall indicate that the Client was unable to provision itself to use the resources assigned to the session.
The value of the userDataCount field shall be 0.

Step 9 (Server):

On receipt of ServerReleaseIndication, the Server shall first release all resources assigned to the session and
then send ServerReleaseResponse to the Network. The value of the sessionId field shall be identical to the
value received from the Network, and the value of the userDataCount field shall be 0. At this point, the
session is terminated from the Server’s perspective.

Step 10 (Network):

On receipt of ServerReleaseResponse, the Network shall release all Server interface resources assigned to
the session, and shall consider the session to be terminated.

Step 11 (Client):

On Receipt of the ClientReleaseConfirm, the Client shall consider the session to be released.

4.5.2.8 Client Sends ClientConnectRequest message
Step 7 (Client):

The Client sends the ClientConnectRequest to the Network. The value of the sessionId field shall be
identical to the value received from the Network, and the value of the userDataCount field shall indicate the
number of userDataByte present.

Step 8 (Network):

On receipt of ClientConnectRequest with a valid sessionId, the Network shall send ServerConnectIndication
to the Server. The values of the sessionId, userDataCount, and userDataByte fields shall be identical to the
corresponding values received from the Client. After sending the message. There is no change of state for
the session at the Network.

Step 9 (Server):

On receipt of ServerConnectIndication, the Server shall consider the session to be established end-to-end
through the network.

4.5.2.9 Server does not respond to ServerSessionIndication
[TBD]

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

79

4.5.3 Client Session Tear-Down Command Sequence
Figure 10 illustrates the normal procedure for session release initiated by the Client.

Client Network Server

ClientReleaseRequest

ClientReleaseConfirm

sessionId
reason
userDataCount
loop(userDataCount, userData)

1 2

5

sessionId
reason
userDataCount
loop(userDataCount, userData) ServerReleaseIndication

sessionId
reason
userDataCount
loop(userDataCount, userData)

3

ServerReleaseResponse
sessionId
reason
userDataCount
loop(userDataCount, userData)

4

Figure 10 Sequence of events for Client initiated session tear-down

4.5.3.1 Client Initiates Release Request
Step 1 (Client):

To start the procedure for releasing an existing session, the Client shall send ClientReleaseRequest to the
Network. The value of the sessionId field shall correspond to an existing session, and the value of the
reason field shall indicate why the Client is releasing the session. The value of the userDataCount field shall
indicate the number of userDataByte present in the message. Upon sending the ClientReleaseRequest
message, the Client shall not use any of the resources assigned to the session.

Step 2 (Network):

On receipt of ClientReleaseRequest, the Network shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid and owned by the Client, the Network shall send
ServerReleaseIndication to the Server. The value of the sessionId field shall be identical to the sessionId
received from the Client, and the value of the reason field shall indicate that the session is being released at
the request of the Client. The values of the userDataCount and userDataByte fields shall be identical to the
values received from the Client.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

80

If the Network determines that the sessionId received in ClientReleaseRequest is invalid or that the
sessionId does not belong to the Client, flow shall shift to the “Network Rejects Client Release Request”
scenario.

Step 3 (Server):

On receipt of ServerReleaseIndication, the Server shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid, the Server shall first release all resources
assigned to the session and then send ServerReleaseResponse to the Network. The value of the sessionId
field shall be identical to the value received from the Network, and the value of the userDataCount field
shall indicate the number of userDataByte in the message. At this point, the Server shall consider the
session to be terminated.

If the Server determines that the sessionId is invalid, flow shall shift to the “Server Rejects Server Release
Indication” scenario.

Step 4 (Network):

On receipt of ServerReleaseResponse, the Network shall release all resources assigned to the session and
send ClientReleaseConfirm to the Client. The values of the sessionId, userDataCount, and userDataByte
fields shall be identical to the values received in ServerReleaseResponse.

Step 5 (Client):

On receipt of ClientReleaseConfirm, the Client shall release all resources assigned to the session. At this
point, the Client shall consider the session to be terminated.

4.5.3.2 Network Rejects Client Release Request
Step 2 (Network):

If the Network determines that the value of the sessionId field received in ClientReleaseRequest is invalid,
the Network shall send ClientReleaseConfirm to the Client. The value of the sessionId field shall be
identical to the value received in ClientReleaseRequest, and the value of the reason parameter shall be set to
indicate that the sessionId is invalid. After sending ClientReleaseRequest, the Network may take other
actions such as initiating an audit with the Client however no change in session state occurs at this time. The
following reason codes may be used in the ClientReleaseConfirm message.

� rspNeNoSession- Indicates that a request was made for a non-existent sessionId.

� rsnNeNotOwner - Indicates that the requested sessionId was not owned by the user.

Step 3 (Client):

On receipt of ClientReleaseConfirm, the Client shall terminate the release procedure. The Client may take
other actions such as initiating an audit with the Network or initiating internal diagnostics to determine the
state of the session.

4.5.3.3 Server Rejects Server Release Indication
Step 3 (Server):

If the Server determines that the value of the sessionId field received in ServerReleaseIndication is invalid,
the Server shall send ServerReleaseResponse to the Network. The value of the sessionId field shall be
identical to the value received in ServerReleaseIndication, and the value of the reason field shall be set to
rspSeNoSession to indicate that the sessionId is invalid. After sending ServerReleaseResponse, the Server
may take other actions such as initiating an audit with the Network.

Step 4 (Network):

On receipt of ServerReleaseResponse, the Network shall assume that the sessionId is invalid and release all
resources assigned to the session. The Network shall send ClientReleaseConfirm to the Client. The value of

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

81

the sessionId field shall be identical to the value received in ServerReleaseResponse because the Network
previously validated it on receipt of ClientReleaseRequest. The value of the reason field shall be set to
rspSeProcError to indicate that a procedure error has occurred with the Server. The value of the
userDataCount field shall be 0. After sending ClientReleaseConfirm, the Network may initiate an audit with
the Server.

Step 5 (Client):

On receipt of ClientReleaseConfirm, the Client shall release all resources assigned to the session. At this
point, the Client shall consider the session to be terminated.

4.5.4 Client Continuous Feed Session Tear-Down Command Sequence
When the Client terminates a session which is connected to a continuous feed session, it issues the
ClientReleaseRequest message which indicates the sessionId that is being terminated. The message also
contains userDataBytes which is passed to the Server. There is no Network requirement as to the content of
the userDataBytes.

The ClientReleaseRequest sequence is a confirmed service. The Network disconnects the service locally at
the Network and issues the ClientReleaseConfirm message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

82

Figure 11 describes the sequence of events that occur during a Client initiated tear-down of a connection to
a continuous feed session.

Client Network Server

ClientReleaseRequest

ClientReleaseConfirm

sessionId
reason
userDataCount
loop(userDataCount, userData)

1 2

5

sessionId
reason
userDataCount
loop(userDataCount, userData) ServerReleaseIndication

sessionId
reason
userDataCount
loop(userDataCount, userData)

3

ServerReleaseResponse

sessionId
reason
userDataCount
loop(userDataCount, userData)

4

Figure 11 Sequence of events for Client initiated Continuous Feed Session tear-down

4.5.4.1 Client Initiates Release Request
Step 1 (Client):

To start the procedure for releasing an existing session, the Client shall send ClientReleaseRequest to the
Network. The value of the sessionId field shall correspond to an existing session, and the value of the
reason field shall indicate why the Client is releasing the session. The value of the userDataCount field shall
indicate the number of userDataByte present in the message. Upon sending the ClientReleaseRequest
message, the Client shall not use any of the resources assigned to the session.

Step 2 (Network):

On receipt of ClientReleaseRequest, the Network shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid and owned by the Client, the Network shall send
ServerReleaseIndication to the Server. The value of the sessionId field shall be identical to the sessionId

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

83

received from the Client, and the value of the reason field shall indicate that the session is being released at
the request of the Client. The values of the userDataCount and userDataByte fields shall be identical to the
values received from the Client.

If the Network determines that the sessionId received in ClientReleaseRequest is invalid or that the
sessionId does not belong to the Client, flow shall shift to the “Network Rejects Client Release Request”
scenario.

Step 3 (Server):

On receipt of ServerReleaseIndication, the Server shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid, the Server shall first release all resources
assigned to the session and then send ServerReleaseResponse to the Network. The value of the sessionId
field shall be identical to the value received from the Network, and the value of the userDataCount field
shall indicate the number of userDataByte in the message. At this point, the Server shall consider the
session to be terminated.

If the Server determines that the sessionId is invalid, flow shall shift to the “Server Rejects Server Release
Indication” scenario.

Step 4 (Network):

On receipt of ServerReleaseResponse, the Network shall release all resources assigned to the session and
send ClientReleaseConfirm to the Client. The values of the sessionId, userDataCount, and userDataByte
fields shall be identical to the values received in ServerReleaseResponse.

Step 5 (Client):

On receipt of ClientReleaseConfirm, the Client shall release all resources assigned to the session. At this
point, the Client shall consider the session to be terminated.

4.5.4.2 Network Rejects Client Release Request
Step 2 (Network):

If the Network determines that the value of the sessionId field received in ClientReleaseRequest is invalid,
the Network shall send [message TBD] to the Client. The value of the sessionId field shall be identical to
the value received in ClientReleaseRequest, and the value of the reason parameter shall be set to indicate
that the sessionId is invalid. After sending [message TBD], the Network may take other actions such as
initiating an audit with the Client however no change in session state occurs at this time. The following
reason codes may be used in the [message TBD] message.

� rspNeNoSession- Indicates that a request was made for a non-existent sessionId.

� rsnNeNotOwner - Indicates that the requested sessionId was not owned by the user.

Step 3 (Client):

On receipt of [message TBD], the Client shall terminate the release procedure. The Client may take other
actions such as initiating an audit with the Network or initiating internal diagnostics to determine the state
of the session.

4.5.4.3 Server Rejects Client Release Indication
Step 3 (Client):

If the Server determines that the value of the sessionId field received in ServerReleaseIndication is invalid,
the Server shall send [message TBD] to the Network. The value of the sessionId field shall be identical to
the value received in ServerReleaseIndication, and the value of the reason field shall be set to
rspSeNoSession to indicate that the sessionId is invalid. After sending [message TBD], the Server may take
other actions such as initiating an audit with the Network.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

84

Step 4 (Network):

On receipt of [message TBD], the Network shall assume that the sessionId is invalid and release all
resources assigned to the session. The Network shall send ClientReleaseConfirm to the Client. The value of
the sessionId field shall be identical to the value received in [message TBD] because the Network
previously validated it on receipt of ClientReleaseRequest. The value of the reason field shall be set to
rspSeProcError to indicate that a procedure error has occurred with the Server. The value of the
userDataCount field shall be 0. After sending ClientReleaseConfirm, the Network may initiate an audit with
the Server.

Step 5 (Client):

On receipt of ClientReleaseConfirm, the Client shall release all resources assigned to the session. At this
point, the Client shall consider the session to be terminated.

4.6 Server Initiated Command Sequences
The following Server initiated command sequences are defined in this section:

� Server Initiated Session set-up command sequence.
� Server Initiated Continuous feed session set-up command sequence.
� Server Initiated Session resource re-provision command sequence.
� Server Initiated Add resources to a session command sequence.
� Server Initiated Session tear-down command sequence.
� Server Initiated Continuous feed session tear-down command sequence.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

85

4.6.1 Server Session Set-Up Command Sequence
Figure 12 illustrates the normal procedure for session establishment initiated by the Server.

Client Network Server

ServerSessionSetUpRequest

ServerSessionSetUpConfirm

1
sessionId
clientId
serverId
userDataCount
loop(userDataCount, userData)

sessionId
response
userDataCount
loop(userDataCount, userData)

2

5

4

ClientSessionSetUpIndication

sessionId
clientId
serverId
userDataCount
loop(userDataCount, userData)

3
ClientSessionSetUpResponse

sessionId
response
userDataCount
loop(userDataCount, userData)

Figure 12 Sequence of Events for Server Session Set-up

4.6.1.1 Server Initiates Session Set-Up
Step 1 (Server):

To begin establishing a new session, the Server shall send ServerSessionRequest to the Network. The value
of the requestId field shall be selected by the Server and shall be used to correlate replies from the Network
if there are multiple outstanding ServerSessionRequest or ServerContinuousFeedSessionRequest messages.
The value of the serverId field shall identify the Server, and the value of the clientId field shall identify the
Client that the Server is requesting to establish a session with. The Server shall set the value of the
resourceCount field to the number of resource types required to initially establish the session. For each type
of resource requested, the Server shall include a resourceDescriptor field in ServerSessionRequest. Within
each resource descriptor:

� The value of the requestId field shall be selected by the Server and can be used to correlate replies
from the Network.

� The value of the request field shall be encoded to indicate whether the specific values requested for
the resource are NEGOTIABLE or NON-NEGOTIABLE. If the resource is tagged
NEGOTIABLE, the Server may accept alternative values proposed by the Network. If the resource
is tagged NON-NEGOTIABLE, the Server will not accept any other value for the resource, and
session establishment shall fail if the Network cannot assign the requested value.

� The value of the resourceId field shall be encoded as all 0’s.
� The value of the resourceType field shall be encoded to indicate the specific type of resource being

requested for the session.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

86

� The value of the resourceLength field shall indicate the number of bytes remaining in the
resourceDescriptor.

� The values of the resource field shall be encoded as appropriate for the specific type of resource
requested.

Step 2 (Network):

On receipt of ServerSessionRequest, if the Network is able to accept a request for a new session the
Network shall verify that the clientId and serverId fields represent entities known to the Network. If the
Network can accept a new session request and if the values of these fields are valid, the Network shall
iterate through the list of requested resources to determine if the network can fulfill each individual resource
request. If the Network can assign the requested values for all resources that the Server tagged NON-
NEGOTIABLE, the Network shall then attempt to assign values to those resources that the Server tagged
NEGOTIABLE and shall construct a ServerSessionConfirm message. The value of the requestId field shall
be identical to the requestId in the ServerSessionRequest message. The resourceCount field shall be
identical to the value received from the Server in ServerSessionRequest. For each resource requested, the
Network shall include a resourceDescriptor field in ServerSessionConfirm. Within the resourceDescriptor:

� The value of the requestId field shall be identical to the value received from the Server.
� The value of the response field shall be encoded as one of the following values:

1. rspResourceOK to indicate that the Network is able to assign the exact resource values
requested by the Server.

2. rspResourceNegotiate to indicate that the Network is not able to assign the exact resource
values requested by the Server but has assigned the values included in the remainder of the
descriptor. The Network shall not use this response if the Server indicated that the resource
values requested was NON-NEGOTIABLE.

3. rspResourceFailed to indicate that the Network is not able to assign the exact resource
values requested by the Server, and the Server indicated that the resource values requested
was NON-NEGOTIABLE. rspResourceFailed shall also indicate that the Network cannot
assign the resource at all regardless of whether the Server tagged the request as
NEGOTIABLE or NON-NEGOTIABLE.

� If the response field is encoded as rspResourceOK, the value of the resourceId field shall be
assigned by the Network to uniquely identify the assigned resources for their duration within the
session. If the response field is encoded as either rspResourceNegotiate or

rspResourceFailed, the value of the resourceId field shall be encoded as all 0’s.
� The value of the resourceType field shall indicate a specific type of resource and shall be identical

to the value received from the Server.
� The value of the resourceLength field shall indicate the number of bytes remaining in the

descriptor.

�� The values of the resource field shall be encoded as appropriate for the specific type of resource
being assigned. If the response field is encoded as rspResourceOK or rspResourceFailed,
the values shall match those received from the Server. If the response field is encoded as
rspResourceNegotiate, one or more values shall differ from those received from the Server.

The value of the response field in ServerSessionConfirm message shall be encoded as one of the following
values:

� rspOK if, for all of the requested resources, the response field is encoded as ASSIGN.

� rspResourceContinue if, for all of the requested resources indicated as NON-NEGOTIABLE
by the Server, the response field is encoded as ASSIGN, and for one or more of the requested
resources indicated as NEGOTIABLE by the Server, the response field is encoded as
NEGOTIATE.

�� rspResourceFailed if the response field in any of the requested resource descriptors is encoded

with rspResourceFailed.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

87

If the Network cannot support a session set-up, the clientId or serverId fields are invalid, or the Network
cannot assign the requested values for any resource that the Server has tagged as either NEGOTIABLE or
NON-NEGOTIABLE flow shall shift to the ”Network rejects ServerSessionRequest” scenario.

Step 3 (Client):

On receipt of ClientSessionSetUpConfirm with a valid requestId field and the response field encoded as
rspOK, the Client shall iterate through the resource list and provision itself to use the assigned resources for
the session and send the ClientSessionSetUpResponse message.

Step 4 (Network):

On receipt of the ClientSessionSetUpResponse message. The Network shall send the
ServerSessionSetUpConfirm message.

Step 7 (Server)

On receipt of the ServerSessionUpConfirm message. The Server shall consider the session to be active.

4.6.1.2 Network rejects ServerSessionSetUpRequest
Step 2 (Network):

On receipt of ServerSessionSetUpRequest, the Network may reject the request for the following reasons:

� The Network is unable to accept a request for a new session.

� The serverId field is invalid.

� The clientId field is invalid.

� The Network is unable to assign requested resources.

In these cases, the Network shall send ServerSessionSetUpConfirm to the Server. The value of the
sessionRequestId shall be identical to the value received in ServerSessionSetUpRequest, and the value of
the response field shall indicate why the Network is rejecting session establishment. The Network shall
terminate the session set-up procedure at this point. The following response codes apply:

� rspNeNoCalls - Indicates that the Network is not accepting new session requests.

� rspNeInvalidServer - Indicates that the serverId field is invalid.

� rspNeInvalidClient - Indicates that the clientId field is invalid.

� rspResourceFailed - Indicates that the Network could not satisfy one or more requested resources.

Step 3 (Server):

On receipt of ServerSessionSetUpConfirm with the response field set to indicate that the request was
rejected, the Server shall terminate the session establishment procedure.

4.6.1.3 Server terminates resource negotiation
Step 3 (Server):

On receipt of ServerSessionSetUpConfirm, the Server determines that it is unable to use any of the assigned
resources, the Server may terminate the session by sending the ServerReleaseRequest message. The
sessionId field shall be identical to the sessionId in the ServerSessionConfirm message. The reason field
shall be set to rsnSeNoResource to indicate that the server could not use the assigned resources.

Step 4 (Network)

On receipt of the ServerReleaseRequest message, the Network shall send the ServerReleaseConfirm
message to the Server. At this time, the Network shall consider the session to be torn down and may release
all resources assigned to the session.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

88

On receipt of the ServerReleaseConfirm message, the Server shall consider the session to be torn down and
may release all resources allocated for the session.

4.6.1.4 Client rejects ClientSessionSetUpIndication
Step 5 (Client):

On receipt of Client SessionSetUpIndication, if the Client cannot accept the session set-up request or if it
cannot use one or more of the assigned resources, it shall send ClientSessionSetUpResponse to the
Network. The value of the sessionId field shall be identical to the value received in
ClientSessionSetUpIndication, and the response field shall indicate the reason that the session request was
rejected. The value of the userDataCount field shall indicate the number of userDataBytes in the remainder
of the message. After sending the message, the Client shall consider the session to be released. The
following response codes apply:

rsnClNoCalls - Indicates that the Client was not accepting session requests.

rsnClNoResource - Indicates that the Client was unable to use one or more resources.

Step 6 (Network):

On receipt of ClientSessionSetUpResponse with the response code set to indicate that the session set-up
was rejected, the Network shall release all resources assigned to the session and shall send
ServerConnectConfirm. The value of the sessionId field shall be identical to the value received from the
Client in ClientSessionSetUpResponse, and the value of the reason field shall be identical to the reason field
in the ClientSessionSetUpResponse message. The value of the userDataCount and userDataByte fields shall
be identical to the fields in the ClientSessionSetUpResponse message.

4.6.2 Server Continuous Feed Session Set-Up Command Sequence
The Server may set-up a session which is not connected to a particular Client. This type of session is a
Continuous Feed Session (CFS). Any number of Clients may connect to a single CFS and share the
downstream resources of that CFS. Each Client session which is connected to a CFS may have a separate
upstream bandwidth allocation.

A CFS is assigned a SessionId by the Server that sets up the CFS. After a CFS is set up, any number of
Clients can connect to the session. When a Client is connected to a CFS, that Client assigns an individual
sessionId to its connection with the CFS which allows each Client connection to be tracked individually.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

89

Figure 13 describes the sequence of events that occur during a Server Continuous Feed Session set-up.

Client Network Server

ServerContinuousFeedSessionRequest

ServerSessionSetUpConfirm

sessionId
serverId
resourceCount
loop(resourceCount, descriptor)

sessionId
response
resourceCount
loop(resourceCount, descriptor)

1

2

Figure 13 Sequence of events for Server initiated Continuous Feed Session Set-Up

4.6.2.1 Server Initiates Continuous Feed Session Set-Up
Step 1 (Server):

To begin establishing a new continuous feed session, the Server shall send
ServerContinuousFeedSessionRequest to the Network. The value of the transactionId field shall be selected
by the Server and shall be used to correlate replies from the Network, if there are multiple outstanding
ServerSessionRequest or ServerContinuousFeedSessionRequest messages. The value of the serverId field
shall identify the Server. The Server shall set the value of the resourceCount field to the number of resource
types required to initially establish the session. For each type of resource requested, the Server shall include
a resourceDescriptor field in ServerContinuousFeedSessionRequest. Within each resource descriptor:

� The value of the requestId field shall be selected by the Server and can be used to correlate replies
from the Network.

� The value of the request field shall be encoded to indicate whether the specific values requested for
the resource are NEGOTIABLE or NON-NEGOTIABLE. If the resource is tagged
NEGOTIABLE, the Server may accept alternative values proposed by the Network. If the resource
is tagged NON-NEGOTIABLE, the Server will not accept any other value for the resource, and
session establishment shall fail if the Network cannot assign the requested value.

� The value of the resourceId field shall be encoded as all 0’s.
� The value of the resourceType field shall be encoded to indicate the specific type of resource being

requested for the session.
� The value of the resourceLength field shall indicate the number of bytes remaining in the

resourceDescriptor.
� The values of the resource field shall be encoded as appropriate for the specific type of resource

requested.
Step 2 (Network):

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

90

On receipt of ServerContinuousFeedSessionRequest, if the Network is able to accept a request for a new
session the Network shall verify that the serverId field represents an entity known to the Network. If the
Network can accept a new session request and if the values of these fields are valid, the Network shall
iterate through the list of requested resources to determine if the network can fulfill each individual resource
request. If the Network can assign the requested values for all resources that the Server tagged NON-
NEGOTIABLE, the Network shall then attempt to assign values to those resources that the Server tagged
NEGOTIABLE and shall construct a ServerSessionConfirm message. The value of the sessionRequestId
field shall be identical to the sessionRequestId in the ServerContinuousFeedSessionRequest message. The
resourceCount field shall be identical to the value received from the Server in
ServerContinuousFeedSessionRequest. For each resource requested, the Network shall include a
resourceDescriptor field in ServerSessionConfirm. Within the resourceDescriptor:

� The value of the resourceRequestId field shall be identical to the value received from the Server.
� The value of the response field shall be encoded as one of the following values:

1. rspResourceOK to indicate that the Network is able to assign the exact resource values
requested by the Server.

2. rspResourceNegotiate to indicate that the Network is not able to assign the exact resource
values requested by the Server but has assigned the values included in the remainder of the
descriptor. The Network shall not use this response if the Server indicated that the resource
values requested was NON-NEGOTIABLE.

3. rspResourceFailed to indicate that the Network is not able to assign the exact resource values
requested by the Server, and the Server indicated that the resource values requested was NON-
NEGOTIABLE. rspResourceFailed shall also indicate that the Network cannot assign the
resource at all regardless of whether the Server tagged the request as NEGOTIABLE or NON-
NEGOTIABLE.

� If the response field is encoded as rspResourceOK, the value of the resourceId field shall be
assigned by the Network to uniquely identify the assigned resources for their duration within the
session. If the response field is encoded as either rspResourceNegotiate or rspResourceFailed, the
value of the resourceId field shall be encoded as all 0’s.

� The value of the resourceType field shall indicate a specific type of resource and shall be identical
to the value received from the Server.

� The value of the resourceLength field shall indicate the number of bytes remaining in the
descriptor.

�� The values of the resource field shall be encoded as appropriate for the specific type of resource
being assigned. If the response field is encoded as rspResourceOK or rspResourceFailed, the
values shall match those received from the Server. If the response field is encoded as
rspResourceNegotiate, one or more values shall differ from those received from the Server.

The value of the response field in ServerSessionConfirm message shall be encoded as one of the following
values:

� rspOK if, for all of the requested resources, the response field is encoded as ASSIGN.
� rspResourceContinue if, for all of the requested resources indicated as NON-NEGOTIABLE by

the Server, the response field is encoded as ASSIGN, and for one or more of the requested
resources indicated as NEGOTIABLE by the Server, the response field is encoded as
NEGOTIATE.

�� rspResourceFailed if for any of the requested resources, the response field was encoded as
rspResourceFailed.

At this point, the Network shall consider the Continuous Feed Session to be active.

If the Network cannot support a continuous feed session set-up or the serverId field is invalid, or the
Network cannot assign the requested values for any resource that the Server has tagged as either
NEGOTIABLE or NON-NEGOTIABLE flow shall shift to the ”Network rejects
ServerContinuousFeedSessionRequest” scenario.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

91

Step 3 (Server):

On receipt of ServerSessionConfirm with a valid sessionRequestId field and the response field encoded as
rspOK, the Server shall iterate through the resource list and provision itself to use the assigned resources for
the session. At this point the Server shall consider the Continuous Feed Session to be active.

On receipt of ServerSessionConfirm with the response field encoded as rspResourceContinue, the Server
shall iterate through the resource list to determine which resources the Network was able to assign as
requested by the Server and which resources the Network has assigned alternate values for. If the Server
accepts the alternate resource values assigned by the Network, the Server shall provision itself to use the
assigned resources. At this point, the Server shall consider the Continuous Feed Session to be active.

If the alternate resource values assigned by the Network are unacceptable to the Server, the Server shall
terminate the session establish procedure, the flow shall shift to the “Server terminates resource negotiation”
scenario.

4.6.2.2 Network rejects ServerContinuousFeedSessionSetUpRequest
Step 2 (Network):

On receipt of ServerContinuousFeedSessionSetUpRequest, the Network may reject the request for the
following reasons:

� The Network is unable to accept a request for a new continuous feed session.

� The serverId field is invalid.

� The Network is unable to assign requested resources.

In these cases, the Network shall send ServerSessionConfirm to the Server. The value of the
sessionRequestId shall be identical to the value received in ServerSessionRequest, and the value of the
response field shall indicate why the Network is rejecting session establishment. The Network shall
terminate the session set-up procedure at this point. The following response codes apply:

� rspNeNoCalls - Indicates that the Network is not accepting new session requests.

� rspNeInvalidServer - Indicates that the serverId field is invalid.

� rspResourceFailed - Indicates that the Network could not satisfy one or more requested resources.

Step 3 (Server):

On receipt of ServerSessionConfirm with the response field set to indicate that the request was rejected, the
Server shall terminate the continuous feed session establishment procedure.

4.6.2.3 Server terminates resource negotiation
Step 3 (Server):

On receipt of ServerSessionConfirm, if the Server determines that it is unable to use any of the assigned
resources, the Server may terminate the session by sending the ServerReleaseRequest message. The
sessionId field shall be identical to the sessionId in the ServerSessionConfirm message. The reason field
shall be set to rsnSeNoResource to indicate that the server could not use the assigned resources.

Step 4 (Network)

On receipt of the ServerReleaseRequest message, the Network shall send the ServerReleaseConfirm
message to the Server. At this time, the Network shall consider the session to be torn down and may release
all resources assigned to the session.

On receipt of the ServerReleaseConfirm message, the Server shall consider the session to be torn down and
may release all resources allocated for the session.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

92

4.6.3 Server Add Resource Command Sequence
After a session has been established, the Server may add additional resources to the session.

Figure 14 illustrates the normal procedure for adding new resources to an existing session.

Client Network Server

ServerAddResourceRequest
1

sessionId
resourceCount
loop(resourceCount, descriptor)
userDataCount
loop(userDataCount, userData)

2

3

4

ClientAddResourceIndication

sessionId
resourceCount
loop(resourceCount, descriptor)
userDataCount
loop(userDataCount, userData)

ClientAddResourceResponse

sessionId
response
resourceCount
loop(resourceCount, descriptor)
userDataCount
loop(userDataCount, userData)

ServerAddResourceConfirm

sessionId
response
resourceCount
loop(resourceCount, descriptor)
userDataCount
loop(userDataCount, userData)

5

Figure 14 Sequence of events for Adding Resources to a Session

4.6.3.1 Server Initiates Add Resource Request
Step 1(Server):

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

93

To start the procedure for adding resources to an existing session, the Server shall send
ServerAddResourceRequest to the Network. The value of the sessionId field shall indicate the session to
which the resources are to be added. The Server shall select the value of the transactionId to be unique. The
value of the resourceCount field shall indicate the number of resources to be added to the session. For each
resource to be added, the Server shall include a resourceDescriptor field encoded as follows:

� The value of the resourceRequestId field shall be selected by the Server and can be used to
correlate replies from the Network.

� The value of the request field shall be encoded to indicate whether the specific values requested for
the resource are NEGOTIABLE or NON-NEGOTIABLE. If the resource is tagged
NEGOTIABLE, the Server may accept alternative values proposed by the Network. If the resource
is tagged NON-NEGOTIABLE, the Server will not accept any other value for the resource, and
session establishment shall fail if the Network cannot assign the requested value.

� The value of the resourceId field shall be encoded as all 0’s.
� The value of the resourceType field shall be encoded to indicate the specific type of resource being

requested for the session.
� The value of the resourceLength field shall indicate the number of bytes remaining in the

resourceDescriptor.
� The values of the resource field shall be encoded as appropriate for the specific type of resource

requested.

Step 2 (Network):

On receipt of ServerAddResourceRequest, the Network shall iterate through the list of requested resources
to determine if the network can fulfill each individual resource request. If the Network can assign the
requested values for all resources that the Server tagged NON-NEGOTIABLE, the Network shall proceed
to assign values to those resources that the Server tagged NEGOTIABLE and to construct a
ServerAddResourceConfirm message. The value of the resourceCount field shall be identical to the value
received from the Server in ServerAddResourceRequest. For each resource requested, the Network shall
include a resourceDescriptor field in ServerAddResourceConfirm. Within the resourceDescriptor:

� The value of the resourceRequestId field shall be identical to the value received from the Server.
� The value of the response field shall be encoded as one of the following values:

1. rspResourceOK to indicate that the Network is able to assign the exact resource values
requested by the Server.

2. rspResourceNegotiate to indicate that the Network is not able to assign the exact resource
values requested by the Server but has assigned the values included in the remainder of the
descriptor. The Network shall not use this response if the Server indicated that the resource
values requested was NON-NEGOTIABLE.

3. rspResourceFailed to indicate that the Network is not able to assign the exact resource values
requested by the Server, and the Server indicated that the resource values requested was NON-
NEGOTIABLE. rspResourceFailed shall also indicate that the Network cannot assign the
resource at all regardless of whether the Server tagged the request as NEGOTIABLE or NON-
NEGOTIABLE.

� If the response field is encoded as rspResourceOK, the value of the resourceId field shall be
assigned by the Network to uniquely identify the assigned resources for their duration within the
session. If the response field is encoded as either rspResourceNegotiate or rspResourceFailed, the
value of the resourceId field shall be encoded as all 0’s.

� The value of the resourceType field shall indicate a specific type of resource and shall be identical
to the value received from the Server.

� The value of the resourceLength field shall indicate the number of bytes remaining in the
descriptor.

�� The values of the resource field shall be encoded as appropriate for the specific type of resource
being assigned. If the response field is encoded as rspResourceOK or rspResourceFailed, the

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

94

values shall match those received from the Server. If the response field is encoded as
rspResourceNegotiate, one or more values shall differ from those received from the Server.

The value of the response field in ServerAddResourceConfirm message shall be encoded as one of the
following values:

� rspOK if, for all of the requested resources, the response field is encoded as ASSIGN.
� rspResourceContinue if, for all of the requested resources indicated as NON-NEGOTIABLE by

the Server, the response field is encoded as ASSIGN, and for one or more of the requested
resources indicated as NEGOTIABLE by the Server, the response field is encoded as
NEGOTIATE.

�� rspResourceFailed if for any of the requested resources, the response field was encoded as
rspResourceFailed.

If the Network cannot assign the requested values for any resource that the Server has tagged as NON-
NEGOTIABLE, flow shall shift to the “Network Unable to Assign NON-NEGOTIABLE Resource”
scenario.

Step 3 (Server):

On receipt of ServerAddResourceConfirm with the response field encoded as rspOK, the Server shall iterate
through the resource list and provision itself to use the assigned resources for the session. It shall send
ServerAddResourceRequest to the Network with the response field encoded as rspResourceCompleted. The
value of the userDataCount field shall indicate the number of userDataBytes in the remainder of the
message.

On receipt of ServerAddResourceConfirm with the response field encoded as rspResourceContinue, the
Server shall iterate through the resource list to determine which resources the Network was able to assign as
requested by the Server and which resources the Network has assigned alternate values for. If the Server
accepts the alternate resource values assigned by the Network, the Server shall provision itself to use the
assigned resources for the session and shall send ServerAddResourceRequest to the Network with the
response field encoded as rspResourceCompleted. The Server shall select the value of the transactionId to
be unique within the context of the session. The value of the userDataCount field shall indicate the number
of userDataByte in the remainder of the message.

If the alternate resource values assigned by the Network are unacceptable to the Server, the Server shall
terminate the add resource procedure, the flow shall shift to the “Server terminates resource negotiation”
scenario.

Step 4 (Network):

On receipt of ServerAddResourceRequest with the reason field encoded as rspResourceCompleted, the
Network shall send ClientAddResourceIndication to the Client. The value of the sessionId field shall be
identical to the value received in ServerAddResourceRequest. The value of the resourceCount field shall
indicate the total number of resources being added to the Client side of the session. If there are no
additional resources to be added to the Client side of the session, the Network shall send the
ClientAddResourceIndication message with the resourceCount field set to 0. For each type of resource
added, the Network shall include a resourceDescriptor field. Within each resourceDescriptor:

� The value of the resourceId field shall be assigned by the Network to uniquely identify the
assigned resources for their duration within the session.

� The value of the resourceType field shall be encoded to indicate the specific type of resource being
assigned for the session.

� The value of the resourceLength field shall indicate the number of bytes remaining in the
resourceDescriptor.

� The values of the resource field shall be encoded as appropriate for the specific type of resource
being assigned.

The value of the transactionId field shall be identical to the value of the transactionId field received in the
ServerAddResourceRequest message. The values of the userDataCount and userDataByte fields sent in

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

95

ClientAddResourceIndication shall be identical to those received in the ServerAddResourceRequest
message.

Step 5 (Client):

On receipt of ClientAddResource Indication, the Client shall determine if it is capable of using the
additional resources assigned for the session by the Network. If the Client can use all of the additional
resources, it shall send ClientAddResourceResponse to the Network with the response field set to rspOK.
The value of the transactionId field shall be identical to the value received from the Network. The value of
the userDataCount field shall indicate the number of userDataBytes present in the message. At this point,
the Client shall consider the additional resources as committed to the session.

If the Client cannot use one or more of the additional resources, flow shall shift to the “Client unable to use
additional resources” scenario.

Step 6 (Network):

On receipt of ClientAddResourceResponse message with the response field set to indicate that the Client
accepted the additional resources, the Network shall send ServerAddResourceConfirm to the Server. The
values of the transactionId, userDataCount, and userDataByte fields shall be identical to the values received
from the Client. After sending the message, the Network shall consider the additional resources to be
committed to the session.

Step 7 (Server):

On receipt of ServerAddResourceConfirm, the Server shall consider the additional resources to be
committed to the session.

4.6.3.2 Network Unable to Assign NON-NEGOTIABLE Resource
Step 2 (Network):

If the Network cannot assign the requested values for any resource that the Server has tagged as NON-
NEGOTIABLE or cannot assign any values for one or more resources regardless of how the Server tagged
the resource(s), the Network shall send ServerAddResourceConfirm to the Server. The value of the reason
field shall be set to rsnNeNoResource to indicate that the Network could not assign the requested values for
the resource indicated by the requestId field. The network shall terminate the resource addition at this point.
The session state shall be maintained with the resources that existed before the message was received.

Step 5 (Server):

On receipt of ServerAddResourceConfirm with the reason code set to rsnNeNoResource, the Server shall
terminate resource addition. The session state shall be maintained with the resources that existed before the
procedure was started.

4.6.3.3 Server Terminates Resource Negotiation
Step 3 (Server):

On receipt of ServerAddResourceConfirm with the response field encoded as rspResourceCompleted or
rspResourceContinue, if the Server decides to terminate resource negotiation because one or more resource
values assigned by the Network are unacceptable, the Server shall send ServerProvisionResourceRequest to
the Network. The value of the sessionId field shall be identical to the value received in
ServerAddResourceConfirm, and the reason field shall indicate why the Server has terminated resource
negotiation. The value of the userDataCount field shall be 0 and no userDataByte field shall be included.

Step 4 (Network):

On receipt of ServerProvisionResourceRequest with the reason field set to rsnSeRejResource to indicate
that the resources were rejected, the Network shall terminate the resource addition procedure and send
ServerProvisionResourceConfirm to the Server. The values of the userDataCount and userDataByte fields

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

96

shall be identical to those received in ServerProvisionResourceRequest. At this point, the Network shall
consider the resource addition procedure as terminated. The session state shall be maintained with the
resources that existed before the resource addition procedure was started. Steps 5 and 6 do not occur.

Step 7 (Server):

On receipt of message with the response field set to rsnSeRejResource to indicate that the resource addition
procedure was rejected, the Server shall consider the resource addition procedure as terminated. The session
state shall be maintained with the resources that existed before the resource addition procedure was started.

4.6.3.4 Client Unable to Use Additional Resources
Step 7 (Client):

On receipt of ClientAddResourceIndication, if the Client cannot use one or more of the additional
resources, it shall send ClientAddResourceConfirm to the Network. The value of the sessionId field shall be
identical to the value received in ClientAddResourceIndication, and the reason field shall be set to
rsnClNoResource to indicate that the Client cannot use one or more of the additional resources. At this
point, the Client shall consider the resource addition procedure to be terminated. The session state shall be
maintained with the resources that existed before the resource addition procedure was started.

Step 8 (Network):

On receipt of ClientAddResourceResponse message with the response set to indicate that the Client rejected
the additional resources, the Network shall send ServerProvisionResourceConfirm with the response field
set to indicate that the add resource request was rejected. At this point, the Network shall consider the
resource addition procedure to be terminated. The session state shall be maintained with the resources that
existed before the resource addition procedure was started.

Step 9 (Server):

On receipt of ServerProvisionResourceConfirm with the response field set to indicated that the add resource
request was rejected, the Server shall consider the resource addition procedure to be terminated. The
session state shall be maintained with the resources that existed before the resource addition procedure was
started.

4.6.3.5 Network Unable to Assign NON-NEGOTIABLE Resource
Step 2 (Network):

If the Network cannot assign the requested values for any resource that the Server has tagged as NON-
NEGOTIABLE or cannot assign any values for one or more resources regardless of how the Server tagged
the resource(s), the Network shall send ServerAddResourceConfirm to the Server. The value of the reason
field shall be set to rsnNeNoResource to indicate that the Network could not modify the requested values
for the resource indicated by the requestId field. The network shall terminate the resource addition at this
point. The session state shall be maintained with the resources that existed before the message was received.

Step 5 (Server):

On receipt of ServerAddResourceConfirm with the reason code set to rsnNeNoResource, the Server shall
terminate resource modification. The session state shall be maintained with the resources that existed before
the resource modification procedure was started.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

97

4.6.4 Server Session Delete Resource Command Sequence
Figure 15 illustrates the normal procedure for deleting resources from an existing session.

Client Network Server

ServerDeleteResourceRequest

ServerDeleteResourceConfirm

sessionId
reason
userDataCount
loop(userDataCount, userData)

12

5

sessionId
reason
resourceCount
loop(resourceCount, resourceId)
userDataCount
loop(userDataCount, userData)

ClientDeleteResourceIndication

sessionId
reason
resourceCount
loop(resourceCount, resourceId)
userDataCount
loop(userDataCount, userData)

3

ClientDeleteResourceResponse
4

sessionId
reason
userDataCount
loop(userDataCount, userData)

Figure 15 Sequence of events for Deleting Resources from a Session

Step 1 (Server):

To begin the procedure for deleting resources from a session, the Server shall stop using the resources that
it intends to delete and send ServerDeleteResourceRequest to the Network. The sessionId shall identify the
session from which the resources are to be deleted. The value of the reason field shall indicate why the
Server is deleting the resources from the session. The value of the resourceCount field shall indicate the
number of resourceId fields present in the remainder of the message. The userDataCount and userDataByte
fields shall be set to values which will be passed to the Client in the ClientDeleteResourceIndication
message.

Step 2 (Network):

On receipt of ServerDeleteResourceRequest, the Network shall verify that the session exists and is
associated with the Server. The Network shall also verify that all of the resourceIds are valid for the session.
If these conditions are met, the Network shall send ClientDeleteResourceIndication to the Client. The value
of the sessionId, userDataCount, and userDataByte fields shall be identical to the values received from the
Server. The value of the reason field shall indicate that the Server has requested that the resources be
deleted from the session. The value of the resourceCount field shall indicate the number of resourceId fields
present in the remainder of the message. If the resource deletion procedure does not require any resources to
be deleted from the Client, the resourceCount field shall be set to 0 and no resourceIds shall be included in
the message.

If the sessionId is invalid or not associated with the Server or if any of the resourceIds are invalid or not
connected to the session, flow shall shift to the “Network Rejects Delete Resource” scenario.

Step 3 (Client):

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

98

On receipt of ClientDeleteResourceIndication, the Client shall verify that the session exists. The Client shall
also verify that all of the resourceIds are valid for the session. The Client shall send
ClientDeleteResourceResponse to the Network. The value of the sessionId and transactionId fields shall be
identical to the values received from the Network. The userDataCount and userDataByte fields shall be set
to values which will be passed to the Server in the ServerDeleteResourceConfirm message. At this point,
the Client shall consider the resource deletion procedure completed and shall not use the deleted resources.

If the sessionId is invalid or one or more of the indicated resourceIds is invalid, flow shall shift to the
“Client Rejects Delete Resource” scenario.

Step 4 (Network):

On receipt of ClientDeleteResourceResponse, the Network shall send ServerDeleteResourceConfirm to the
Server. The value of the sessionId, userDataCount, and userDataByte fields shall be identical to the values
received from the Client. At this point the Network shall consider the resource deletion completed and may
release the deleted resources.

Step 5 (Server):

On receipt of ServerDeleteResourceConfirm, the Server shall consider the resource deletion procedure
completed.

4.6.4.1 Network Rejects Delete Resource
Step 2 (Network):

If the requested resources are not valid for the session or server, the Network shall send
ServerDeleteResourceConfirm to the Server. The value of the reason field shall be set to rsnNeNoResource
to indicate that the Network could not delete the requested resources indicated by the resourceId fields. The
network shall terminate the resource deletion at this point. The session state shall be maintained with the
resources that existed before the ServerDeleteResourceRequest was received.

Step 4 (Server):

On receipt of ServerDeleteResourceConfirm with the reason code set to rsnNeNoResource, the Server shall
terminate resource deletion procedure. The session state shall be maintained with the resources that existed
before the resource deletion procedure was started.

4.6.4.2 Client Rejects Delete Resource
Step 3 (Client):

On receipt of ClientDeleteResourceIndication, if the one or more of the resources is invalid, it shall send
ClientDeleteResourceConfirm to the Network. The value of the sessionId field shall be identical to the
value received in ClientDeleteResourceIndication, and the reason field shall be set to rsnClNoResource to
indicate that the Client cannot delete one or more of the indicated resourceIds. At this point, the Client shall
consider the resource deletion procedure to be terminated. The session state shall be maintained with the
resources that existed before the resource deletion procedure was started.

Step 4 (Network):

On receipt of ClientDeleteResourceResponse message with the response set to indicate that the Client
rejected the delete resource command, the Network shall send ServerDeleteResourceConfirm with the
response field set to indicate that the delete resource request was rejected. At this point, the Network shall
consider the resource deletion procedure to be terminated. The session state shall be maintained with the
resources that existed before the resource deletion procedure was started.

Step 5 (Server):

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

99

On receipt of ServerDeleteResourceConfirm with the response field set to indicated that the delete resource
request was rejected, the Server shall consider the resource deletion procedure to be terminated. The session
state shall be maintained with the resources that existed before the resource deletion procedure was started.

4.6.5 Server Session Tear-Down Command Sequence
Figure 16 illustrates the normal procedure for session release initiated by the Server.

Client Network Server

ServerReleaseRequest

ServerReleaseConfirm

sessionId
reason
userDataCount
loop(userDataCount, userData)

12

5

sessionId
reason
userDataCount
loop(userDataCount, userData)

ClientReleaseIndication

sessionId
reason
userDataCount
loop(userDataCount, userData)

3

ClientReleaseResponse

sessionId
reason
userDataCount
loop(userDataCount, userData)

4

Figure 16 Sequence of events for Server initiated session tear-down

4.6.5.1 Server Initiates Release Request
Step 1 (Server):

To start the procedure for releasing an existing session, a Server shall send ServerReleaseRequest to the
Network. The value of the sessionId field shall correspond to an existing session, and the value of the
reason field shall indicate why the Server is releasing the session. The value of the userDataCount field
shall indicate the number of userDataByte present in the message.

Step 2 (Network):

On receipt of ServerReleaseRequest, the Network shall verify that the value of the sessionId field
corresponds to an existing session and the session belongs to the Server. If the sessionId is valid and owned
by the Server, the Network shall send ClientReleaseIndication to the Client. The value of the sessionId field
shall be identical to the sessionId received from the Server, and the value of the reason field shall indicate
that the session is being released at the request of the Server. The values of the userDataCount and
userDataByte fields shall be identical to the values received from the Server.

If the Network determines that the sessionId received in ServerReleaseRequest is invalid or that the Server
does not own the session, flow shall shift to the “Network Rejects ServerReleaseRequest” scenario.

Step 3 (Client):

On receipt of ClientReleaseIndication, the Client shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid, the Client shall first release all resources

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

100

assigned to the session and then send ClientReleaseResponse to the Network. The value of the sessionId
field shall be identical to the value received from the Network, and the value of the userDataCount field
shall indicate the number of userDataByte in the message. At this point, the Client shall consider the session
to be terminated and may release all session resources.

If the Client determines that the sessionId is invalid, flow shall shift to the “Client Rejects
ClientReleaseIndication” scenario.

Step 4 (Network):

On receipt of ClientReleaseResponse, the Network shall release all Client interface resources assigned to
the session and send ServerReleaseConfirm to the Server. The values of the sessionId, userDataCount, and
userDataByte fields shall be identical to the values received in ClientReleaseResponse. At this point, the
Network shall consider the session to be terminated and may release all session resources.

Step 5 (Server):

On receipt of ServerReleaseConfirm, the Server shall release all resources assigned to the session. At this
point, the Server shall consider the session to be terminated and may release all session resources.

4.6.5.2 Network Rejects Server Release Request
Step 2 (Network):

If the Network determines that the value of the sessionId field received in ServerReleaseRequest is invalid
or that the Server is not the owner of the session, the Network shall send ServerReleaseConfirm to the
Server. The value of the sessionId field shall be identical to the value received in ServerReleaseRequest,
and the value of the reason parameter shall indicate that the sessionId is invalid or not owned by the Server.
At this point the session release procedure is terminated. After sending ServerReleaseConfirm, the Network
may take other actions such as initiating an audit with the Server.

Step 3 (Server):

On receipt of ServerReleaseConfirm, the Server shall terminate the session release procedure. The Server
may take other actions such as initiating an audit with the Network or initiating internal diagnostics.

4.6.5.3 Client Rejects Client Release Indication
Step 3 (Client):

If the Client determines that the value of the sessionId field received in ClientReleaseIndication is invalid,
the Client shall send ServerReleaseConfirm to the Network. The value of the sessionId field shall be
identical to the value received in ClientReleaseResponse, and the value of the reason field shall indicate that
the sessionId is invalid. After sending ServerReleaseConfirm, the Client may take other actions such as
initiating an audit with the Network.

Step 4 (Network):

On receipt of ClientReleaseResponse which indicates that the session is invalid, the Network shall release
resources assigned to the session. The Network shall send ServerReleaseConfirm to the Server. The value
of the sessionId field shall be identical to the value received in ClientReleaseResponse since the Network
previously validated it on receipt of ServerReleaseRequest The value of the reason field shall indicate that a
procedure error has occurred with the Client. The value of the userDataCount field shall be 0. At this point,
the Network may consider the release procedure as complete and may release all resources associated with
the session. After sending ServerReleaseConfirm, the Network may initiate an audit with the Client.

Step 5 (Server):

On receipt of ServerReleaseConfirm, the Server shall consider the release procedure as completed and may
release all resources assigned to the session.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

101

4.6.6 Server Continuous Feed Session Tear-Down Command Sequence
After a continuous feed session has been established, it may be terminated using the Server Release
sequence. A Session Tear-Down command sequence for a continuous feed session may be initiated only by
the Server.

Figure 17 describes the sequence of events that occur during a Server initiated tear-down of a continuous
feed session. When the continuous feed session is torn down, any sessions which are connected to the
continuous feed session are first torn down by the Network.

Client Network Server

ServerReleaseRequest

ServerReleaseConfirm

sessionId
reason
userDataCount
loop(userDataCount, userData)

12

4

sessionId
reason
userDataCount
loop(userDataCount, userData)

ClientReleaseIndication*

sessionId
reason
userDataCount
loop(userDataCount, userData)

3

ClientReleaseResponse*
sessionId
reason
userDataCount
loop(userDataCount, userData)

5

* - Indicates that the Network repeats this procedure for each session connected to the CFS.

Figure 17 Sequence of events for Server initiated Continuous Feed Session Tear-Down

4.6.6.1 Server Initiates Continuous Feed Session Release Request
Step 1 (Server):

To start the procedure for releasing a Continuous Feed Session, a Server shall send ServerReleaseRequest
to the Network. The value of the sessionId field shall correspond to an existing continuous feed session, and
the value of the reason field shall indicate why the Server is releasing the session. The value of the
userDataCount field shall indicate the number of userDataByte present in the message.

Step 2 (Network):

On receipt of ServerReleaseRequest, the Network shall verify that the value of the sessionId field
corresponds to an existing session and the session belongs to the Server. If the sessionId is valid and owned
by the Server, the Network shall send ClientReleaseIndication to each Client which is connected to the
continuous feed session. The value of the sessionId field shall be the sessionId of the session which is
connected to the continuous feed session, and the value of the reason field shall indicate that the session is
being released because the continuous feed session to which the session is connected has been released by
the Server. The values of the userDataCount and userDataByte fields shall be identical to the values
received from the Server. The Network does not wait for the ClientReleaseResponse to be received from
each Client before confirming the Server request. After sending the ClientReleaseIndication messages, the
Network shall release all resources assigned to the continuous feed session and send ServerReleaseConfirm
to the Server. The value of the sessionId shall be the sessionId of the continuous feed session, the

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

102

userDataCount shall be set to 0, and no userDataBytes shall be included. At this point, the Network shall
consider the continuous feed session to be terminated and may release all resources for the session.

If the Network determines that the sessionId received in ServerReleaseRequest is invalid or that the Server
does not own the session, flow shall shift to the “Network Rejects ServerReleaseRequest” scenario.

Step 3 (Client):

On receipt of ClientReleaseIndication, the Client shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid, the Client shall first release all resources
assigned to the session and then send ClientReleaseResponse to the Network. The value of the sessionId
field shall be identical to the value received from the Network, and the value of the userDataCount field
shall indicate the number of userDataByte in the message. At this point, the Client shall consider the session
to be terminated and may release all session resources.

If the Client determines that the sessionId is invalid, flow shall shift to the “Client Rejects
ClientReleaseIndication” scenario.

Step 4 (Server):

On receipt of ServerReleaseConfirm, the Server shall release all resources assigned to the session. At this
point, the Server shall consider the continuous feed session to be terminated and may release all session
resources. The Server should also consider all sessions which were connected to the continuous feed session
to be terminated and may release all resources allocated for the sessions.

Step 5 (Network):

On receipt of each ClientReleaseResponse, the Network shall release all Client interface resources assigned
to the session. At this point, the Network shall consider the Client session to be terminated and may release
any client session resources.

4.6.6.2 Network Rejects Server Release Request
Step 2 (Network):

If the Network determines that the value of the sessionId field received in ServerReleaseRequest is invalid
or that the Server is not the owner of the session, the Network shall send [message TBD] to the Server. The
value of the sessionId field shall be identical to the value received in ServerReleaseRequest, and the value
of the reason parameter shall indicate that the sessionId is invalid or not owned by the Server. At this point
the session release procedure is terminated. After sending [message TBD], the Network may take other
actions such as initiating an audit with the Server.

Step 3 (Server):

On receipt of [message TBD], the Server shall terminate the session release procedure. The Server may
take other actions such as initiating an audit with the Network or initiating internal diagnostics.

4.6.6.3 Client Rejects Client Release Indication
Step 3 (Client):

If the Client determines that the value of the sessionId field received in ClientReleaseIndication is invalid,
the Client shall send ClientReleaseResponse to the Network. The value of the sessionId field shall be
identical to the value received in ClientReleaseIndication, and the value of the reason field shall indicate
that the sessionId is invalid. After sending ClientReleaseResponse, the Client may take other actions such as
initiating an audit with the Network.

Step 4 (Network):

On receipt of ClientReleaseResponse which indicates that the session is invalid, the Network shall release
Client resources assigned to the session. At this point, the Network may consider the release procedure as

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

103

complete and may release all Client resources associated with the session. The Network may initiate an
audit with the Client.

4.6.7 Server Session Forward Command Sequence
[to be provided]

4.6.8 Server Session Transfer Command Sequence
[To be provided]

4.7 Network Initiated Command Sequences
The following Network initiated command sequences are defined in this section:

� Session tear-down command sequence.
� Continuous feed session tear-down command sequence.
� Client status request command sequence.
� Server status request command sequence.

4.7.1 Network Initiated Session Tear-Down Command Sequence
Figure 18 illustrates the normal procedure for session release initiated by the Network.

CLIENT NETWORK SERVER

ClientReleaseIndication

ClientReleaseResponse

sessionId
reason
userDataCount
loop(userDataCount, userData)

2 1

3

sessionId
reason
userDataCount
loop(userDataCount, userData)

ServerReleaseIndication

sessionId
reason
userDataCount
loop(userDataCount, userData)

ServerReleaseResponse

sessionId
reason
userDataCount
loop(userDataCount, userData)

4

Figure 18 Sequence of events for Network initiated session tear-down

4.7.1.1 Network Initiates Session Tear-Down
Step 1 (Network):

To start the procedure for releasing an existing session, the Network shall send ClientReleaseIndication to
the Client and send ServerReleaseIndication to the Server. The value of the sessionId field shall correspond
to the existing session that is to be released, and the value of the reason field shall indicate why the Network
is releasing the session. The value of the userDataCount field shall be 0 and no userDataBytes shall be
included.

Step 2 (Client):

On receipt of ClientReleaseIndication, the Client shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid, the Client shall first release all resources
assigned to the session and then send ClientReleaseResponse to the Network. The value of the sessionId
field shall be identical to the value received from the Network, and the value of the userDataCount field

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

104

shall be 0 and no userDataBytes shall be included. At this point, the Client shall consider the session to be
terminated and may release any resources allocated to the session.

If the Client determines that the sessionId is invalid, flow shall shift to the “Client Rejects
ClientReleaseIndication” scenario.

Step 3 (Server):

On receipt of ServerReleaseIndication, the Server shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid, the Server shall first release all resources
assigned to the session and then send ServerReleaseResponse to the Network. The value of the sessionId
field shall be identical to the value received from the Network, and the value of the userDataCount field
shall be 0 and no userDataBytes shall be included. At this point, the Server shall consider the session to be
terminated and may release any resources allocated to the session.

If the Server determines that the sessionId is invalid, flow shall shift to the “Server Rejects Server Release
Indication” scenario.

Step 3 (Network):

On receipt of ClientReleaseResponse, the Network shall release all Client interface resources assigned to
the session.

On receipt of ServerReleaseResponse, the Network shall releases all Server interface resources assigned to
the session.

After both the ClientReleaseResponse and ServerReleaseResponse have been received, the Network shall
consider the session to be terminated.

4.7.1.2 Client Rejects Client Release Indication
Step 2 (Client):

If the Client determines that the value of the sessionId field received in ClientReleaseIndication is invalid,
the Client shall send ClientReleaseResponse to the Network. The value of the sessionId field shall be
identical to the value received in ClientReleaseIndication, and the value of the reason field shall indicate
that the sessionId is invalid. After sending ClientReleaseResponse, the Client may take other actions such as
initiating an audit with the Network.

Step 3 (Network):

On receipt of ClientReleaseResponse, the Network releases all Client interface resources assigned to the
session and terminate the release procedure with the Client. The Network may take other actions such as
initiating an audit with the Client.

4.7.1.3 Server Rejects Server Release Indication
Step 4 (Server):

If the Server determines that the value of the sessionId field received in ServerReleaseIndication is invalid,
the Server shall send ServerReleaseResponse to the Network. The value of the sessionId field shall be
identical to the value received in ServerReleaseIndication, and the value of the reason field shall indicate
that the sessionId is invalid. After sending ServerReleaseResponse, the Server may initiate an audit with the
Network.

Step 5 (Network):

On receipt of ServerReleaseResponse, the Network shall release all Server interface resources assigned to
the session and shall terminate the release procedure with the Server. The Network may take other actions
such as initiating an audit with the Server.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

105

4.7.2 Network Initiated Continuous Feed Session Tear-Down Command
Sequence

The Network may initiate a continuous feed session tear-down sequence using the Server Disconnect
Indication message and the Client Disconnect Indication message.

Figure 19 describes the sequence of events that occur during a Network initiated continuous feed session
tear-down sequence.

CLIENT NETWORK SERVER

ClientReleaseIndication*

ClientReleaseResponse*

session_id
reason
user_data_count
loop(user_data_count, user_data)

2 1

3

session_id
reason
user_data_count
loop(user_data_count, user_data)

ServerReleaseIndication

session_id
reason
user_data_count
loop(user_data_count, user_data)

ServerReleaseResponse

session_id
reason
user_data_count
loop(user_data_count, user_data)

4

* Indicates that this message sequence isrepeated for each session that isconnected to the continuous feed session.

Figure 19 Sequence of events for Network initiated continuous feed session tear-down.

4.7.2.1 Network Initiates Continuous Feed Session Tear-Down
Step 1 (Network):

To start the procedure for releasing a continuous feed session, the Network shall send
ClientReleaseIndication to each Client which is connected to the continuous feed session and send
ServerReleaseIndication to the Server. The value of the sessionId field shall correspond to the existing
session that is to be released in the case of the Client and the continuous feed sessionId in the case of the
Server, and the value of the reason field shall indicate why the Network is releasing the session. The value
of the userDataCount field shall be 0 and no userDataBytes shall be included.

Step 2 (Client):

On receipt of ClientReleaseIndication, the Client shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid, the Client shall first release all resources
assigned to the session and then send ClientReleaseResponse to the Network. The value of the sessionId
field shall be identical to the value received from the Network, and the value of the userDataCount field
shall be 0 and no userDataBytes shall be included. At this point, the Client shall consider the session to be
terminated and may release any resources allocated to the session.

If the Client determines that the sessionId is invalid, flow shall shift to the “Client Rejects
ClientReleaseIndication” scenario.

Step 3 (Server):

On receipt of ServerReleaseIndication, the Server shall verify that the value of the sessionId field
corresponds to an existing session. If the sessionId is valid, the Server shall first release all resources
assigned to the continuous feed session. The Server shall also release all resources for any sessions which

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

106

are connected to the continuous feed session. The Server then sends ServerReleaseResponse to the
Network. The value of the sessionId field shall be identical to the value received from the Network, and the
value of the userDataCount field shall be 0 and no userDataBytes shall be included. At this point, the Server
shall consider the session to be terminated and any sessions connected to the continuous feed session to be
terminated.

If the Server determines that the sessionId is invalid, flow shall shift to the “Server Rejects
ServerReleaseIndication” scenario.

Step 3 (Network):

On receipt of ClientReleaseResponse, the Network shall release all Client interface resources assigned to
the session The Network shall consider the connected session to be terminated..

On receipt of ServerReleaseResponse, the Network shall releases all Server interface resources assigned to
the session. The Network shall consider the continuous feed session to be terminated.

4.7.2.2 Client Rejects Client Release Indication
Step 2 (Client):

If the Client determines that the value of the sessionId field received in ClientReleaseIndication is invalid,
the Client shall send ClientReleaseResponse to the Network. The value of the sessionId field shall be
identical to the value received in ClientReleaseIndication, and the value of the reason field shall indicate
that the sessionId is invalid. After sending ClientReleaseResponse, the Client may take other actions such as
initiating an audit with the Network.

Step 3 (Network):

On receipt of ClientReleaseResponse, the Network releases ant additional resources assigned to the session
and consider the connected session to be terminated. The Network may take other actions such as initiating
an audit with the Client.

4.7.2.3 Server Rejects Server Release Indication
Step 4 (Server):

If the Server determines that the value of the sessionId field received in ServerReleaseIndication is invalid,
the Server shall send ServerReleaseResponse to the Network. The value of the sessionId field shall be
identical to the value received in ServerReleaseIndication, and the value of the reason field shall indicate
that the sessionId is invalid. After sending ClientReleaseResponse, the Server may initiate an audit with the
Network.

Step 5 (Network):

On receipt of ClientReleaseResponse, the Network shall release all resources assigned to the continuous
feed session and shall consider the session to be terminated. The Network may take other actions such as
initiating an audit with the Server.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

107

4.7.3 Network Initiated session list Client Status Command Sequence
Figure 20 illustrates the procedure used by the Network for determining the list of sessions in which the
Client believes it is participating.

CLIENT NETWORK SE

ClientStatusIndication

ClientStatusResponse

statusType
statusCount
loop(statusCount, statusDataByte)

12

3

statusType

Figure 20 Sequence of events for Network Requests Session List Status from Client

4.7.3.1 Network Initiates session list Client Status command sequence
Step 1 (Network):

The network initiates a session audit by issuing a ClientStatusIndication message. The sessionType
indicates that a session list is being requested.

Step 2 (Client):

The Client receives the ClientStatusIndication message and sends a ClientStatusResponse to the Network.
The sessionCount field in the status contains the number of sessions which are active on the Client. A list of
sessionIds follow the sessionCount field. There is one sessionId for each active session on the Client.

Step 3 (Network)

The Network receives the ClientStatusResponse message which terminates the sequence. The network may
use the list of sessions to perform a session audit on the Client.

4.7.4 Network Initiated session list Server Status Command Sequence
Figure 21 illustrates the procedure used by the Network for determining the list of sessions in which the
Server believes it is participating.

NETWORK SERVER

ServerIdentifySessionsIndication

ServerIdentifySessionsResponse

requestId
sessionCount
loop(sessionCount, sessionId)

1 2

3

requestId

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

108

Figure 21 Sequence of events for Network Requests Session List status from Server

4.7.4.1 Network Initiates session list Server Status command sequence
Step 1 (Network):

The network initiates a session audit by issuing a ServerStatusIndication message. The requestId contains a
unique identifier at the Network which will be used to correlate the response.

Step 2 (Server):

The Server receives the ServerStatusIndication message and sends a ServerStatusResponse to the Network.
The requestId contains the requestId that was received in the ServerStatusIndication message. The
sessionCount field contains the number of sessions which are active on the Server. A list of sessionIds
follow the sessionCount field. There is one sessionId for each active session on the Server.

Step 3 (Network)

The Network receives the ServerStatusResponse message which terminates the sequence. The network may
use the list of sessions to perform a session audit on the Server.

4.7.5 Network Initiated Audit of Client Session Command Sequence
Figure 22 illustrates the procedure used by the Network for determining the list of resources that the Client
believes are assigned to a session in which the Client is participating.

CLIENT NETWORK

ClientStatusIndication

ClientStatusResponse

statusType
statusCount
loop(statusCount, status)

12

3

statusType
userDataCount
loop(userDataCount, userData)

Figure 22 Sequence of events for a session audit Client Status by the Network

4.7.5.1 Network Initiates session audit Client Status command sequence
Step 1 (Network):

To start the procedure for determining the list of resources that the Client believes are assigned to a session,
the Network shall send ClientStatusIndication to the Client.

Step 2 (Client):

On receipt of ClientStatusIndication with a valid sessionId, the Client shall determine the resources assigned
to the requested sessions and shall send ClientStatusResponse to the Network. The value of the sessionId
field shall be identical to the value received from the Network. The value of the response field shall indicate
that the sessionId is valid and that the Client is reporting the resources that it believes are assigned. The
value of the resourceCount field shall indicate the number of resource Descriptors in the remainder of the
message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

109

On receipt of ClientStatusIndication with an invalid sessionId, the Client shall send ClientStatusResponse to
the Network. The value of the sessionId field shall be identical to the value received from the Network, and
the response field shall indicate that the sessionId is invalid. The value of the resourceCount field shall be 0.

Step 3 (Network):

On receipt of ClientStatusResponse, the Network shall consider the procedure to be completed and may use
the returned session status to perform an audit on the session.

4.7.6 Network Initiated session audit Server Status Command Sequence
Figure 23 illustrates the procedure used by the Network for determining the list of resources that the Server
believes are assigned to a session in which the Server is participating.

NETWORK SERVER

ServerStatusIndication

ServerStatusResponse
()

1 2

3

()

Figure 23 Sequence of events for a session audit Server Status initiated from the Network

4.7.6.1 Network Initiates session audit Server Status command sequence
Step 1 (Network):

To start the procedure for determining the list of resources that the Server believes are assigned to a session,
the Network shall send ServerStatusIndication to the Server. The value of the sessionId field shall indicate a
session in which the Server is participating.

Step 2 (Server):

On receipt of ServerStatusIndication with a valid sessionId, the Server shall determine the resources
assigned to the session and shall send ServerStatusResponse to the Network. The value of the sessionId
field shall be identical to the value received from the Network. The value of the response field shall indicate
that the sessionId is valid and that the Server is reporting the resources that it believes are assigned. The
value of the clientId shall indicate the Client that the Server believes is participating in the session. If the
session is a continuous feed session, the clientId field shall be set to 0. The value of the resourceCount field
shall indicate the number of resource Descriptors in the remainder of the message.

On receipt of ServerStatusIndication with an invalid sessionId, the Server shall send
ServerSessionStatusResponse to the Network. The value of the sessionId field shall be identical to the value
received from the Network, and the response field shall indicate that the sessionId is invalid. The value of
the resourceCount field shall be 0.

Step 3 (Network):

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

110

On receipt of ServerStatusResponse, the Network shall consider the procedure to be completed and may use
the returned session status to perform an audit on the session.

4.8 Pass-Thru and Broadcast Messages
The Client and the Server may communicate between themselves using the Pass-Thru commands. These
commands pass a message payload through the Network. The Pass-Thru message may be sent in either
direction. The format of the payload of these messages is defined by the User.

Additionally, a Server may broadcast a Pass-Thru message to a subset of the Client population using the
broadcast addressing mode.

4.8.1 ServerPassThru Message sent to a Client
Figure 24 describes a Pass-Thru message which is sent to a Client from a Server.

CLIENT NETWORK SERVER

ClientPassThruIndication

12

3

clientId
serverId
userDataCount
loop(userDataCount, userData)

ServerPassThruRequest

clientId
serverId
userDataCount
loop(userDataCount, userData)

Figure 24 Sequence of events for Server initiated Pass-Thru Message

4.8.1.1 The Server sends a ServerPassThruRequest message to the
Network

Step 1 (Server)

The Server creates a ServerPassThruRequest message which contains the addressMode and destAddress of
the intended Client.

Step 2 (Network)

The Network validates the address mode and destination address. If the address is known to the Network it
creates a ClientPassThruIndication message and delivers it to the indicated Client.

Step 3 (Client)

The Client receives the ClientPassThruIndication messageIndication message and processes it. The payload
of the message is defined by User. There is no specific response to a ClientPassThru message indication.
The Client may reply to a Pass-Thru message by sending a new ClientPassThruRequest message.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

111

4.8.2 ClientPassThru Message sent to a Server
Figure 25 describes a Pass-Thru message which is sent to a Client from a Server.

CLIENT NETWORK SERVER

ServerPassThruIndication

1 2

3

clientId
serverId
userDataCount
loop(userDataCount, userData)

ClientPassThruRequest

clientId
ServerId
userDataCount
loop(userDataCount, userData)

Figure 25 Sequence of events for Client initiated Pass-Thru Message

4.8.2.1 The Client sends a ClientPassThruRequest message to the
Network

Step 1 (Client)

The Client creates a ClientPassThruRequest message which contains the addressMode and destAddress of
the intended Server.

Step 2 (Network)

The Network validates the address mode and destination address. If the address is known to the Network it
creates a ServerPassThruIndication message and delivers it to the indicated Server.

Step 3 (Server)

The Server receives the ServerPassThruIndication message and processes it. The payload of the message is
defined by User. There is no specific response to a Pass-Thru message indication. The Server may reply to a
message by sending a new ServerPassThruRequest message.

4.9 Error Handling
This section to be added

4.10 Timers
The DSM-CC protocol uses timers to help it recover from the unreliable nature of the underlying network.
Upon sending a message, each entity will set a timer whenever the DSM-CC protocol state machine is
expecting a return event. If the timer expires prior to receiving the expected event, the state machine will
assume the event has been lost and initiate recovery. The only exception to this rule is the Network Session
Proceeding timer (tNSesPcd) which is used by the Network to inform the Client that the command sequence
is proceeding and it should reset its inactivity timer.

Timer values are 4 byte fields representing microseconds. The values that the timers are set to are sent to
the Client or Server as part of their U-N Configuration. Provisioning of timers for the Network is a local
matter and is outside the scope of DSM-CC. Refer to [U-N Config section] for a description of the
configuration timer fields.

The following are the defined timer values:

Timer Value Name Description

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

112

tCSesCnf Client is waiting for a ClientSessionSetUPConfirm message
tCRelCnf Client is waiting for a ClientReleaseConfirm message.
tNAddResReq Network is waiting for a ServerAddResourceRequest message.
tNSesPcd Network should send a ClientSessionProceedingIndication message to Client.
tNSSesRsp Network is waiting for a ServerSessionSetUpResponse message.
tNCSesRsp Network is waiting for a ClientSessionSetUpResponse message.
tNDelResRsp Network is waiting for a ClientDeleteResourceResponse message.
tNSRelRsp Network is waiting for a ServerSessionReleaseResponse message.
tNetRel Network is waiting for either a Client or Server SessionRelesaseResponse.
tNSvrRelRsp Network is waiting for a ServerReleaseResponse message during network

initiated session teardown.
tNCliRelRsp Network is waiting for a ClientReleseResponse message during network initiated

session teardown.
tNCIdSes Network is waiting for a ClientIdentifySessions message.
tNSIdSes Network is waiting for a SessionIdentifySessions message.
tNCStat Network is waiting for a ClientStatusConfirm message.
tNSStat Network is waiting for a ServerStatusConfirm message.
tNAddResRsp Network is waiting for a ClientAddResourceResponse message.
tSAddResCnf Server is waiting for a ServerAddResourceConfirm message.
tSSesCnf Server is waiting for a ServerSessionConfirm message.
tSCFSesCnf Server is waiting for A ServerSessionConfirm from a continuous feed request.
tSAddResCnf Server is waiting for a ServerAddResourceConfirm message.
tSDelResCnf Server is waiting for a ServerDeleteResourceConfirm message.
tSSRelCnf Server is waiting for a ServerReleaseConfirm message.
tSCFRelCnf Server is waiting for a ServerReleaseConfirm for a Continuous Feed Session.

4.11 Reason Codes
The following reason codes are defined for use by the U-N messages.

Table 82 User-to-Network reason codes

Reason Value Description

rsnOK 0x0000 This indicates that the command
sequence is proceeding normally

rsnClSessProcced 0x0001 Indicates that the Network is waiting
on a response from the server.

rsnClUnkRequestID 0x0002 Indicates that the Client received a
message which contained an unknown
sessionRequestId.

rsnClNoResource 0x0003 Indicates that the Client rejected a
session set-up because it was unable to
use the assigned resources.

rsnClNoCalls 0x0004 Indicates that the Client rejected a
session set-up because it was not
accepting calls at that time.

rsnNeNoResource 0x0103 Indicates that the network is unable to
assign one or more resources to a
session.

rsnNeNotOwner 0x0104 Indicates that the network is unable to
process a request from a User because
the User is not the owner of the
session.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

113

rsnSeNoResource 0x0201 Indicates that the server is unable to
complete a session set-up because the
required resources are not available.

rsnSeRejResource 0x0202 Indicates that the server rejected the
assigned resources.

4.12 Response Codes
The following response codes are defined for use by the U-N messages.

Table 83 User-to-Network response codes

Response Value Description

rspOK 0x0000 This indicates that the requested
command completed with no errors.

rspNeNoCalls 0x0001 Indicates that the Network is unable to
accept new sessions.

rspNeInvalidClient 0x0002 Indicates that the Network rejected the
request due to an invalid clientId.

rspNeInvalidServer 0x0003 Indicates that the Network rejected the
request due to an invalid serverId.

rspNeNoSession 0x0004 Indicates that the Network rejected the
request because the requested
sessionId did not exist.

rspSeNoCalls 0x0101 Indicates that the Server is unable to
accept new sessions.

rspSeInvalidClient 0x0102 Indicates that the Server rejected the
request due to an invalid clientId.

rspSeNoService 0x0103 Indicates that the Server rejected the
request because the requested service
could not be provided.

rspSeNoCFS 0x0104 Indicates that the Server rejected the
request because the requested
Continuous Feed Session could not be
found.

rspSeNoSession 0x0105 Indicates that the Server rejected the
request because the requested
sessionId did not exist.

rspSeProcError 0x0106 Indicates that the Server generated a
procedure error as the result of a
request.

rspResourceContinue 0x1001 This indicates that a resource request
completed with no errors but, an
assigned resource was assigned an
alternate value by the Network.

rspResourceFailed 0x1002 This indicates that a resource request
failed because the Network was unable
to assign the requested resources.

rspResourceOK 0x1003 Indicates that the requested command
completed with no errors.

rspResourceNegotiate 0x1004 Indicates that the Network was able to
complete a request but has assigned
alternate values to a negotiable field.

rspResourceCompleted 0x1005 Indicates that the Server has accepted

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

114

the resources assigned by the Network.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

115

4.13 User-Network Messages State Tables
[These state table shave been updated to match the current User-Network Command Sequence scenarios
described in a previous section. In addition, the tables include an inactivity recovery timer strategy. Please
note, however, that it is understood that there are still some deficiencies in error detection and recovery.
This is a subject of further work.]

[The state tables currently assume that a single transactionId is used throughput an entire Command
Sequence rather than on a per request/response and indication/confirm pairing basis as agreed to in
Boston. This will be updated in the future.]

The purpose of the state tables is to provide a more precise description of the U-N messages protocols.
They describe the state of a DSM-CC Session: the events that occur in the protocols, the actions taken,
timer management, and the resultant state. It is not the intent of these tables to rigorously define each
condition met and action performed, but instead provide a framework for understanding the control and
operation of the DSM-CC U-N protocol and help insure that the protocol is complete. Specific actions such
as resource allocation are described only in general terms by the tables and referenced to the appropriate
sections of this Recommendation for a full description.

There are three interacting state tables, one for each Client, Server and Network portion of a session. Each
session runs an instance of the state tables with their own state variables and timers. These instances are
independent of other sessions which may be running concurrently with them.

It is assumed that each Client, Network and Server entity has an entity-wide state machine which controls
the operation of that entity and defines when the entity is available for the creation and operation of
sessions, and when it is unavailable for such activities. For instance, an entity that is in the middle of a U-N
config may not be in the proper state to accept new sessions until the configuration step is complete. It is
outside the scope of this section to describe these entity-wide state machines and assumes that the Client,
Network, or Server entity are in a state which allows for session creation and operation.

[Table numbering “X-n” needs to be updated, and cross referenced with corresponding table captions.]

The state tables are depicted in Tables X-6 (Client), X-12 (Network), and X-18 (Server). Each state table
entry consists of a:

• Current State Field

• Incoming Event Field

• Extra Conditions Field

• Actions Performed Field

• Timer Management (Start Timers Field, Stop Timers Field)

• Next state Field

The states are represented in their abbreviated names as described in Tables X-2, X-8, and X-14. If more
than one state is present in the Current State field, then the entry pertains to any of the states specified.

Incoming events are represented in their abbreviated name as described in Tables X-1, X-7, and X-13.
Internal events, such as a request initiated by a entity user, or a timer expiring will be enclosed in square
brackets, []. If more than one event is present in the Incoming Event field, then the entry pertains to any of
the Incoming events specified.

Conditions, if present, will be a sequence of predicates which may be joined by logical operators. In
keeping with ISO 13818-1, symbols similar to the C programming language will be used:

&& Logical AND.

|| Logical OR.

! Logical NOT.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

116

The conditions will be represented by abbreviated terms as described in Tables X-3, X-9, and X-15.

Unless otherwise specified, it is always assumed that the incoming event will be checked and validated as
follows:

• If it is a message, that the message syntax is verified against the definitions in section 2.3.1.

• If the message has a transactionId, that it is valid and represents an active request.

• If the message has a sessionid, that it is valid and represents a known session.

• If the message has a response field, that its value is in accordance with the expected value in
section 2.3.

• If the message has a reason field, that its value is in accordance with the expected value in
section 2.3.

Actions are represented by abbreviated terms as described in Tables X-4, X-10, and X-16. There may be
several actions performed per incoming event. Action entries may also include a reference to a section
which better describes the specifics of actions to be performed. These references will be in parenthesis, ().

Timers are represented by their abbreviated names as described in Tables X-6, X-11, and X-17. If more
than one entry is present in the Start Timers field, then all timers specified should be started. If more than
one entry is present in the Stop Timers field, then any of the timers defined which are active should be
stopped. A Reset of a timer value is represented by that timer being present in both the Stop Timers and
Start Timers fields of an entry.

Table 84. Session Incoming Events

 Event Name Description

 [initiate-ses] Client-initiated request for a session.

 [initiate-cf-ses] Client-initiated request for attachment to a continuous
feed session.

 [initiate-rel] Client-initiated request for session release.

 [timer expire] A timer expired.

 [initiate-svr-
stat]

 Network initiates a ServerStatusRequest.

 [initiate-cli-stat] Network initiates a ClientStatusRequest.

 [initiate-svr-id-
req]

 Network initiates a ServerIdentifySessionsRequest.

 [initiate-cli-id-
req]

 Network initiates a ClientIdentifySessionsRequest.

 [initiate-add-
res]

 Server-initiated request to add resources to an existing
session.

 [initiate-del-res] Server-initiated request to delete resources from an
existing session.

 CliSesInd Received a ClientSessionIndication from the Network.

CliSesProceedin
g

 Received a ClientSessionProceeding from the Network.

 CliSesCnf Received a ClientSessionConfirm from the Network.

 CliStatInd Received a ClientStatusIndication from the Network.

 CliIdSesInd Received a ClientIdentifySessions Indication from the

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

117

Network.

 CliRelInd Received a ClientReleaseIndication from the Network.

 CliDelResInd Received a ClientDeleteResourceIndication from the
Network.

 CliAddResInd Received a ClientAddResoureIndication from the
Network.

 CliRelCnf Received a ClientReleaseConfirm from the Network.

 CliSesReq Received a ClientSessionRequest message.

 CliSesRsp Received a ClientSessionResponse message.

 CliRelReq Received a ClientReleaseRequest message.

 CliConnectReq Received a ClientConnectRequest message.

 CliStatRsp Received a ClientStatusResponse message.

 CliIdSesRsp Received a ClientIdentifySessionsResponse message.

 CliRelRsp Received a ClientReleaseResponse message.

CliSesDelResRsp
 Received a ClientDeleteResourceResponse message.

 SvrSesReq Received a ServerSessionRequest message.

 SvrCFSesReq Received a ServerContinuousFeedSessionRequest
message.

 SvrDelResReq Received a ServerDeleteResourceRequest message.

 SvrRelReq Received a ServerReleaseRequest message.

 SvrSesRsp Received a ServerSessionResponse message.

 SvrRelRsp Received a ServerReleaseResponse message.

 SvrAddResReq Received a ServerAddResourceRequest message.

 SvrStatRsp Received a ServerStatusResponse message.

 SvrIdSesRsp Received a ServerIdentifySessionsResponse message.

 SvrSesInd Received a ServerSessionIndication message.

 SvrStatInd Received a ServerStatusIndication message.

 SvrIdSesInd Received a ServerIdentifySessionsIndication message.

 SvrRelInd Received a ServerReleaseIndication message.

 SvrConnectInd Received a ServerConnectIndication message.

 SvrSesCnf Received a ServerSessionConfirm message.

 SvrDelResCnf Received a ServerDeleteResourceConfirm message.

 SvrRelCnf Received a ServerReleaseConfirm message.

 SvrAddResCnf Received a ServerAddResourceConfirm message.

Table 85. Client Session States

 State Name Description

 CSIdle Client is Idle. Ready to receive/initiate sessions or provide status
information to the Network.

 WFCSCnf Client has initiated a session request and is waiting for a reply.

 CSActive A client session has been created and is active.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

118

 WFCRelCnf Client has initiated a release of the active session and is waiting for a reply.

Table 86. Network Session States

 State Name Description

 NSIdle Network Session is Idle. Ready to receive session requests or pass-through
messages.

 NSActive The Network sessionId is active

 WFSesRsp The Network is waiting for a ServerSessionResponse during session
establishment.

 WFCSRelRsp The Network is waiting for a ClientReleaseResponse and a
ServerReleaseResponse during network-initiated session tear-down.

 WFSRelRsp1 The Network is waiting for a ServerReleaseResponse. The Client will not need
to be informed of the session release.

 WFSRelRsp2 The Network is waiting for a ServerReleaseResponse. The Client will need to be
informed of the session release.

 WFCSRsp The Network is waiting for a ClientSessionResponse during session
establishment.

 WFCAddResRsp The Network is waiting for a ClientAddResourceResponse.

 WFCRelRsp1 The Network is waiting for a ClientReleaseResponse. The Server does not need
to be informed of the session release.

 WFCRelRsp2 The Network is waiting for a ClientReleaseResponse. The Server still needs to
be informed of the session release.

 WFCRelRsp3 The Network is waiting for ClientReleaseResponses from all the Clients
attached to a torn-down continuous feed session.

 WFCDelResRsp The Network is waiting for a ClientDeleteResourceResponse.

 WFSStatRsp The Network is waiting for a ServerStatusResponse.

 WFCStatRsp The Network is waiting for a ClientStatusResponse.

 WFSIdSesRsp The Network is waiting for a ServerIdentifySessionsResponse.

 WFCIdSesRsp The Network is waiting for a ClientIdentifySessionsResponse.

Table 87. Server Session States

 State Name Description

 SSIdle Server sessionId is idle.

 SSActive Server sessionId identifies an active session.

 WFSSCnf Server is waiting for a ServerSessionConfirm message during session
establishment.

 WFSDelResCnf Server is waiting for a ServerDeleteResourceConfirm message.

 WFSRelCnf Server is waiting for a ServerReleaseConfirm during session release.

 WFSAddResCnf Server is waiting for a ServerAddResourceConfirm message

Table 88. State Table Conditions

 Abbreviation Description

 resources Resources in resource list are valid and can be allocated to the session.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

119

acceptable

 user data Client has user data to send

 valid sessionId The sessionId in the received message is known to the Client.

 valid
transactionId

 The transactionId field in the received message is known to the Client

 valid clientId The clientId is known to the Server and has the correct privileges.

 valid serverId The serverId is the Server’s

 support new
session

 The Server is capable of supporting a new session.

 CF session The session in question is a continuous feed session.

 reject response
field

 Response field of the received message indicates that the corresponding
request was rejected by the Network or the Server.

 rsnXXXX Set the reason field in the message being sent to the value rsnXXXX.

 rspXXXX Set the response field in the message being sent to the value rspXXXX.

 valid resources ResourceIds in the resource list are valid and can be provisioned
according to the conventions in the protocol for the U-N primitive
sequence being executed.

 last CF client there is only one Client attached to the continuous feed session in
question.

 Clients The continuous feed session has at least one Client.

Table 89. Session Actions

 Action
Abbreviation

 Description

 CliSesReq Send ClientSessionRequest message to the Network.

 CliSesRsp Send a ClientSessionResponse message to the Network.

 CliConnectReq Send a ClientConnectRequest message to the Network.

 CliStatRsp Send a ClientStatusResponse message to the Network.

 CliIdSesRsp Send a ClientIdentifySessionsResponse message to the Network.

 CliRelReq Send a ClientReleaseRequest message to the Network.

 CliRelRsp Send a ClientReleaseResponse message to the Network.

 CliDelResRsp Send a Client Session Delete Resources Response message to the
Network.

 CliAddResRsp Send a ClientAddResourcesResponse message to the Network.

 allocate
transactionId

 Select a unique transactionId.

 free transactionId Free the transactionId. transactionId values should be “frozen” for a
period of time so that there are no collisions of packets with the same
transactionIds.

 continuous feed Set up UserData field to indicate this is a continuous feed session

 reject response Set the value of the response field in the message being sent to a value
which indicates that the corresponding request message was rejected.

 provision Provision Client to use the resources as requested in previous

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

120

resources primitives.

 free sessionId if
enabled

 Invalidate sessionId for subsequent messages for some period of time.
This may be done by the client, network or server depending on which
has been configured to do so.

 free resources Client will discontinue use of indicated resources.

 rsnXXXX Set the reason field in the message being sent to the value rsnXXXX.

 rspXXXX Set the response field in the message being sent to the value rspXXXX.

 SvrSesReq Send a ServerSessionRequest message.

 SvrIdSesRsp Send a ServerIdentifySessionsResponse message.

 SvrStatRsp Send a ServerStatusResponse message

 SvrRelReq Send a ServerReleaseRequest message.

 SvrResRsp Send a ServerResourceResponse message.

 SvrRelRsp Send a ServerReleaseResponse message.

 SvrDelResReq Send a ServerDeleteResourceRequest message.

 SvrAddResReq Send a ServerAddResourceRequest message.

 allocate sessionId
if enabled

 Allocate a unique sessionId value for the created session. This may be
done by the client, network or server depending on which is configured
to do so.

 provision Server
res.

 Provision resources for the Server part of the session.

 provision Client
res.

 Provision resources for the Client part of the session

 provision
resources

 Provision resources as requested in the current U-N primitive sequence.

 free Server
resources

 Free resources used by the Server part of the session.

 free Client
resources

 Free resources used by the Client part of the session.

4.13.1 Client-Related State Tables
Table 90. Client Initiated Session Set-Up Command Sequence

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 CSIdle [initiate-ses] allocate

transactionId

CliSesReq

 tCSesCnf WFCSCnf

CliSesProceeding

CliSesCnf

unknown transactionIdCliRelReq

rsnClUnkTransID

CSIdle

WFCSCnf CliSesProceeding tCSesCnf tCSesCnf WFCSCnf

 [tCSesCnf] free transactionId CSIdle

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

121

 CliSesCnf !resources acceptable CliRelReq

rsnClNoResource

free transactionId

 tCSesCnf CSIdle

reject response field free transactionId tCSesCnf CSIdle

resources acceptable

&& !user data

free transactionId tCSesCnf CSActive

resources acceptable

&& user data

CliConnectReq

free transactionId

 tCSesCnf CSActive

CSActive CliSesProceeding

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 NSIdle CliSesReq valid clientId &&

valid serverId &&

support new session

allocate sessionId if

enabled

SvrSesInd

tNAddResRe

q

tNSesPcd

WFSAddResReq

!valid clientId ||

!serverId ||

!support new session

 CliSesCnf NSIdle

 WFSSesRsp SvrSesRsp rspResourceCompleted provision resources

CliSesCnf

tNSSesRsp NSActive

!rspResourceCompleted CliSesCnf tNSSesRsp NSIdle

 [tNSSesRsp] free sessionId if

enabled

CliSesCnf

rspTimeExpire

 NSIdle

 WFSAddResReq [tNSesPcd] CliSesProceeding tNSesPcd WFSAddResReq

[tNAddResReq] free sessionId if

enabled

tNSesPcd NSIdle

SvrSesRsp CliSesCnf

rspOK

tNSesPcd

tNAddResRe

q

NSActive

rspSeNoCalls CliSesCnf

rspSeNoCalls

tNSesPcd

tNAddResRe

q

SvrAddResReq SvrAddResCnf

allocate Server res.

tNSesPcd tNSSesRsp WFSSesRsp

!valid resources SvrAddResCnf

rsnNeNoResource

tNSesPcd tNSSesRsp WFSSesRsp

reject response field CliSesCnf

free sessionId

tNSesPcd

tNAddResRe

q

NSIdle

NSActive CliConReq SvrConInd NSActive

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

122

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 SSIdle SvrSesInd valid clientId &&

valid serverId &&

support new session

&&

resources to provision

||

CF Session

 SvrAddResReq tSAddResCn

f

WFSAddResCnf

2

valid clientId &&

valid serverId &&

support new session

&&

!resources to provision

SvrSesRsp

rspOK

SSActive

!valid clientId ||

!valid serverId ||

!support new session

SvrSesRsp

rspSeNoCalls

SSIdle

WFSAddResCnf2 SvrAddResCnf SvrSesRsp

provision resources

tSAddResCn

f

SSActive

 !valid resources SvrSesRsp

reject response field

tSAddResCn

f

SSIdle

 rspNeNoResource SvrSesRsp

rspSeNoResource

tSAddResCn

f

SSIdle

 [tSAddResCnf] tSAddResCn

f

SSIdle

 SSActive

Table 91. Client Connection to a Continuous Feed Session Command Sequence

Same as Client SessionSetup Command Sequence.

Table 92. Client Initiated Session Tear-Down Command Sequence

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 CSActive [initiate-rel] CliRelReq

allocate

transactionId

free resources

tCRelCnf WFCRelCnf

WFCRelCnf CliRelCnf free sessionId tCRelCnf CSIdle

[tClRelCnf] free sessionId CSIdle

CliRelInd rsnUnknownSessionId free sessionId

Audit procedures

tCRelCnf CSIdle

CSIdle

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

123

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

NSActive CliRelReq SvrRelInd

free Client resources

tNSRelRsp WFSRelRsp1

 WFSRelRsp1 SvrRelRsp free sessionId if

enabled

free resources

CliRelCnf

tNSRelRsp NSIdle

rspUnknownSessionId free sessionId if

enabled

free Server resources

CliRelCnf

tNSrelRsp NSIdle

 [tNSRelRsp] free sessionId if

enabled

free Server resources

CliRelCnf

 NSIdle

NSIdle CliRelReq invalid sessionId CliRelInd

rsnUnknownSessionI

d

NSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 SSActive SvrRelInd free resource

SvrRelRsp

SSIdle

 SSIdle SvrRelInd unknown sessionId SvrRelRsp

rspUnknownSessionI

d

SSIdle

Table 93. Client Continuous Feed Session Tear-Down Command Sequence

Same as Client Session Tear-Down Command Sequence.

4.13.2 Server- Related State Tables
Table 94. Server Initiated Session Set-Up Command Sequence

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

CSIdle CliSesInd !resources acceptable CliSesRsp

reject response

CSIdle

valid clientId &&

valid sessionId &&

resources acceptable

 CliSesRsp CSActive

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

124

 NSIdle SvrSesReq valid serverId &&

valid clientId &&

support new session

allocate sessionId if

enabled

CliSesInd

tNCSesRsp WFCSesRsp

!valid serverId ||

!valid clientId ||

!support new session

SvrSesCnf

reject response field

NSIdle

 WFCSesRsp CliSesRsp SvrSesCnf tNCSesRsp NSActive

reject response field SvrSesCnf

reject response field

free sessionId if

enabled

 tNCSesRsp NSIdle

 [tNSCnReq] free sessionId if

enabled

CliRelInd

SvrRelInd

 NSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

SSIdle [initiate-ses] allocate transactionId

allocate sessionId if

enabled

SvrSesReq

 tSSesCnf WFSSesCnf

WFSSesCnf SvrSesCnf tSSesCnf SSActive

!valid resources ||

reject response field

free sessionId if

enabled

free transactionId

tSSesCnf SSIdle

 [tSSesCnf] free sessionId if

enabled

free transactionId

SSIdle

SSActive

Table 95. Server Continuous Feed Session Set-Up Command Sequence

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

NSIdle SvrCFSesReq valid serverId &&

valid clientId &&

valid resources&&

support CF session

allocate sessionId if

enabled

SvrSesCnf

 NSActive

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

125

!valid serverId ||

!valid clientId ||

!valid resources ||

!support CF session

SvrSesCnf

reject response field

 NSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

SSIdle [initiate-cf-ses] allocate transactionId

allocate sessionId if

enabled

SvrCFSesReq

 tSCFSesCnfWFCFSesCnf

WFCFSesCnf SvrSesCnf tSCFSesCnf SSActive

 !valid resources ||

reject response field

free transactionId

free sessionId if

enabled

tSCFSesCnf SSIdle

 [tSCFSesCnf] free transactionId SSIdle

 SSActive

Table 96. Server Initiated Add Resource Command Sequence

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 CSActive CliAddResInd resources acceptable CliAddResRsp CSActive

!resources acceptable CliAddResRsp

rspCLNoResource

 CSActive

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 NSActive SvrAddResReq CliAddResInd tNAddResR

sp

 WFSPrvResReq

!valid resources SvrAddResCnf

rspNeNoResource

 NSActive

 WFCAddResRsp CliAddResRsp SvrAddResCnf

provision resources

tNAddResRs

p

 NSActive

 rspClNoResources SvrAddResCnf

free new resources

tNAddResRs

p

 NSActive

 [tNAddResRsp] free transactionId

!provision resources

 NSActive

 NSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

126

SSActive [initiate-add-res] allocated

transactionId

SvrAddResReq

tSAddResCn

f

WFSAddResCnf

2

WFSAddResCnf2 SvrAddResCnf provision resources tSAddResC

nf

SSActive

 rspNeNoResource !provision resources tSAddResC

nf

SSActive

 [tSAddResCnf] !provision resources

free transactionId

SSActive

Table 97. Server Session Delete Resources Command Sequence

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 CSActive CliDelResInd valid resources CliDelResRsp

free resources

 CSActive

 !valid resources CliDelResRsp

rspClRejResource

 CSActive

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 NSActive SvrDelResReq CliDelResInd

tNDelResRs

p

WFCDelResRsp

!valid resource SvrDelResCnf

rspNeNoResource

 NSActive

 WFCDelResRsp CliDelResRsp free transactionId

SvrDelResCnf

free resources

tNDelResRs

p

 NSActive

 rspClNoResource free transactionId

SvrDelResCnf

rspClNoResource

!free resources

tNDelResRs

p

 NSActive

 [tNDelResRsp] free transactionId

SvrDelResCnf

rspTimeExpire

!free resources

 NSActive

 NSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 SSActive [initiate-del-res] allocate transactionId

SvrDelResReq

free resources

tSDelResCnf

 WFSDelResCnf

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

127

 WFSDelResCnf SvrDelResCnf free transactionId

tSDelResCn

f

 SSActive

rspNeNoResource ||

rspClNoResource

!free resources

free transactionid tSDelResCn

f

 SSActive

 [tSDelResCnf] !free resources

free transactionId

 SSActive

 SSIdle

Table 98. Server Iniatiated Session Tear-Down Command Sequence

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 CSActive CliRelInd free resources

CliRelRsp

 CSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 NSActive SvrRelReq CliRelInd tNCliRel WFCRelRsp2

 !valid serverId SvrProcErr NDiagnostic

 WFCRelRsp2 CliRelRsp

CliProcErr

SvrRelCnf

free all resources

 tNCliRel NSIdle

 [tNCliRel] free all resource NSIdle

 NSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 SSActive [initiate-ses-rel] allocate transactionId

SvrRelReq

 tSSRelCnf WFSRelCnf

 WFSRelCnf SvrRelCnf free resources

free transactionId

free sessionId if

enabled

 tSSRelCnf SSIdle

 [tSSesRel] free resources

free transactionId

free sessionId if

enabled

 tSSRelCnf SSIdle

 SSIdle

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

128

Table 99. Server Continuous Feed Session Tear-Down Command Sequence

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 CSActive CliRelInd free resources

CliRelRsp

 CSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

NSActive SvrRelReq CliRelInd

tNCliRelRsp

 WFCRelRsp3

 CF session CliRelInd all Clients

SvrRelCnf

free resources

tNCFRelRsp

 WFCRelRsp3

 CF session &&

!Clients

free resources

SvrRelCnf

 NSIdle

 WFCRelRsp3 CliRelRsp !last CF Client

tNCliRelRsptNCliRelRsp

 WFCRelRsp3

 last CF Client free sessionId

tNCliRelRsp

 NSIdle

 [tNCliRel] free sessionId NSIdle

 WFCSRelRspCF [tNCFRel] free sessionId

free resources

 NSIdle

 CliRelRsp last Client free Client resources

tNCFRelRsptNSvrRelRs

p

 WFSRelRsp1

 !last Client WFCSRelRspCF

 SvrRelRsp free Server resources

tNCFRelRsptNCliRelRsp

 WFCRelRsp3

 CliProcErr last Client free Client resources

tNCFRelRsptNSvrRelRs

p

 WFSRelRsp1

 !last Client WFCSRelRspCF

 SvrProcErr free Server resources

tNCFRelRsptNCliRelRsp

 WFCRelRsp3

 NSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

SSActive [initiate-cf-ses-rel] allocate transactionId

SvrRelReq

tSCFRelCnf WFSRelCnf

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

129

 WFSRelCnf SvrRelCnf free resources

free sessionId if

enabled

free transactionId

 tSCFRelCnf SSIdle

[tSSesRel] free resources

free sessionId if

enabled

free transactionId

 tSCFRelCnf SSIdle

SSIdle

4.13.3 Network-Related State Tables
Table 100. Network Initiated Session Tear-Down Command Sequence

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

CSActive CliRelInd free resources

CliRelRsp

 CSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 NSActive [initiate-rel] allocate transactionId

CliRelInd

SvrRelInd

tNetRel WFCSRelRsp

 WFCSRelRsp CliRelRsp free Client resources tNetRel tNSvrRelRspWFSRelRsp1

SvrRelRsp free Server resources tNetRel tNCliRelRsp WFCRelRsp1

[tNetRel] free resources

free sessionId if

enabled

free transactionId

NSIdle

 WFSRelRsp1 SvrRelRsp free sessionId if

enabled

free Server resources

free transactionId

tNSvrRelRsp NSIdle

[tNSvrRelRsp] free sessionId if

enabled

free Server resources

free transactionId

NSIdle

WFCRelRsp1 CliRelRsp free sessionId if

enabled

free Client resources

free transactionId

tNCliRelRsp NSIdle

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

130

[tNCliRelRsp] free sessionId if

enabled

free Client resources

free transactionId

NSIdle

 NSIdle

Current State Event Conditions Actions Stop

Timers

 Start

Timers

 Next State

 SSActive SvrRelInd free resources

SvrRelRsp

 SSIdle

SSIdle

Table 101. Network Initiated Continuous Feed Session Tear-Down Command Sequence

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 CSActive CliRelInd free resources

CliRelRsp

 CSIdle

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 NSActive [inititate-rel] CF session allocate transactionId

CliRelInd all Clients

SvrRelInd

tNetRel

WFCSRelRspCF

 CF session &&

!Clients

allocated

transactionId

SvrRelInd

tNSvrRelRsp WFSRelRsp1

 WFCSRelRspCF CliRelRsp last Client free Client’s

resources

tNSvrRelRspWFSRelRsp1

 !last Client free Client’s

resources

tNetRel tNetRel WFCSRelRspCF

 SvrRelRsp free Server resources tNetRel tNCliRelRsp WFCRelRsp3

 [tNRelCF] free sessionId if

enabled

free resources

free transactionId

NSIdle

 WFSRelRsp1 SvrRelRsp free sessionId

free Server resources

free transactionId

tNSvrRelRsp NSIdle

 [tNSvrRelRsp] free sessionId

free Server resources

free transactionId

 NSIdle

 WFCRelRsp3 CliRelRsp !last CF Client free Client’s

resources

tNCliRelRsp tNCliRelRsp WFCRelRsp3

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

131

 last CF Client free Client’s

resources

free sessionId if

enabled

free transactionId

tNCliRelRsp NSIdle

 [tNCliRel] free resources

free sessionId if

enabled

free transactionId

NSIdle

 NSIdle

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 SSActive SvrRelInd free resource

SvrRelRsp

 SSIdle

SSIdle

Table 102. Network Initiated Client Session List Command Sequence

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 CSIdle CliIdSesInd CliIdSesRsp CSIdle

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 NSIdle SvrIdSesRsp

CliIdSesRsp

SvrStatRsp

 !valid transactionId NSIdle

 [initiate-cli-id-

ses]

allocate transactionId

CliIdSesInd

 tNCIdSes WFCIdSesRsp

 WFCIdSesRsp CliIdSesRsp free transactionId tNCIdSes NSIdle

 [tNCIdSes] free transactionId NSIdle

Table 103. Network Initiated Server Session List Command Sequence

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 NSIdle SvrIdSesRsp

CliIdSesRsp

 !valid transactionId NSIdle

 [initiate-svr-id-

ses]

allocate transactionId

SvrIdSesInd

 tNSIdSes WFSIdSesRsp

 WFSIdSesRsp SvrIdSesRsp free transactionId tNSIdSes NSIdle

 [tNSIdSes] free transactionId NSIdle

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

132

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 SSIdle SvrIdSesInd SvrIdSesRsp SSIdle

Table 104. Network Initiated Audit of Client Session Command Sequence

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 CSIdle CliStatInd CliStatRsp CSIdle

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 NSIdle [initiate-cli-stat] allocate transactionId

CliStatInd

 tNCStat WFCStatRsp

 WFCStatRsp CliStatRsp free transactionId tNCStat NSIdle

 [tNCStat] free transactionId NSIdle

Table 105. Network Initiated Audit of Server Session Command Sequence

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 NSIdle [initiate-svr-stat] allocate transactionId

SvrStatInd

 tNSStat WFSStatRsp

 WFSStatRsp SvrStatRsp free transactionId tNSStat NSIdle

 [tNSStat] free transactionId NSIdle

 NDiagnostic

Current State Event Conditions Actions Stop Timers Start

Timers

 Next State

 SSIdle SvrSesInd valid clientId &&

valid serverId &&

support new session

 SvrSesRsp

(2.3.5.1.1)

 tSSesInd WFSResInd

 SvrStatInd !valid sessionId SvrStatRsp SSIdle

 SDiagnostic SvrStatInd SvrStatRsp SDiagnostic

5. User-to-User Interface

5.1 Introduction
This section of the ISO/IEC 13818-6 standard defines a framework and basic set of interfaces which
support the life cycles of MPEG multimedia applications in a heterogeneous network environment. In order
to enable the installation and usage of multimedia applications, a minimal set of basic access primitives are
deemed necessary. These include interfaces for fundamental service types: directories, streams, files and
data objects. The User-to-User primitives are concerned with ISO layer 7 application-specific interfaces
only. Informative annexes will describe RPC and other ISO layer 6-1 implementations.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

133

The primitives described herein are considered to define key interfaces for interoperability between clients
and services, and key interfaces for portability of client applications. It is a goal of this framework and
associated user-to-user primitives to enable information providers to load content into services, and to
enable client applications to retrieve that content, in a way that is fully interoperable.

5.1.1 Scope
This section specifies the following:

� User-to-User System Environment

� DSM Library Common Definitions

� Application Runtime Procedures

� The Core Client-Service Interfaces

� The Extended Client-Service Interfaces

� The Application Portability Interfaces

5.1.2 Requirements
The DSM User-to-User primitives set is viewed as enabling a wide-range of multimedia applications to run
using the MPEG delivery system in heterogeneous environments. As such, it is within the scope of the
ISO/IEC 13818-6 charter. They are a minimum set of primitives for efficient operation over networks that
may have a long latency between client and service, limited client storage and limited network request path
bandwidth. The User-to-User primitives provide a consistent, unified interface for commonly-used
multimedia types, and for the usage of a system whereby services may be registered, browsed, activated and
accessed.

Application requirements drive the need for the DSM interfaces. Applications that expect to run in the DSM
system environment include:

� Movies On Demand
� Movie Listing
� Tele-shopping
� Near Movies On Demand
� News on Demand
� Karaoke On Demand
� Games
� Tele-medicine
� Distance Learning,
� and others

Use of DSM by MHEG requires access to multimedia data objects, particularly remote access of streams,
files and composite objects. Composite objects must be accessed in such a way that certain sub-objects will
return a remote reference and other sub-objects will return data.

Interoperability in a heterogeneous environment requires that service and asset brokers be implemented.
Key functions of these brokers are a) directories where objects can be browsed and requested, b)
authentication of client and authorization of end-user, and finally c) a translation of the request into one of
many possible heterogeneous service or asset instances.

It is a requirement that this system framework and interface support a settop client, where there is typically
limited memory and no disk. While the interfaces are simplified to accomplish this, they may also be
extended to support clients with more capabilities and resources. These primitives are defined in a way to
allow the settop client to act as a stub to brokers in the service gateway and services. When it wishes access
to an object, the stub asks for it by name (as in Open or Get), and the broker, which is not in the settop

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

134

client, resolves which instance is to be used and returns the corresponding object reference or data to the
client. The minimal client using these primitives will not be a name service, perform authentication or
authorization, or choose which instance of service or asset to connect to. These functions will be performed
by service brokers and asset brokers on the server side of the network.

The interfaces must allow for loading of services and content into the system as well as access by end-users.

The primitives must provide secure access based ownership, administrative, broker, writer and reader
privileges.

Password and encryption access control must be implemented to prevent unauthorized updates or access.

The framework must allow for extensibility, where existing interfaces can be augmented and new interfaces
added.

Functions will be specified in OMG IDL (ISO/IEC 14750) to permit use in multiple RPC and language
environments, including, but not limited to UNO, ONC, DCE, C++ and C. Moreover, it is desirable that this
specification be extensible so as to be operable in a CORBA system environment.

It is desirable that this specification be used in the C programming environment. As such, primitives will
also be specified with normative C syntax, which is the result of C source generation from the
corresponding IDL. Rules for translation from IDL to C will be specified or referenced.

The interfaces must address the network latency issue (client-server), by supporting synchronous deferred
pipelining of requests. This will enable applications to prefetch information and prepare services in advance
of the time needed to present results to the end-user. This will also assure that access is not blocked
unnecessarily due to another outstanding request, by permitting multiple parallel requests to potentially
multiple separate heterogeneous destinations.

It is required that the interfaces specified herein be consistent and simple, while not sacrificing the
overriding need to address network latency. The interfaces may package other standard semantics and
syntax (e.g., OMG IDL and SQL statement) in such a way as to provide a unified interface for MPEG
digital storage operations. For example, a SQL statement may be packaged in an synchronous deferred,
pipelined primitive.

5.1.3 Typographical Conventions
The type styles shown below are used in this section to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings, where no distinction is
necessary, nor are the type styles used in text where their density would be distracting.

Helvetica OMG IDL, CORBA language and syntax elements

Times New Roman bold DSM specification is encapsulated in
module DSM { ..};

Courier C language elements

5.2 System Environment
There are multiple user entities of the distributed system encompassed by this standard. The user entities are
seen as connecting to an MPEG network as defined in the User-to-Network section of ISO/IEC 13818-6, or
connected by private network which is used for communication among server and service entities. These
entities are listed under physical and logical categories as follows:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

135

5.2.1 System Hardware User Entities

� Servers that store and deliver MPEG data and other information. Servers include a heterogeneous

variety of processors and storage systems. The server has operating system software that supports the

operation of services and applications that run on it and isolates these from underlying hardware devices

and network protocols.

� Hardware clients that run applications and provide the underlying capability of decoding and displaying

ISO/IEC 13818 streams. Hardware clients include a heterogeneous variety of settop boxes, PCs, etc. The

hardware client has operating system software that supports the operation of applications that run on it

and isolates these from underlying hardware devices and network protocols.

5.2.2 System Logical Entities

� End-user applications that control the viewing of digitally stored media and response
to human user input.

� DSM library which mediates between the end-user application and the remote service
interface, providing a simplified function call interface to the end-user application,
and an RPC interface to the remote service.

� Services which contain application objects such as directories, streams and other
data. A Service is a logical entity in the system that provides function(s) and
interface(s) in support of one or more applications. The distinction of a service from
other objects is that end-user access to it is controlled by a Service Gateway. Services
may be located and distributed in any manner on heterogeneous server hardware
platforms.

� A Service Gateway which provides an interface for browsing and discovering services,
authentication and authorization of end-users, registration of services and end-
users, and resolution of the connection between clients and services. The Service
Gateway is a specialized form of service.

� Directory objects and associated interface, which may be configured into a service, providing name

space and browsing of objects to applications.

� Stream objects and associated interface, which may be configured into a service, providing ISO/IEC

13818 continuous media streams to clients at their request.

� File objects and associated interface, which may be configured into a service, providing data storage

and retrieval to applications.

� View objects and associated interface, which may be configured into a service, providing directory sort

and filter operations and relational data access to applications.

� Any Custom object that is application-specific in function and interface, that invokes operations over

and above what is specified by the DSM primitives. Custom objects are specified in IDL and configured

into a service. The service with augmented interfaces is defined and registered with the Service

Gateway.

The user entities are replaceable components that have standard interfaces between them. This standard
defines the interfaces between these components, as illustrated in

Figure 26.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

136

 Service

 Client
(e.g. Settop)

 End-User Application

 DSM Library

Application Interface

Client-Service Interface

Attach, Detach
Open, Close

OS

MPEG

Network Stack

bind, unbind
Launch, Unlaunch

RPC

Requests
Stream, File,
View, etc.

 Service
 Service
Gateway

Figure 26: User-to-User System Environment

The component entities shown in Figure 1 are logical components; They may exist on a single machine that
supports all the components, or they may be distributed across a set of special purpose machines. For
example, requests for an individual media stream may be distributed across several machines in order to
balance resource requirements even though a client sees a single stream reference.

The Service Gateway presents to the client a graph of service names and information, arranged as a
hierarchy of directories and services. The top root of the Service Gateway has a default service, for clients
requesting a session without specifying a service. There may be one or more applications indicated by the
graph. There is one top service for each application, representing the name of the application. In addition to
the entry service, an application may also utilize a variety of other services, e.g., stream services or order
fulfillment services, which may or may not be shared with other applications. For shared services, the
hierarchy will converge at those points.

For security reasons, only a Service Gateway may maintain a name graph with service objects. The manager
of the service will register each service and its interfaces with the Service Gateway.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

137

Service (A) Service (B)

Application
Object

Name Context

Service Gateway
Name Context

Services Graph

Assets Graph

Application Interface
Object Interface

Figure 27: ServiceGateway and Service Name Spaces

A Service can define its interfaces by use of the Interfaces Define() operation. In this way it can declare
whether it includes well-known interfaces such as DSM Directory, Stream, File and View, or whether it
includes other interfaces which are known only to a limited set of applications. A service can therefore
declare a Directory interface and as such will offer all of the Directory name context functionality. On the
other hand, it could declare specific application interfaces without offering itself as a name context, i.e., a
Service is not necessarily a Directory.

In DSM, the Name Context for objects is called a Directory. This is not to be confused with a traditional
operating system Directory of files. It in no way implies a physical organization of objects, but rather
presents to the client the appearance of scoped name spaces. DSM does not preclude an implementation that
constructs Directories in the traditional manner, while at the same time supports implementations in which
the Directory is a container of objects, and provides Name Server-like browsing functions by which a client
can ‘discover’ objects. Within a service, there may be a directory hierarchy composed of a root Name
Context at the top and a graph of sub directories, each serving to scope its own name space. The graphs
may intersect in the implementation, enabling the sharing of objects.

Service (with Directory interface)

Directory

Directory <other>

FileStreamDirectory

ViewFileStream

View

Figure 28: Possible Directory Locations of Service Components

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

138

5.2.3 Application and Service Interfaces
The Application Portablity Interface is the interface between an application and the greater client Operating
System, which includes the DSM Library, the processor operating system and the communications transport
stack. The goal of the DSM User-to-User interface is to provide applications a portable means of accessing
the remote service (e.g. Directory, Stream, File and View). In some cases the interfaces supplied to the
application by the client operating system are more abstract than the raw capability of the remote servers. In
other words there is not necessarily a 1-1 mapping between the remote operations supported by the
services/components and the application interfaces. This allows the client operating system to hide
hardware and network dependencies and it allows the application to take advantage of information that is
only known locally. Therefore, the standard defines two interfaces for service available to a client
application; the interface seen by the application and the interface supported by the server, as shown in
Figure 29.

Application

DSM Library +
OS + Transport

Remote Service

Application
Portability Interface

Client-Service
Interoperability Interface

Figure 29: Application and Service Interfaces

This standard defines the following logical interfaces between the entities of the system:

Core Interfaces -

The Core interfaces represent the minimum requirement for a DSM-CC Service Complex.

� Base Interface.
� This interface provides commonly used operations Close, Destroy and IsA. It is an abstract

interface, meaning it is included (inherited) by other interfaces.

� Access Interface.
� This interface provides commonly used attributes for size, history (version and date), lock status

and permissions. It is also an abstract interface, included (inherited) by other interfaces.

� Event Interface.
� This interface provides operations by which a client can subscribe/unsubscribe to asynchronous

events, whereby an object can send events to the client over the MPEG stream.

� Directory Interface.
� This interface provides a CORBA name service interface plus operations to access objects and

object data through depth and breadth-first path traversal.

� Stream Interface.
� This interface enables a client to interactively control MPEG continuous media streams.

� File Interface.
� This interface enables a client to access data within an object which is a sequence of bytes.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

139

� ServiceGateway Interface.
� This interface provides a directory of services and enables a client to attach to a service

environment and open access to services.

Extended Interfaces

The extended interfaces are optional:

� View Interface.
� The interface enables a client to sort and filter objects by their attributes using standard SQL

statements.

� LifeCycle Interface.
� This interface is used by implementations for creation of objects, to insure unique object references

in a DSM environment.

� Interfaces Interface.
� The interface provides a method for defining and verifying new interfaces to an environment, to

insure unique interface types in a DSM environment.

� Security Interface.
� The interface provides a method to associate the passing of authentication parameters with open,

resolve or get operations.

� Service Interface.
� This interface enables activation and deactivation of user connections to a service, with the

ServiceGateway acting as the primary service broker.

5.3 Application Runtime Procedures

5.3.1 User-to-Network Assumptions and Requirements
The section entitled “USER-TO-NETWORK OPERATIONS” of this standard provides a signaling
message set for the establishment and teardown of multiple User-to-User connections represented as a
Session. These connections are used by the User-to-User primitives for the request and delivery of MPEG-2
audio, video and private data.

5.3.1.1 Session Establishment
1. The User-to-User application portability function DSM_ServiceGateway_Attach is called to establish

a Session. Its input parameters are marshaled together and placed in the userData field of
ClientSessionSetupRequest. The input parameters in DSM_ServiceGateway_Attach are:

� A Client reference which is a unique system-wide address/identification of the client node.
This is placed in the rClientRef parameter.

� A Client Configuration Information Element whereby the settop identifies its characteristics to
the server. This is placed in the input rClientProfile parameter.

� An End User identification of the consumer, unique within the context of the Service Gateway
that the Client wishes to attach to. This is placed in the aEndUser parameter.

� A User Context identifier, used for resumption of previously suspended application state. This
is placed in the input aSuspendContext parameter.

� A path specification identifying a path to the desired service. The first node in the path
specification is a ServiceGateway Name to identify the desired ServiceGateway. The optional
second node in the path specification will contain a Service Name to identify the desired initial
service. The Service Name is used by the ServiceGateway to determine the initial network
resources that should be requested for the session. These are placed in the rPathSpec

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

140

parameter. The Network will take the userData of ClientSessionSetupRequest and place it
in the userData of ServerSessionSetupIndication, as part of the Session establishment
sequence.

2. The server will use the Client Profile and Service Name to negotiate proper resources for the session

using the appropriate User-to-Network messages.

3. Near the completion of the User-to-Network session establishment, The server will return
ServerSessionSetupResponse to the network, with userData containing the marshaled output
parameters of DSM_ServiceGateway_Attach. The output parameters of
DSM_ServiceGateway_Attach are:

� An exception indication. This is placed in the ev parameter.
� A User Context identifier, used as an assignment of UserContext by the ServiceGateway.

This is placed in the output aResumeContext parameter.
� Resolved references for the ServiceGateway and optionally for the first service, as specified

in rPathSpec. These are placed in the output rPathRefs parameter.
� Local time of the ServiceGateway, placed in the rDateTime parameter.

4. The Network will take the userData of ServerSessionSetupResponse and place it in the userData of
ClientSessionSetupResponse, thus passing the reply to DSM_ServiceGateway_Attach back to the
client.

5. The format of the resolved reference mentioned above depends upon the RPC and network stack used
between client and service. rClientProfile will provide this identity so that both client and service can
determine the contents of the reference. The RPC is Universal Network Object (UNO), unless
otherwise specified in rClientProfile . This will typically contain addressing information.

6. The format of datatypes will be Common Data Representation (CDR), unless otherwise specified in
rClientProfile .

7. A Service Reference is always returned for the Service gateway. The Service Gateway is the service
where Directory Open (specifying service name) is sent. It performs the role of object broker for the
Server system. It is assumed that services use the Bind, Unbind, Launch and Unlaunch interfaces as
defined by this standard.

8. Depending on the rPathSpec of the ServiceGateway Attach, References may be returned for

a. Application Service. The Application service is the service where User-to-User messages are
sent after the application boot has occurred.

b. DSM object within the Application Service, e.g. a Stream for a Movie.

5.3.1.2 Session Teardown
1. The User-to-User application portability function DSM_ServiceGateway_Detach is called to

teardown a Session. Its input parameters are marshaled together and placed in the userData field of
ClientReleaseRequest. This userData is then forwarded by the network to the ServiceGateway in
ServerReleaseRequest. The input parameters in DSM_ServiceGateway_Detach are:

� A ServiceGateway reference which is a unique system-wide address/identification of the
Service Gateway node. This is placed in the object parameter.

� A suspend indication which indicates to the server that application state should be preserved
for later resumption. This is placed in the aSuspend parameter.

2. The output parameters of DSM_ServiceGateway_Detach are marshaled together and placed by the
ServiceGateway in the userData field of ServerReleaseConfirm. This userData is then forwarded by

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

141

the network to the Client in ClientReleaseConfirm. There is one output to
DSM_ServiceGateway_Detach:

� An exception indication. This is placed in the ev parameter.

5.3.2 Initial Application State

In order for the application to access remote objects, it must make a call to open the application using
Service Gateway Attach on the Application Interface. The corresponding remote interface to
ServiceGateway Attach consists of User-to-Network ClientSessionSetupRequest and
ClientSessionSetupResponse. The parameters to Attach are carried in the User-to-Network userData
field. When the Client/EndUser has been authenticated and authorized by the Service Gateway, the
connection between client and service is established. The Service Gateway is the broker for access to all
services. A front end of the application must be downloaded from a Service to the client before it can begin
execution. This Service (which contains a copy of the initial front end) may be either a Download Service,
as described in the section entitled “Initial Application Download,” or a File Service, as described in this
section. The Download Service has a specific protocol for communicating client configuration and
downloading not only the application front end, but also the network stack it requires. In addition, it can
perform cyclic downloads for application boots to many clients at a time. If a File Service is used, a well-
known file name may be used for the initial front end.

An end-user may select an application by name, or may indicate that the application name is unknown. In
the latter case, the application name will be chosen by the Service Gateway, e.g., it will choose a default
application such as a catalog, within which the end-user can pick and choose an application. To start this
process, the client will issue Directory Open (service name) to the DSM Library.

5.4 DSM-CC User-to-User System Specification

5.4.1 Interface Definition Language
The interfaces are defined in Object Management Group (OMG) Interface Definition Language (IDL),

which is standardized as ISO/IEC 14750. OMG IDL provides both language independence and protocol
independence. It also supplies a strong typing system which can prevent mismatches when the various
components are installed instead of detecting them by failure at runtime. Lastly, OMG IDL provides an
interface inheritance mechanism which can allow component interface to be extended over time while
maintaining backward compatibility.

In OMG IDL syntax, parameters are specified to be either input, output, or both input and output. In the
underlying RPC-like implementation, input parameters will be placed in the RPC request, and output
parameters will be returned in the RPC reply. Refer to ISO/IEC 14750 for further information about OMG
IDL. The entire DSM interface is enclosed in IDL module named “DSM”. This prevents name collision
with other OMG environments.

The application portability interface is compiled from the IDL. Using the synchronous deferred compile
option, a DSM IDL compiler will generate a RequestHandle as the return value of the operation. The use of
the RequestHandle allows an application process to overlap requests without blocking while waiting for
replies from the remote service. This avoids forcing the client to wait for a possibly high latency response
before continuing. For example, an open and several file requests can be started without waiting for a server
response. The client need only to wait for a response at the point that the data is actually required.

5.4.2 DSM Primitives Interface Overview

DSM specifies interfaces as either abstract or instantiable. An abstract interface is never used to define a
realizable object, it only provides interfaces that are useful for inclusion in an object’s overall interface. An

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

142

instantiable interface maps directly to a real object, such as a Stream or a File. Using OMG IDL notation, a
new interface can include other interfaces. For example, Stream includes the Base and Access interfaces in
the following IDL:

module DSM {
 interface Stream: Base, Access {};
};

An Access Role (i.e., READER, WRITER, BROKER, OWNER or MANAGER) shall be associated with
each operation and with Get and Put individually on each attribute.

The ServiceGateway complex must implement all Core interfaces completely in order to be DSM-CC
compliant. Extended interfaces are optional. If the Server implements an extended interface, it must
implement all operations and attributes of the interface. The client, however, need only implement those
privilege groups that are required by the current application. A client can choose, for example, to implement
only the READER group of an interface, meaning only those operations in the interface with READER
Access Role.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

143

operations:
list (R)
resolve (R)
bind (W)
bind_context (W)
rebind (W)

operations:
Read (R)
Write (W)

attributes:
Info
operations:
Resume (R)
Pause (R)
Status (R)
Reset (R)
Play (R)
Jump (R)
Next (R)

operations:
Open (R)
Close (R)
Get (R)
Put (W)

operations:
Attach (R)
Detach (R)
ModResource (B)

Directory

R ::= Reader
W ::= Writer | R
B ::= Broker | W | R
O ::= Owner | B | W | R
M ::= Manager | O | B | W | R

ServiceGateway

Stream File

operations:
Close (R)
Destroy(O)

Base

attributes:
Size
Hist
Lock
Perms

Abstract Interfaces

Instantiable Interfaces

rebind_context (W)
unbind (W)
new_context (O)
bind_new_context (O)
destroy (O)

NamingContext

operations:
Subscribe
Unsubscribe

Access Event

Figure 30: DSM Core Abstract and Instantiable Interfaces

File Object

Base Directory Object

ServiceGateway ObjectStream Object

Base

Access NamingContext

AccessAccess

Figure 31: DSM Core Inheritance Hierarchy

5.4.3 DSM Common Types
The following are DSM basic type definitions commonly used throughout the DSM interface:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

144

module DSM {
 // machine-independent basic types
 //
 typedef short s_short; // 16 bit signed integer
 typedef long s_long; // 32 bit signed integer
 typedef unsigned short u_short;// 16 bit unsigned integer
 typedef unsigned long u_long; // 32 bit unsigned integer
 // u_longlong is used in File interface as aOffset, unsigned 64 bit integer
 // note: this is a placeholder until OMG formalizes the standard basic type
 // until then the array of 2 u_long is little-endian over the interface
 typedef u_long u_longlong[2];
 typedef sequence<octet> ObjData;

 // entity identification
 //
 typedef string Profile; // user device capabilities info
 // ObjRef is a scoped handle,
 // whereas ObjKey is complete unique system-wide identification,
 // ObjKey includes ObjRef plus RPC-specific address info
 // DSM Library maps between the two to provide ObjKey to the RPC header
 typedef u_long ObjRef;
 typedef sequence<octet> ObjKey;
 typedef u_long UserContext; // context for an application run
 typedef u_longlong EndUser; // system-wide identification of end user

 // system management
 //
 typedef sequence<octet, 1024> EncryptData;
 typedef string Password;
 typedef char AccessRole;
 const char MANAGER = 'M';
 const char OWNER = 'O';
 const char BROKER = 'B';
 const char WRITER = 'W';
 const char READER = 'R';
 struct Version {u_long aMajor; u_long aMinor;};
 struct DateTime { // tm from ANSI C std.

s_long tm_sec; // seconds, 0-59
s_long tm_min; // minutes, 0-59
s_long tm_hour; // hours, 0-23
s_long tm_mday; // day of the month, 1-31
s_long tm_mon; // months since Jan, 0-31
s_long tm_year; //years from 1900
s_long tm_wday; // days since Sunday, 0-6
s_long tm_yday; // days since Jan 31, 0-365
s_long tm_isdst;}; // Daylight Savings Time indicator

};

5.4.4 Exceptions

An exception is an indication that an operation request was not performed successfully. An exception may
be accompanied by additional, exception-specific information. Exception declarations permit the

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

145

declaration of struct-like data structures which may be returned to indicate that an exceptional condition has
occurred during the performance of a request.

The standard OMG IDL exceptions are used by DSM. These exception identifiers may be returned as a
result of any operation invocation, regardless of the interface specification. Standard exceptions may not be
listed in raises expressions. The OMG IDL reference standard has a complete description of how
exceptions are handled, plus code examples of C mappings.

Each standard exception also includes a completion_status which takes one of the values {
COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}. These have the following meanings:

COMPLETED_YES The object implementation has completed processing prior to the exception
being raised.

COMPLETED_NO The object implementation was never initiated prior to the exception being
raised.

COMPLETED_MAYBE The status of the implementation completion is indeterminate.

module CORBA {
 #define ex_body {u_long minor; completion_status completed;}
 enum completion_status {COMPLETED_YES, COMPLETED_NO,
 COMPLETED_MAYBE};
 enum exception_type {NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; //the unknown exception
exception BAD_PARAM ex_body; //an invalid parameter was passed
exception NO_MEMORY ex_body; //dynamic memory allocation failure
exception IMP_LIMIT ex_body; //violated implementation limit
exception COMM_FAILURE ex_body; //communication failure
exception INV_OBJREF ex_body; //invalid object reference
exception NO_PERMISSION ex_body; //no permission for attempted op
exception INTERNAL ex_body; //ORB internal error
exception MARSHALL ex_body; //error marshalling param/result
exception INITIALIZE ex_body; //ORB initialization failure
exception NO_IMPLEMENT ex_body; //operation implementation unavailable
exception BAD_TYPECODE ex_body; //bad typecode
exception BAD_OPERATION ex_body; //invalid operation
exception NO_RESOURCES ex_body; //insufficient resources for request
exception PERSIST_STORE ex_body; //persistent storage failure
exception BAD_INV_ORDER ex_body; //routine invocations out of order
exception TRANSIENT ex_body; //transient failure - reissue request
exception FREE_MEM ex_body; //cannot free memory
exception INV_IDENT ex_body; //invalid identifier syntax
exception INV_FLAG ex_body; //invalid flag was specified
exception INTF_REPOS ex_body; //error accessing interface repository
exception BAD_CONTEXT ex_body; //error processing context object
exception OBJ_ADAPTER ex_body; //failure detected by object adapter
exception DATA_CONVERSION ex_body; //data conversion error

};

The following common user exceptions are defined by DSM:

module DSM {
 enum CompletionStatus {COMPLETED_YES, COMPLETED_NO,

COMPLETED_MAYBE};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

146

 #define ExceptUser {u_long minor; CompletionStatus aCompleted;}
 #define ExceptAuth {u_long minor; CompletionStatus aCompleted; EncryptData \

aEncryptKey;}

 exception READ_LOCKED ExceptUser; //READER operation denied, read locked
 exception WRITE_LOCKED ExceptUser; //WRITER operation denied, write locked
 exception NO_AUTH ExceptAuth; //not allowed to open without authentication
 exception OPEN_LIMIT ExceptUser; // too many resources are open
 exception MPEG_DELIVERY ExceptUser; //error delivering MPEG stream
};

5.4.5 Access Control

Clients are granted access to object interfaces through the following:

� Privilege: by Access Role for each operation requiring OWNER, MANAGER, BROKER, WRITER or
READER privileges to invoke.

� Identification: by client identification as being the authorized OWNER, or a member of an authorized
READER, WRITER, BROKER or MANAGER group

� Authentication: Initial access to any object may be set up to require a password /PIN or encrypted key
exchange. Access for all operations on an object can be setup to require secure transmissions of all
messages to/from that object.

Authorization for access to services is performed by the Service Gateway.

Authorization for access to an application's objects is performed by the Service.

An AllSecure parameter can be set on an object which requires secure transmission for all messages to/from
the object. It is expected that the lower layers of network protocol will perform this function via encryption
or scrambling.

5.4.5.1 DSM IDL Definition for Access Control
The following rules enable the implementation of access control for DSM-CC:

Each primitive must have an associated invocation privilege OWNER, MANAGER, BROKER, WRITER
or READER. This is defined by means of the Access Control Role (ACR) definition form:

const char <operation name>_ACR = <access role>;

for example, Stream Resume has the following access role definition:

module DSM {
 interface Stream {

const char Resume_ACR = READER;
 };
};

Each attribute will have separate invocation privilege for both Get and Put operations against it. If the
CORBA _set operation is used, the DSM Put invocation privilege applies. If the CORBA _get operation
is used, the DSM Get invocation privilege applies. This is defined by means of the Access Control Role
(ACR) definition form:

const char <attribute name>_Put_ACR = <access role>;
const char <attribute name>_Get_ACR = <access role>;

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

147

5.4.5.2 Setting Permissions
When an object is created the OWNER is associated with it. The OWNER may alter privileges by setting
the permissions (Perms) attribute on an object to allow access by designated MANAGER, BROKER,
WRITER or READER groups. Permissions are set by using Directory Put (where path specification is
<object-name>, Perms).

A client may be in more than one group. An object can be accessed by the OWNER and by more than one
group in each of MANAGER, BROKER, WRITER or READER AccessRoles. Groups identifiers are
scoped within arbitrary object context boundaries, e.g., within the ServiceGateway, within the Service, etc.
The client identifier will map to a set of groups in which that client is a member. Corresponding
authentication databases will vary with the implementation, and are not specified in this standard..

The Perms attribute will identify groups that can access an object or invoke its operations. An object will
limit access to the client who has the specified group or individual identification. Each method of that
object will further restrict invocation by allowing access by role and group. For example, if a method
requires WRITER privileges, the client must be in one of the WRITER groups specified in that object’s
Perms attribute. To Open or resolve a target object, the client must be in one of the READER groups
specified in that object’s Perms attribute.

The OWNER may set permissions to associate a password with an object, or to associate encrypt key data
with an object. When a request to Open such an object is given, an exception is returned. If encryption is
required, the exception contains an encrypt key challenge. In order to continue, the end-user must send an
Authenticate containing the correct response to the encrypt key. If a password is required, the end-user
must send an Authenticate containing the correct password. The Authenticate must immediately follow
with the repeated Open, in order to be granted access.

The OWNER may set an AllSecure flag in an object’s Perms attribute, indicating that the all messages
to/from the object must be secure, e.g., encrypted or scrambled. From Open or resolve time through Close,
the service will effect secure transmission through appropriate lower network layer messaging.

5.5 The Core Client-Service Interfaces
The Core DSM User interfaces are the minimum set that must be supported by a DSM-CC compliant Server
Complex. They include Base, Access, Directory, Stream, File and ServiceGateway interfaces.

5.5.1 Base
The Base interface provides common operations for DSM objects. These operations are organized into a
base class for convenience rather than a specific need. In particular, we do not expect the Base type to be
used directly by applications.

A client (READER) may have obtained an object reference for an object, performed some operations
against it, and now has no more use for that object. The Close operation indicates the client no longer needs
transient resources associated with the object and will not make any further requests.

When a client (OWNER) wishes to delete the persistent data associated with an object, it may invoke the
Destroy to destroy it, thus enabling the object’s parent service to free all state and storage resources
associated it.

In addition, all DSM object implementations must support a type query that asks whether the object
supports the operations defined by a particular interface. The C Client API defines this operation as
DSM_Base_IsA (see the C Client API for more details). In general, the implementation requirement
depends on the underlying RPC communication. UNO’s IIOP, for example, defines a special “_is_a”
request with a type string parameter. A CORBA environment will normally handle this request
automatically at the client or at the server skeleton without any effort from the object implementation. Non-
CORBA environments, however, must be able to handle this kind of request.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

148

5.5.1.1 Summary of Base Primitives
The following primitives are used by the interfaces of all objects.

Close Close a reference to an object. (READER)

Destroy Destroy an object instance. (OWNER)

module DSM
 interface Base {

const AccessRole Close_ACR = READER;
 const AccessRole Destroy_ACR = OWNER;
 };
};

5.5.1.2 DSM Base Close
DSM Base Close Close a reference to an object. (READER)

Client-Service Interface IDL Syntax

module DSM {
 interface Base {

void Close ();
 };
};

Semantics

Base Close is used by the client to indicate that access to the object is no longer required. This is primarily
a resource issue and is not specifically required; however, the total number of references allowed is limited,
and well behaved clients will close whenever reasonable. If OPEN_LIMIT has been received when
attempting to Open an object reference, the client will need to use Close on one or more other active
references in order to free resources, before retrying the Open.

Privileges Required:
READER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

149

5.5.1.3 DSM Base Destroy
DSM Base Destroy Destroy an object instance.

Client-Service Interface Syntax

module DSM {
 interface Base {

void Destroy ();
 };
};

Semantics

Base Destroy is used by the client to delete an object instance. After this occurs, its reference will no longer
be valid, and storage resources used for it will be freed.

Privileges Required:
OWNER

5.5.2 Access

The Access interface provides common description and access control attributes needed by most objects.
These include size, version, date, lock and permissions attributes.

5.5.2.1 Access Definitions
module DSM {
 interface Access {

// size
attribute u_long Size; // object size in octets;
const AccessRole Size_Get_ACR = READER;
const AccessRole Size_Put_ACR = BROKER;

// history
struct Hist_T {

Version aVersion; // object version
DateTime aDateTime;}; // time created or last updated

attribute Hist_T Hist; // version and time of persistent object
const AccessRole Hist_Get_ACR = READER;
const AccessRole Hist_Put_ACR = BROKER;

// lock status
struct Lock_T {boolean ReadLock; boolean WriteLock;};
attribute Lock_T Lock;
const AccessRole Lock_Get_ACR = READER;
const AccessRole Lock_Put_ACR = WRITER;

// permissions
struct Perms_T {

//the next 4 are binary masks of binary flags signifying
//PasswordReqd, EncryptReqd, and groups that can access the object
u_short ManagerPerm;

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

150

u_short BrokerPerm;
u_longlong WriterPerm;
u_longlong ReaderPerm;
u_longlong Owner; //owner identifier
string rPassword; //PIN
EncryptData rEncryptData; //key
// instruct lower layers to implement a secure connection for this object
boolean AllSecure;}; // all methods parameters encrypted

attribute Perms_T Perms;
const AccessRole Perms_Get_ACR = OWNER;
const AccessRole Perms_Put_ACR = OWNER;

 };
};

5.5.3 Directory

The Directory interface provides a general name space for binding names to services or data. A service
gateway implements the directory interface, and as such provides the primary mechanism for accessing
other services or applications.

Directory defines four kinds of operations:

� Binding a name to an object reference or data value
� Resolving a name to the bound object reference or data value
� Removing a name’s binding
� Listing the bindings

The Directory interface inherits the attributes defined by the Access interfaces to allow permission
definitions for directories as well as individual services and data.

For the basic operations involving object references, Directory inherits from the NamingContext interface
defined in the CORBA Object Services Naming module (CosNaming). Using the OMG NamingContext
interface allows a CORBA environment to support DSM-CC easily, while not requiring a DSM-CC
implementation to use a CORBA system.

Directory does not inherit from Base because both Base and NamingContext define destroy operations.
The current IDL specification requires that operation names, including inherited operations, be unique and
case-insensitive. Thus, Base::Destroy would collide with the NamingContext::destroy. Because it cannot
inherit from Base, Directory defines its own Close operation.

For completeness, the NamingContext operations are presented below; however, the CORBA Naming
specification is the correct definition of the operations that a directory must support. Any discrepancies
between the CORBA Naming specification and the NamingContext operations described below represents
an error in the copy of the operations presented here.

The CORBA Naming specification includes the definitions for names and bindings below. The DSM
module defines equivalent types either by referencing the CosNaming definitions with a typedef or by
having a complete definition of the type. A name component consists of two strings that must be unique
within a specific context. A name is a sequence of components that can describe a path through a set of
contexts.

5.5.3.1 Directory Definitions, Exceptions

module CosNaming{
 typedef string Istring;
 struct NameComponent {

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

151

Istring id;
Istring kind;

 };
 typedef sequence<NameComponent> Name;
 enum BindingType {nobject, ncontext };
 struct Binding {

Name binding_name;
BindingType binding_type;

 };
 typedef sequence <Binding> BindingList;

 interface BindingIterator;
};

module DSM {
 typedef CosNaming::Istring Istring;
 typedef CosNaming::NameComponent NameComponent;
 typedef CosNaming::Name Name;
 typedef CosNaming::BindingType BindingType;
 typedef CosNaming::Binding Binding;
};

NamingContext defines operations for naming object references but not general data, so Directory adds
similar operations for binding names to data values (type “any” in IDL). In addition to naming data values,
the directory interface extends the NamingContext interface with operations to bind or resolve a list of
names in a single call. These operations allow a compact call to access a number of objects. The semantics
of these operations are always identical to performing a sequence of the individual calls. To bind or resolve
a single name, the sequence length can be set to 1.

The list of names specified in a single call is specified by a PathType and PathSpec. The type indicates the
format of the spec, which may be a linear path of objects (DEPTH traversal) or child objects at a given level
of hierarchy (BREADTH traversal). The spec is a sequence of Step structures, each of which contains a
name component and a process flag. If the process flag in a Step structure is set then the step name is
processed, otherwise the name is simply used to traverse further into the name space. If the operation using
PathSpec returns object references, these will be contained in a separate path references output parameter.
If the operation using PathSpec returns data values, these will be contained in a separate path values output
parameter. The definition of these types is as follows:

module DSM {
 // two types of path traversal, depth and breadth match traditional methods
 const char DEPTH = 0;
 const char BREADTH = 1;
 typedef char PathType; //DEPTH or BREADTH

 struct Step {
NameComponent name;
boolean process;

 };

 typedef sequence<Step> PathSpec;
 typedef sequence<ObjRef> PathRefs;
 typedef sequence<any> PathValues;
};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

152

Directory operations return several types of exceptions, specified below. These exceptions are defined by
the CosNaming module, and therefore must be either available as part of the DSM environment or defined
explicitly by a DSM implementation.

Ed. note: There does not appear to be a way to define an alias for an exception in the same way
that one creates a typedef, so a non-CORBA implementation will actually need to define a
CosNaming module. If there is a way to alias exception types then these definition should indicate
that.

module CosNaming {
 interface NamingContext {

enum NotFoundReason { missing_node, not_context, not_object };

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};

 };
};

module DSM {

 // these are identical to CosNaming, for use by DSM Directory primitives:

 enum NotFoundReason {
missing_node, not_context, not_object

 };
 exception NotFound {

NotFoundReason why;
Name rest_of_name;

 };
 exception CannotProceed {

CosNaming::NamingContext cxt;
PathSpec rest_of_name;

 };
 exception InvalidName { };
 exception AlreadyBound { };
 exception NotEmpty { };
};

The NotFound and CannotProceed exceptions return the unresolved part of the requested name. For
example, if a bind operation on the path (A,B,C) raises NotFound with the rest_of_name as (B,C) then the
context named by A could not resolve the B name component. The meaning of the NotFound,
AlreadyBound, and InvalidName exceptions is straightforward. The CannotProceed exception means
that the resolving context did not have permission to do a resolve. In the example above, a CannotProceed
exception means that the A context does not have permission to perform a resolve on the B context. In this

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

153

case, the caller may wish to attempt to perform the resolve directly, as the caller might have permission
even though the A context did not.

5.5.3.2 Summary of Directory Primitives

Inherited from Access:

attributes: Size, Hist, Lock, Perms

Inherited from NamingContext:

list Return a list of all the bindings to object references in the context.
(READER)

resolve Return the object reference bound to a given name. (READER)

bind Bind an object reference to a name. (WRITER)

bind_context Bind a naming context to a name. (WRITER)

rebind Bind an object reference to a name, overwriting any previous
binding. (WRITER)

rebind_context Bind a context to a name, overwriting any previous binding.
(WRITER)

unbind Remove a binding for a name. (WRITER)

new_context Create a new naming context. (OWNER)

bind_new_context Create a new naming context and bind it to the given name.
(OWNER)

destroy Destroy the naming context. (OWNER)

Defined in Directory :

DSM Directory Open Resolve the objects associated with names in the given path
(READER).

DSM Directory Close Close a reference to a Directory. (READER)

DSM Directory Get Return the values bound to names in a given path. (READER)

DSM Directory Put Bind names in a given path to values, overwriting any previous
bindings. (WRITER)

module DSM
 interface Directory : Access, CosNaming::NamingContext {

const AccessRole list_ACR = READER;
 const AccessRole resolve_ACR = READER;

const AccessRole bind_ACR = WRITER;

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

154

 const AccessRole bind_context_ACR = WRITER;
const AccessRole rebind_ACR = WRITER;

 const AccessRole rebind_context_ACR = WRITER;
const AccessRole unbind_ACR = WRITER;

 const AccessRole new_context_ACR = OWNER;
const AccessRole bind_new_context_ACR = OWNER;
const AccessRole destroy_ACR = OWNER;
const AccessRole Open_ACR = READER;

 const AccessRole Close_ACR = READER;
const AccessRole Get_ACR = READER;

 const AccessRole Put_ACR = WRITER;
 };
};

5.5.3.3 list
list Return a list of all the bindings to object references in the context.

(READER)

Client-Service IDL Syntax

module CosNaming {
 interface NamingContext {

void list(
in unsigned long count,
out BindingList bindings, out BindingIterator itr

);
 };
};

Semantics

The list operation returns a list of bindings in the NamingContext. The count parameter indicates how many
bindings to return immediately; the remaining bindings can be retrieved from the returned iterator. The
iterator interface simply has two operations defined as follows:

module CosNaming {
 interface BindingIterator {

boolean next_one (out Binding b);
boolean next_n (in unsigned long how_many,

out BindingList bl);
void destroy ();

 };
};

module DSM {
 typedef CosNaming::BindingIterator BindingIterator;
};

The next_one and next_n operations return more bindings from the context, if there are any. Both
operations return false if there were no additional bindings. The destroy operation discards any server-side
storage associated with the iterator and makes the iterator no longer valid to access.

Privileges Required:
WRITER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

155

Parameters
type/variable direction description
unsigned long
count

input The maximum number of bindings to return.

BindingList
bindings

output A sequence containing up to count bindings.

BindingIterator
itr

output An iterator for retrieving additional bindings.

5.5.3.4 resolve
resolve Bind a name to a data value. (READER)

Client-Service IDL Syntax

module CosNaming {
 interface NamingContext {

Object resolve (in Name n)
 raises (NotFound, CannotProceed, InvalidName);

 };
};

Semantics

The resolve operation returns the object reference that is bound to the given name. If no name is bound,
then the NotFound exception is raised.

Privileges Required:
WRITER

Parameters
type/variable direction description
Name
n

input A name that describes a path through one or more
directories, starting with this one.

Object output The object reference that is bound to the name.

5.5.3.5 bind
bind Bind an object reference to a name. (WRITER)

Client-Service IDL Syntax

module CosNaming {
 interface NamingContext {

void bind (in Name n, in Object obj)
 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

156

 };
};

Semantics

The bind operation associates an object reference with a name. This operation raises the AlreadyBound
exception if the name is bound to another object or data value in this context. The name specifies one or
more name components that indicate intermediate contexts through which to search. If any of the
components is not bound, then the NotFound exception is raised. If an intermediate context is found that
refuses permission to the outer context then a CannotProceed exception is raised.

Privileges Required:
WRITER

Parameters
type/variable direction description
Name
n

input A name that describes a path through one or more
directories, starting with this one.

Object
obj

input The object reference that is bound to the name.

5.5.3.6 bind_context
bind_context Bind a naming context to a name. (WRITER)

Client-Service IDL Syntax

module CosNaming {
 interface NamingContext {

void bind_context (in Name n, in NamingContext nc)
 raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

 };
};

Semantics

The bind_context operation associates a naming context with a name. This operation raises the
AlreadyBound exception if the name is bound to another object or data value in this context.

This operation is distinct from the bind operation to allow the option of binding a context into a name space
where it will not implicitly resolve components of a path. This approach also simplifies the resolution
process, as a context knows exactly which contexts to search inside it rather than needing to narrow every
bound object to see if it is a context.

Privileges Required:
WRITER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

157

Parameters
type/variable direction description
Name
n

input A name that describes a path through one or more
directories, starting with this one.

NamingContext
nc

input The naming context that is bound to the name.

5.5.3.7 rebind
rebind Bind an object reference to a name, overwriting any previous binding.

(WRITER)

Client-Service IDL Syntax

module CosNaming {
 interface NamingContext {

void rebind (in Name n, in Object obj)
 raises (NotFound, CannotProceed, InvalidName);

 };
};

Semantics

The rebind operation associates an object reference with a name in a directory. Unlike the bind operation,
this operation will replace the binding for a name if it was previously-bound.

Privileges Required:
WRITER

Parameters
type/variable direction description
Name
n

input A name that describes a path through one or more
directories, starting with this one.

Object
obj

input The object reference that is bound to the name.

5.5.3.8 rebind_context
rebind_context Bind a naming context to a name. (WRITER)

Client-Service IDL Syntax

module CosNaming {
 interface NamingContext {

void rebind_context (in Name n, in NamingContext nc)
 raises (NotFound, CannotProceed, InvalidName);

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

158

 };
};

Semantics

The rebind_context operation associates a naming context with a name. Unlike the bind_context
operation, this operation will replace the binding for a name if it was previously-bound.

Privileges Required:
WRITER

Parameters
type/variable direction description
Name
n

input A name that describes a path through one or more
directories, starting with this one.

NamingContext
nc

input The naming context that is bound to the name.

5.5.3.9 unbind
unbind Remove a binding for a name. (WRITER)

Client-Service IDL Syntax

module CosNaming {
 interface NamingContext {

void unbind (in Name n)
 raises (NotFound, CannotProceed, InvalidName);

 };
};

Semantics

The unbind operation removes the binding associated with the given name from the directory.

Privileges Required:
WRITER

Parameters
type/variable direction description
Name
n

input A name that describes a path through one or more
directories, starting with this one.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

159

5.5.3.10 new_context
new_context Create a new naming context. (OWNER)

Client-Service IDL Syntax

module CosNaming {
 interface NamingContext {

NamingContext new_context();
 };
};

Semantics

The new_context operation returns a newly-created NamingContext.

Privileges Required:
OWNER
Parameters
type/variable direction description
NamingContext output The newly-created naming context.

5.5.3.11 bind_new_context
bind_new_context Create a new naming context and bind it to the given name. (OWNER)

module CosNaming {
 interface NamingContext {

NamingContext bind_new_context(in Name n)
raises (AlreadyBound, NotFound, CannotProceed, InvalidName);

 };
};

Semantics

The bind_new_context operation creates a new context and associates it with the given name.

Privileges Required:
OWNER

Parameters
type/variable direction description
Name
n

input A name that describes a path through one or more
directories, starting with this one.

NamingContext output The newly-created naming context.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

160

5.5.3.12 destroy
destroy Destroy the naming context. (OWNER)

Client-Service IDL Syntax

module CosNaming {
 interface NamingContext {

void destroy ()
 raises (NotEmpty);

 };
};

Semantics

The destroy operation removes the persistent storage associated with the context.

Privileges Required:
OWNER

5.5.3.13 DSM Directory Open
Open Find the objects associated with the names in the given path (READER).

Client-Service IDL Syntax

module DSM {
 interface Directory : Access, CosNaming::NamingContext {

void Open(
in PathType aPathType,
in PathSpec rPathSpec,
out PathRefs rPathRefs)

raises(OPEN_LIMIT, NO_AUTH , NotFound, CannotProceed, InvalidName);
 };
};

Semantics

The Directory Open operation provides a path traversal with a resolve of object references from names at
specified nodes in the path. The aPathType and rPathSpec parameters define the specific set of names and
values that are resolved. The result is a PathSpec that corresponds to the input rPathSpec with the object
references set. This operation looks up each path element sequentially, but not atomically (other directory
operations may occur between the lookups of elements). If the a particular resolve fails, then the entire
operation raises the appropriate exception.

The object reference(s) returned by rPathSpec are assigned by the client DSM Library, in order to enable
deferred synchronous operation. It maps to the RPC destination address and other object qualifiers that are
passed in the RPC messages over the network between the Client and the newly opened object.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

161

Privileges Required:
READER

Parameters
type/variable direction description
PathType
aPathType

input A reference to a Directory object.

PathSpec
rPathSpec

input A sequence of steps, each representing a node in a
directory hierarchy.

PathRefs
rPathRefs

output The object references resolved as a result of this
operation.

5.5.3.14 DSM Directory Close
DSM Directory Close Close a reference to a Directory. (READER)

Client-Service IDL Syntax

module DSM {
 interface Directory : Access, CosNaming::NamingContext {

void Close ();
 };
};

Semantics

Directory Close is used by the client to indicate that access to the directory is no longer required. This
operation is sent to the Directory to be closed. Closing a Directory is not specifically required unless the
directory is bound as a service to the ServiceGateway, in which case network resources may need to be
freed as a result of the close.

Privileges Required:
READER

5.5.3.15 DSM Directory Get
Get Return the values bound to the names in a given path. (READER)

Client-Service IDL Syntax

module DSM {
 interface Directory : Access, CosNaming::NamingContext {

void Get(
in PathType aPathType,
in PathSpec rPathSpec,
out PathValues rPathValues)

raises(NO_AUTH, NotFound, CannotProceed, InvalidName);
 };
};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

162

Semantics

The Directory Get operation provides a path traversal with a resolve of data values from names at specified
nodes in the path. The aPathType and rPathSpec parameters define the specific set of names and values
that are resolved. The result is a PathSpec that corresponds to the input rPathSpec with the object references
set. This operation looks up each path element sequentially, but not atomically (other directory operations
may occur between the lookups of elements). If the a particular resolve fails, then the entire operation raises
the appropriate exception.

Privileges Required:
READER

Parameters
type/variable direction description
PathType
aPathType

input A reference to a Directory object.

PathSpec
rPathSpec

input A sequence of steps, each representing a node in a
directory hierarchy.

PathValues
rPathValues

output The object or attribute values resolved as a result of this
operation.

5.5.3.16 DSM Directory Put
Put Bind a graph of names to the given values. (WRITER)

Client-Service IDL Syntax

module DSM {
 interface Directory : Access, CosNaming::NamingContext {

void Put(
in PathType aPathType,
in PathSpec rPathSpec,
in PathValues rPathValues)

raises(NotFound, CannotProceed, InvalidName);
 };
};

Semantics

The Directory Put operation provides a path traversal with a binding of data values to names at specified
nodes in the path. The aPathType and rPathSpec parameters define the specific set of names and values
that are bound. This operation binds each path element sequentially, but not atomically (other directory
operations may occur between the binding of elements). If the a particular resolve fails, then the entire
operation raises the appropriate exception.

Privileges Required:
WRITER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

163

Parameters
type/field direction description
PathType
aPathType

input The path type indicates these structure of
rPathSpec. It may be a linear path (DEPTH
traversal), or child nodes at one level of a
hierarchy (BREADTH traversal).

PathSpec
rPathSpec

input A sequence of steps, each representing a node in a
directory hierarchy.

PathValues
rPathValues

input The object or attribute values to be bound as a
result of this operation.

5.5.4 Stream
Stream primitives are used to emulate VCR-like controls for manipulating MPEG continuous media
streams. Streams differ from other datatypes in that, while in play mode, the rate of the stream delivery will
be governed by an MPEG network flow control mechanism. Streams include data types such as video and
audio, as defined by ISO/IEC 13818.

Stream Pause and Stream Resume behave much like their VCR counterparts. However, each primitive
that initiates play mode includes a scale parameter which controls forward or reverse operation. Position is
indicated in Normal Play Time (NPT), which is specified as seconds and sub-seconds. NPT indicates the
stream absolute position relative to the beginning of the stream. Stream Play enables play from a start NPT
position until a stop NPT position is reached. Stream Jump provides capability to jump when a stop NPT
position is reached to any start NPT position in the stream.

A stream is first requested using Directory Open. It returns a reference for the stream, to be used with
subsequent stream commands. Streams open in pause mode. More than one stream can be opened at a time.
Stream Next is used to link a currently playing stream to another opened stream. When the current playing
stream reaches its NPT stop time, the second stream will become active.

Successful execution of Stream commands require that the Service execute them in the exact sequence that
the client has requested them. For example, Directory Open and Stream Resume can be sent in quick
succession from the client if play mode is desired immediately after the completion of the Open. In this
case, the operations could not be executed out of order, since at the service, the results of one will feed as
an input to the second.

At any given time, the server will be in one of the following play modes for a given video delivery:

Open The stream object is opened

Pause The stream object does not transport the media stream

SearchXport The stream object goes to start NPT and then transports the media stream

SearchXportPause The stream object goes to start NPT, and then transports the media stream
until stop NPT is reached.

PauseSearchXport The stream object transports the stream until stop NPT, then searches to start
NPT and transports the media stream.

Unknown The stream is in an unknown state.

Stream Status is used to inquire as to the current NPT, Scale and Mode of an open stream.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

164

5.5.4.1 Stream Definitions, Exceptions

module DSM {
 interface Stream : Base, Access {

exception BAD_STOP ExceptUser; //invalid StopNPT, can never be reached
exception BAD_START ExceptUser; //stream does not contain this NPT
exception BAD_SCALE ExceptUser; //invalid scale
exception INV_NEXTREF ExceptUser; //invalid next stream reference
exception QUE_LIMIT ExceptUser; //stream que depth exceeded. max = 2
struct NPT {s_long aSeconds; u_long aMicroSeconds;}; // Normal Play Time
struct Scale {s_short aNumerator; u_short aDenominator;}; //+FF,-Rewind, Rate
// stream modes
const u_long PAUSE_M = 0;

 const u_long TRANSPORT_M = 1;
const u_long TRANSPORT_PAUSE_M = 2;
const u_long PAUSE_TRANSPORT_M = 3;
const u_long END_OF_STREAM_M = 4;
const u_long UNKNOWN_M = 5;
typedef u_long Mode;
struct Stat {

NPT rPosition;
Scale rScale;
Mode aMode;};

struct Info_T {
string aDescription;
NPT duration;
boolean audio;
boolean video;
boolean data;};

attribute Info_T Info;
const AccessRole Info_Get_ACR = READER;
const AccessRole Info_Put_ACR = OWNER;

 };
};

Note: The Stream Info is not intended to be an attribute database, but rather to be a minimum set of stream
identification and characteristics. Pertinent title information includes title and runtime length.

5.5.4.2 Normal Play Time Temporal Positioning
In order to support random positioning and a variety of play rates the Media stream primitives make use of
a temporal addressing scheme called Normal Play Time (NPT). Intuitively NPT is the clock the viewer
associates with a program. It is often digitally displayed on a VCR. NPT advances normally when in normal
play mode (scale = 1/1), advances at a faster rate when in fast scan forward (high positive scale ratio),
decrements when in scan reverse (high negative scale ratio) and is fixed in pause mode. NPT is roughly
equivalent to SMPTE timecodes. NPT is defined as two values representing seconds and subseconds.

To understand DSM's NPT model one must separate the application's perspective of NPT from the
underlying mechanism used to coordinate NPT between the client and server.

From the application's perspective NPT is a clock that is maintained in the client operating system. It is
used to request position relative to a specific program (i.e. "where are we?") or to control the position of the
stream (i.e. "jump to this position"). Consider the following example: As a reference time assume that real
time starts at 0 and progresses in seconds. Note that RPC-latency is assumed to be 0. Suppose that the
application makes the following calls:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

165

1. At 0 seconds Stream Open is called. It is followed by Stream Resume requesting that the
stream begin playing at normal play rate with NPT start time 30.

2. At 10 seconds Stream Pause is called. At this point NPT will be 40.

3. At 16 seconds Stream Resume is called requesting that the stream continue playing at NPT = 80
at ten times normal speed.

4. At 26 seconds Stream Close is called. At this point NPT will be 180.

The coordination of NPT between the server and client is independent of the API usage of NPT. There are
two possible methods for maintaining NPT in the client. The first is method NPT descriptors as described in
the section entitled “NORMAL PLAY TIME.” The other method is to explicitly query the server for NPT
information. Due to latency considerations the second method may be less accurate.

5.5.4.3 Summary of Stream Primitives

Inherited from Base:

IsA, Close, Destroy

Inherited from Access:
attributes: Size, Hist, Lock, Perms

Defined in Stream:

attributes: Info

DSM Stream Pause Stop sending stream when NPT position is reached. (READER)

DSM Pause Resume Start sending stream at NPT positon within stream. (READER)

DSM Stream Status Obtain status of a stream. (READER)

DSM Stream Reset Reset the queue of pending operations on a stream (READER)

DSM Stream Jump When stream reaches stop NPT, resume at start NPT. (READER)

DSM Stream Play Play stream from start NPT until stop NPT. (READER)

DSM Stream Next Establish a link to a successor stream when this stream completes.
(READER)

module DSM
 interface Stream : Base, Access {

const AccessRole Pause_ACR = READER;
 const AccessRole Resume_ACR = READER;

const AccessRole Status_ACR = READER;
 const AccessRole Reset_ACR = READER;

const AccessRole Jump_ACR = READER;
 const AccessRole Play_ACR = READER;

const AccessRole Next_ACR = READER;

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

166

 };
};

30 40 80 180NPT

REAL TIME 0 10 16 26

Open

Resume

Pause Resume
(10/1)

Close

The above drawing illustrates an example of Stream primitives usage. In this example, time is shown in
seconds for ease of explanation. The latency between client and server is not shown (it could be
considerable). In response to a viewer input, Directory Open followed by Stream Resume commands are
sent to start playing the video at normal play rate (scale 1/1), with NPT start time 30 seconds into the
stream. 10 seconds later the viewer presses the VCR pause button, causing a Stream Pause command to be
given. At this time and during the pause the video NPT remains at a point 40 seconds from the start of the
stream. 6 seconds later, the viewer initiates fast forward with NPT start time 80 seconds into the stream,
causing a Stream Resume command to be sent with scale = 10/1. Finally, the viewer quits, causing Base
Close to be sent.

5.5.4.4 Stream State Machine

The stream interface provides methods to control the advance of a media stream. The interface leverages the
DSM Scale and NPT structures.

Note that the DSM Library provides the client stream Status with the Status() function. The Status value
which the settop device provides allows the remote stream object to instrument the transport delay. The
Status value which the remote stream object returns allows the settop device to instrument the transport
delay. One application of the measurement is to configure transport buffers.

The time value which the client provides with the Resume(in NPT rStart) is the stream position at which to
begin transport. The scale value describes both the direction (reverse is just a negative value) and the rate
(normal Play is just a positive value of 1.0). The time value which the client provides with the Pause(in
NPT rStop) is the stream position at which to suspend the transport. (There are transport mechanisms which
require some message traffic to sustain the connection. It is implementation dependent, and not client
visible, how the source of the media stream stimulates the connection for such a transport solution. The
obvious technique is to transmit the data stream, with its Status fields.)

Reference to Stream Interface: Since the client can cascade methods, the sequence Resume(rStart) plus
Pause(rStop) equates to Play(rStart, rStop). Also the sequence Pause(rStop) plus Resume(rStart) equates to
Jump(rStop, rStart).

5.5.4.4.1 State Machine

The interface controls a state machine. The state machine, shown below with the some of the transitions,
comprises the states of a) Open b) Pause c) Transport d) TransportPause and e) PauseTransport. The

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

167

Open() causes the state to transition to the Open state. The default values are a) rStart=0000.0000, b)
rStop=EFFF.FFFF, and c) Scale=0001,0001.

If the state machine receives a Pause(rStop) after a Play(rStart, rStop), the Pause(rStop) replaces the
Play(rStop). If the state machine receives a Jump(rStop, rStart) after a Play(rStart, rStop), the Jump(rStop)
replaces the Play(rStop). This, in essence, cancels the Play() function. If the state machine receives
Resume(rStart) after a Jump(rStop, rStart), the Resume(rStart) replaces the Jump(rStart). If the state
machine receives Play(rStart, rStop) after a Jump(rStop, rStart), the Play(rStart) replaces the Jump(rStart).

The figure below shows the stream profile which corresponds to each state.

Pause

SearchTransport

SearchTransportPause

PauseSearchTransport

rStart

rStop

rStart rStop

rStart

� Pause: There is one phase. The stream object does not transport the media stream.

� SearchTransport: There are two phases with one time value to describe the transition. The stream
object searches to rStart, and the transports the media stream. Since there is no rStop, the stream object
continues to advance the stream until it receives another function.

� SearchTransportPause: The common sequence which causes the state transition is either Play(rStart,
rStop) or Resume(rStart) plus Pause(rStop).There are three phases with two time values to describe the
transitions. The stream object searches to rStart, transports the stream until rStop, and enters the Pause
state.

� PauseSearchTransport: The common sequence which causes the state transition is either Jump(rStop,
rStart) or Pause(rStop) plus Resume(rStart). There are three phases with two time values to describe the
transitions. The stream object transports the stream until rStop, searches to rStart, and transports the
stream.

The table below shows how the state machine responds to the methods as a function of the previous state.

Previous State Reset() Resume() Pause() Play() Jump()
 O O ST P STP PST
 ST O ST STP STP PST
 TP O PST TP STP PST
 P O ST P STP PST
 PST O PST PST STP PST

The semantics of Reset() are to return to the Open state. One situation which causes the transition to the
Open state is the EndOfStream condition. If the client registers interest in the transition, the client can detect
the EndOfStream through the transition. This example illustrates the situation where a client detects a
transition which is not the direct result of methods which the client invokes. In the EndOfStream condition,
it was the remote stream object, not the settop device, which invokes the Reset() method. Yet the settop
device could detect the transition.

The invocation of certain methods cause state transitions. State transitions also occur because the

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

168

 Previous State rStart rStop
 O
 ST
 TP P
 P
 PST ST

Note that the rStop causes transitions, but the rStart does not cause (client visible) transitions. The reason is
that the transition from SearchTransport to a Transport (after the stream object searches to rStart) is not
(with this state machine) client visible. The next section presents a state machine where the distinction
between the SearchTransport state versus Transport state is visible. Thus the client can detect when the
search phase is complete.

5.5.4.4.2 Complete State Machine

The state machine above does not expose one transition which was thought to be instantaneous. If the client
invokes Resume(rStart), the stream object begins a search phase, advances to the rStart, and begins the
transport phase. The transition is visible with the state machine of this section. There is both a
SearchTransport state (during which the rStart is valid) and a Transport state (during which the rStart is
stale). The table below describes the complete state machine.

 Reset() Resume() Pause() Play() Jump()
 O O ST P STP PST
 ST O ST STP STP PST
 T O ST TP STP PST
 TP O PST TP STP PST
 P O ST P STP PST
 STP O ST STP STP PST
 PST O PST TP STP PST

The table below shows the transitions which the rStart condition and the rStop condition cause:

Previous State rStart rStop
 O
 ST T
 T
 TP P
 P
 STP TP P*
 PST T* ST

If the state was SearchTransport, the machine transitions to Transport when the stream position reaches the
rStart. If the state was SearchTransportPause, the machine transitions to TransportPause when the stream
position reaches the rStart. If the state was TransportPause, the machine transitions to Pause when the
stream position reaches the rStop. If the state was PauseSearchTransport, the machine transitions to
SearchTransport when the stream position reaches the rStop.

The two states with the asterisk relate to exceptions. If the state is SearchTransportPause, the stream object
expects to reach the rStart before the rStop. If the stream object encounters the rStop first, the machine
transitions to the Pause state. If the state is PauseSearchTransport, the stream object expects to encounter
the rStop before the rStart. If the stream object encounters the rStart first, the machine transitions to the
Transport state.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

169

5.5.4.4.3 Simple Stream Interface

The interface below realizes the identical state machine but with just the Reset(), Resume() and Pause()
methods. The interface does not include Play(rStart, rStop) because the function is identical to the sequence
Resume(rStart) plus Pause(rStop). The interface does not include Jump(rStop, rStart) because the function
is identical to sequence Pause(rStop) plus Resume(rStart). Since the functions are redundant, the interface
is just as expressive as the more complex interface. Since the client can cascade methods, there is no
compromise in performance.

Resume (T)
ST

PST

TP

Pause (T)

STP

Pause (T)

P

Pause (T)

Resume (T)

Pause (T)

Pause (T)
Pause (T)

Resume (T)

NPT == rStopResume (T)

NPT==rStart

NPT==rStop NPT=rStart

Resume (T)

T

The state machine is shown below. Note that the table is identical (for columns which apply to both) to the
state machine with Play(rStart, rStop) and Jump(rStop, rStart) functions.

Previous State Reset() Resume() Pause()
 O O ST P
 ST O ST STP
 T O ST TP
 TP O PST TP
 P O ST P
 STP O ST STP
 PST O PST TP

The table below shows the transitions which the rStart condition and the rStop condition cause. Again the
table is identical (for the columns which apply to both) to the state machine with Play(rStart, rStop) and
Jump(rStop, rStart) functions.

Previous State rStart rStop

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

170

 O
 ST T
 T
 TP P
 P
 STP TP P*
 PST T* ST

5.5.4.5 DSM Stream Pause
DSM Stream Pause Stop sending stream when NPT position is reached.

Client-Service IDL Syntax

module DSM {
 interface Stream : Base, Access {

void Pause (
in NPT rStop)
raises (MPEG_DELIVERY, BAD_STOP, QUE_LIMIT);

 };
};

Semantics

A client calls Stream Pause to cause the video server to stop sending the stream when it reaches NPT
rStop.The actual presentation of video frames (freeze frame versus blanked or alternative display) is
considered implementation-specific and is therefore not specified.

If the stream is in forward transport mode, either an rStop of negative infinity or an rStop less than the
current NPT will indicate pause immediately if there are no other commands in the stream state machine
queue. If the stream is in reverse transport mode, either an rStop of positive infinity or an rStop greater
than the current NPT will indicate pause immediately if there are no other commands in the stream state
machine queue.

Privileges Required
READER

Parameters

type/variable direction description
NPT
rStop

input NPT position at which the Pause will occur.

5.5.4.6 DSM Stream Resume
DSM Stream Resume Start sending stream at NPT position.

Client-Service IDL Syntax

module DSM {
 interface Stream : Base, Access {

void Resume (

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

171

in NPT rStart,
in Scale rScale)
raises (MPEG_DELIVERY, BAD_START, BAD_SCALE, QUE_LIMIT);

 };
};

Semantics

A client calls Stream Resume to cause the video server to resume sending the stream at rStart .

rScale is composed of a numerator and a denominator. An rScale of 1/1 indicates normal play at the normal
forward viewing rate. It is recommended for efficiency that either the numerator or denominator have a
value of 1. The ratio of numerator to denominator corresponds to the rate with respect to normal viewing
rate. For example, a ratio of 2/1 indicates 2 times the normal viewing rate, and a ratio of 1/2 indicates one-
half the normal viewing rate. The server will respond with best effort, that is at the closest rate to the
requested rate that it can deliver. The rScale reply will indicate the actual rate delivered. A positive
numerator indicates forward direction. A negative numerator indicates reverse direction. Either a numerator
or denominator of 0 will result in a BAD_SCALE exception. If the Stream is in transport mode and a
Stream Resume is sent which causes an exception, the stream will continue as if the operation causing the
exception had not occurred. An rStart which equals or exceeds the Stream duration will result in a
BAD_START exception.

Privileges Required
READER

Parameters

type/variable direction description
NPT
rStart

input NPT position at which to resume.

Scale
rScale

input The scale at which to resume. A numerator /
denominator indicating rate and direction. A negative
numerator indicates reverse direction, whereas a
positive numerator indicates forward direction. 1/1
indicates normal play speed.

5.5.4.7 DSM Stream Status
DSM Stream Status Obtain status of a stream.

Client-Service IDL Syntax

module DSM {
 interface Stream : Base, Access {

void Status (
in Stat rAppStatus,
out Stat rActStatus)
raises (MPEG_DELIVERY);

 };
};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

172

Semantics

Stream Status is used to request status of a stream in progress. It returns the current NPT position, scale
and mode of the stream. The application's estimation of current position may be specified in the call
request. The reply will contain the actual position If mode is in an unknown state (i.e., there is an error) an
exception will be returned.

Privileges Required
READER

Parameters
type/variable direction description
Stat
rAppStatus

input Expected stream status, NPT, Scale and Mode

Stat
rActStatus

output Actual stream status, NPT, Scale and Mode.

5.5.4.8 DSM Stream Reset

DSM Stream Reset Reset the queue of pending operations on a stream (READER)

Client-Service IDL Syntax

module DSM {
 interface Stream : Base, Access{

void Reset ();
 };
};

Semantics

Stream Reset is used to reset the Stream state machine. Since Stream operations may be queued in advance
(the maximum queue depth is 2), it is possible that the application will queue some operations which are
later determined to be incorrect. With Reset, the client can pull the pending operations from the queue
without interrupting the current operation in progress for the Stream.

Privileges Required
READER

5.5.4.9 DSM Stream Jump
DSM Stream Jump When stream reaches stop NPT, resume at start NPT.

Client-Service IDL Syntax

module DSM {
 interface Stream : Base, Access{

void Jump (
in NPT rStart,

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

173

in NPT rStop,
in Scale rScale)
raises (MPEG_DELIVERY, BAD_START, BAD_STOP, BAD_SCALE,

QUE_LIMIT);
 };
};

Semantics

A client calls Stream Jump to cause the server to commence sending the stream at the NPT indicated by
rStart , to occur when the stream reaches the NPT indicated by rStop. Stream commands may be
overlapped to a queue depth of two. For example, Stream Jump may be followed by a Stream Pause,
causing the Jump to change mode to Pause immediately after the Jump. Scale will indicate either normal
play, scan forward or scan reverse by its value.

If a Play immediately follows a Jump, the play supersedes the rStop of the Jump.

Privileges Required
READER

Parameters

type/variable direction description
NPT
rStop

input NPT position at which the Jump will occur.

NPT
rStart

input NPT position to resume from as a result of the Jump.

Scale
rScale

input A numerator / denominator indicating rate and
direction. A negative numerator indicates reverse
direction, whereas a positive numerator indicates
forward direction. 1/1 indicates normal play speed.

5.5.4.10 DSM Stream Play
DSM Stream Play Play stream from start NPT until stop NPT.

Client-Service IDL Syntax

module DSM {
 interface Stream : Base, Access{

void Play (
in NPT rStart,
in NPT rStop,
in Scale rScale)
raises (MPEG_DELIVERY, BAD_START, BAD_STOP, BAD_SCALE,

QUE_LIMIT);
 };
};

Semantics

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

174

A client calls Stream Play to cause the server to transmit the MPEG stream immediately at the stream
NPT specified by rStart .

Play mode shall be set to normal speed, fast forward or reverse as indicated by rScale. If rStart is 0,
playback will commence at the beginning of the stream. If a Jump immediately follows a Play, the Jump
supersedes the rStop of the Play.

Privileges Required
READER

Parameters

type/variable direction description
NPT
rStart

input NPT position at which to resume Play.

NPT
rStop

input NPT position at which to stop Play and change mode
to Pause.

Scale
rScale

input A numerator / denominator indicating rate and
direction. A negative numerator indicates reverse
direction, whereas a positive numerator indicates
forward direction. 1/1 indicates normal play speed.

5.5.4.11 DSM Stream Next
DSM Stream Next De-activate a video.

Client-Service IDL Syntax

module DSM {
 interface Stream : Base, Access {

void Next (
in Stream rNextStream)
raises (INV_NEXTREF, QUE_LIMIT);

 };
};

Semantics

The Stream Next will link the completion of a current stream to the start of a next stream. Both streams
must be open prior to making this call.

Privileges Required
READER

Parameters
Stream
rNextStream

input Reference of the successor Stream object, as returned by a
Directory Open.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

175

5.5.5 Event

The event interface in the Common Object Services specification of the Object Management Group is the
foundation on which the basic event interface was built. The event interface, however, differs in two
respects. First the interface packages the functions, which scatter across multiple interfaces in the Object
Management Group design, into a single interface. Second, the audience for the interface is a client, such as
the settop device, which receives the media stream. The stream object, to be specific, distributes the event
data through the media stream.

The figure above shows the concept. The request to subscribe the events is an interface, cast as Interface
Definition Language. The event distribution, however, is over the media stream as descriptor data found in
a private data section.

The motivation for the stream event interface is the situation where the service and the client both
understand the semantics of certain events which correlate to the media stream. The client invokes the
Subscribe() function to express interest in the event. The client provides the event name, which is a simple
string. The stream object returns a token which uniquely identifies the event.

The stream object at some point places the data found in the interface declaration into the media stream near
the companion media data. Note that the data includes both the token and the time to which the event
relates. The inclusion of the time value allows the client to schedule the reaction to the event to correlate
with the presentation of the media stream.

5.5.5.1 Event Definitions, Exceptions

module DSM {
 interface Event {

// In addition to the other descriptor fields, the stream object places the
// StreamEvent in the private data section of the media stream:
const u_short NULL_EVENT_TOKEN = 0;
struct StreamEvent {

u_short aEventToken;
s_long aSeconds;
u_long aSubSeconds;
sequence<octet> OpaqueData;};

exception INVALID_EVENT_NAME {string aEventName;};
exception INVALID_EVENT_TOKEN {u_short EVENT_TOKEN;};

 };
};

The constant declaration captures the convention that if the token field of the descriptor data is the value
zero, it is understood that the event data which follows is bogus. If the event trigger time is maximum
negative value, the semantics are to immediately respond to the event.

While not a remote service interface, the section of the document which deals with the application
perspective describes an method which returns the event data to the client application code. Since the event

Event Source Event Target

subscribe(), unsubscribe()

stream(Descriptors

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

176

data returns through the media stream, the interface is outside the scope of the remote service interface
specification.

5.5.5.2 Summary of Event Primitives

Defined in Event:

DSM Event Subscribe Subscribe to receive an event over an MPEG stream. (READER)

DSM Event Unsubscribe Indicate desire to no longer receive an event. (READER)

module DSM
 interface Event{

const AccessRole Subscribe_ACR = READER;
const AccessRole Unsubscribe_ACR = READER;

 };
};

5.5.5.3 DSM Event Subscribe
DSM Event Subscribe Subscribe to receive an event over an MPEG stream. (READER)

Client-Service Interface Syntax

module DSM {
 interface Event {

void Subscribe(
in string aEventName,
out u_short aEventToken)
raises(INVALID_EVENT_NAME);

 };
};

Semantics

The client invokes Event Subscribe to request that the specified event be sent when it occurs. The client
provides the event name. (The mechanism through which the client discovers the event name space is
outside the scope of this interface.) The service returns an event token to associate with the event name. The
scope of the token is at least the media stream. The client, in other words, should not find duplicate tokens
in the same stream. The exception relates to the situation where the client provides an event name which
the service does not recognize.

Privileges Required
READER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

177

Parameters
type/variable direction description
string
aEventName

input The symbolic name of the event.

u_short
aEventToken

output The token which the service assigns, and which the
client should associate, with the event.

5.5.5.4 DSM Event Unsubscribe
DSM Event Unsubscribe Indicate desire to no longer receive an event. (READER)

Client-Service Interface Syntax

module DSM {
 interface Event {

void Unsubscribe(
in u_short aEventToken)
raises(INVALID_EVENT_TOKEN);

 };
};

Semantics

The client invokes Event Unsubscribe to instruct the service to not generate the event. The client provides
the event token to describe the subscription to which the operation refers. The token with respect to the
client becomes stale. The service can assign the token to other subscription requests. The exception relates
to the situation where the client provides a bogus token, for example a token which was valid but is now
stale.

Privileges Required
READER

Parameters
type/variable direction description
u_short
aEventToken

input The token which identifes the previous subscription.

5.5.6 File

This section describes the interface for two operations that read and write files. When combined with the
other Core DSM interfaces such as OMG NamingContext, Directory , Base, and Access, a minimal file
system interface is realized. When combined with Extended DSM interfaces such as Lifecycle and View, a
more complete file system interface is realized. In the spirit of OMG, the IDL permits the server
implementation to map to any of a variety of heterogeneous object and file systems,.

Multimedia access is largely read-only. Certain clients (e.g., settops) will implement only READER
operations, in which case basic access to remote files is achieved by File Read and Directory Get
primitives.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

178

Write operations such as File Write and Directory Put primitives may be invoked only by authorized
WRITERs.

The video network service presents a unique communication environment, with both asymmetric and
symmetric data paths. The upstream or request data path can have significant restrictions in terms of
bandwidth, reliability and latency. Within this environment there is a need to provide sequential data file
service to the client. Further, there is a requirement that the file service provide high performance, even in
the face of the communication restrictions, in particular, limited bandwidth request path and long round-
trip latency. Finally, the client-side library must be compact in order to be used in limited-memory
conditions such as are found in settop units.

5.5.6.1 File Definitions, Exceptions

module DSM {
 interface File : Base, Access {
 exception INV_OFFSET ExceptUser; //size + offset exceeds file size
 exception INV_SIZE ExceptUser; //size exceeds file size
 };
};

5.5.6.2 Summary of File Primitives

Inherited from Base:

IsA, Close, Destroy

Inherited from Access:
attributes: Size, Hist, Lock, Perms

Defined in File:

DSM File Read Random access read from a file. (READER)

DSM File Write Random access write to a file. (WRITER)

module DSM
 interface File : Base, Access {

const AccessRole Read_ACR = READER;
const AccessRole Write_ACR = WRITER;

 };
};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

179

(latency)

Open Get

(latency)

 GetRead

The above drawing shows optimizations specifically made in response to video network requirements. The
File interface is therefore well-suited to network environments where the round-trip latency is high and
request bandwidth is low. File Read and Directory Get allow a large data return per request with a choice
of retry option in the underlying RPC. Directory Open (of a file object) and File Read may be pipelined,
where the Directory Open is immediately followed by a File Read as described in the application
portability interface “Application Synchronous Deferred Operations.” All file reads may be overlapped as
synchronous deferred requests. The RPC must assure that these requests are executed in order at the Server.
The application may provide a reliable transfer hint to the underlying RPC to ignore errors for certain types
of multimedia data, e.g., images, short audio. Directory Get will return the entire file.

5.5.6.3 DSM File Read

DSM File Read Random access read from a file. (READER)

Client-Service IDL Syntax

module DSM {
 interface File : Base, Access {

void Read (
in u_longlong aOffset,
in u_long aSize,
in boolean aReliable,
out ObjData rData)
raises (INV_OFFSET, INV_SIZE);

 };
};

Semantics

File Read provides random access to opened files, using a File reference obtained from a previous
Directory Open. Because offset and size are explicit parameters, seeks can be accomplished assuming the
application maintains the current byte position in the file.

In the case where the network imposes a long round-trip latency, efficient operation of multimedia object
access requires that the underlying RPC and network protocol stack support overlapped, synchronous
deferred transactions. The application will need to prefetch files in an attempt to stay ahead of the
anticipated user actions. The RPC must assure that the Server executes the operations for a client in the
same order that the client has invoked them. The underlying RPC stack will retry the

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

180

If reliable delivery is set to FALSE for a File Read operation, the operation will not be retried in the event
of timeout or error. This is useful in the case where media, e.g. short audio or image, is presented in fast-
paced normal play application time, in which case it is more important for the presentation to move forward
on schedule than to stall while an object is being refetched.

Privileges Required
READER

Parameters
type/variable direction description
u_longlong
aOffset

input 64 bit value indicating starting byte position within the
file.

u_long
aSize

input Number of bytes to read.

boolean
aReliable

input If aReliable = FALSE, client indicates that the RPC
reply need not be reliable, e.g., for use with multimedia
data for transient presentations.

ObjData
rData

output Pointer to data returned by the File Read.

5.5.6.4 DSM File Write
DSM File Write Random access write to a file. (WRITER)

Client-Service IDL Syntax

module DSM {
 interface File : Base {

void Write (
in u_longlong aOffset,
in u_long aSize,
in ObjData rData)
raises (INV_OFFSET, INV_SIZE, WRITE_LOCKED);

 };
};

Semantics

File Write provides a mechanism to write data to a file starting at a designated offset. WRITER privileges
are required. The File Write uses the File reference obtained from a previous Directory Open. Appends
may be performed by using the size of the file as aOffset. Size is an exported attribute of the Access
Interface and may be obtained through a Directory Get operation.

As a general rule, files which can be writable by settop clients should be kept in a separate service from
services that contain files which are read-only by settop clients,. The data size is limited by client to server
bandwidth constraints.

Privileges Required
WRITER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

181

Parameters
type/variable direction description
u_longlong
aOffset

input 64 bit value indicating starting byte position within the
file.

u_long
aSize

input Number of bytes to write.

ObjData
rData

input Pointer to data to be written.

5.5.7 ServiceGateway

A network session is established as a result of invoking ServiceGateway Attach. At this time the client is
connected with the ServiceGateway's top directory. Depending on the PathSpec in ServiceGateway Attach,
the client may also have opened a first service, e.g. a Download Service. While in the Session, the client
may connect to additional services by sending Directory Open to the ServiceGateway., or disconnect from
services by sending the appropriate Close to the Service.

ServiceGateway inherits Directory bind and unbind operations. bind, bind_context, rebind,
rebind_context and unbind require MANAGER privileges to be invoked on the ServiceGateway

5.5.7.1 ServiceGateway Definitions, Exceptions

module DSM {
 // these exceptions are shared with other interfaces
 exception UNK_USER ExceptUser; // unknown user
 exception BAD_PROFILE ExceptUser; // bad client profile format or contents
 exception NO_SUSPEND ExceptUser; // unable to suspend state
 exception NO_RESUME ExceptUser; // unable to resume a previous session
 struct NetResource {

u_long Id; // resource identifier
sequence<any> ResourceParams;};

 typedef sequence<NetResource> NetResources;
};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

182

5.5.7.2 Summary of ServiceGateway Primitives

Inherited from Access:
attributes: Size, Hist, Lock, Perms

Inherited from Directory and
NamingContext:

Open, Close, Get, Put,
list, resolve, bind, bind_context, rebind,
rebind_context, unbind, new_context,
destroy

Defined in ServiceGateway:

DSM ServiceGateway Attach Attach to a ServiceGateway domain of services. (READER)

DSM ServiceGateway Detach Detach from a ServiceGateway domain of services.
(READER)

DSM ServiceGateway ModResource Service request to add/delete network resources.
(BROKER)

module DSM
 interface ServiceGateway : Directory {

const AccessRole bind_ACR = MANAGER;
 const AccessRole bind_context_ACR = MANAGER;

const AccessRole rebind_ACR = MANAGER;
 const AccessRole rebind_context_ACR = MANAGER;

const AccessRole unbind_ACR = MANAGER;
const AccessRole Attach_ACR = READER;
const AccessRole Detach_ACR = READER;
const AccessRole ModResource_ACR = BROKER;

 };
};

5.5.7.3 DSM ServiceGateway Attach
DSM ServiceGateway Attach Attach to a ServiceGateway domain of services. (READER)

Client-Service IDL Syntax

module DSM {
 interface ServiceGateway : Directory {

void Attach (
in ObjRef rClientRef,
in Profile rClientProfile,
in EndUser aEndUser,
in UserContext aSuspendContext,
in PathSpec rPathSpec,
out UserContext aResumeContext,
out PathRefs rPathRefs,

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

183

out DateTime rDateTime)
raises (NO_AUTH, BAD_PROFILE, UNK_USER, NO_RESUME,

OPEN_LIMIT, NotFound, CannotProceed, InvalidName);
 };
};

Semantics

ServiceGateway Attach specifies the parameters to be included in the userData fields of the User-
Network Session Establishment messages. It may be used as an RPC only is systems where there is no
DSM-CC User-to-Network signaling, otherwise the portability interface input parameters are placed in
userData field of the U-N ClientSessionSetupRequest, and the portability interface output parameters are
placed in userData field of the U-N ClientSessionSetupResponse.

LINEAR path traversal is used for this operation. Therefore PathType is not specified. A client reference
rClientRef is provided which maps to header information used to uniquely address the client. A client
profile rClientProfile is provided to identify characteristics of the client, e.g. model and version number,
etc. An identification of a previously suspended user context aSuspendContext enables the client to
indicate that an application is to resume from previously suspended state. If this is set to 0, it indicates the
application is starting up for the first time, and will therefore receive an aResumeContext reply identifying
the new used context for this run of the application. A path specification rPathSpec names the path to
ServiceGateway and possibly a first service to open. The reply rPathRefs will contain references for the
Steps in rPathSpec that have process = TRUE.

Privileges Required:
READER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

184

Parameters
type/variable direction description
ObjRef
rClientRef

input The client object reference which uniquely identifies the
requesting node to the ServiceGateway. This maps to the
ObjKey over the network.

Profile
rClientProfile

input A string in TermCap format which includes configuration
information from the Client Configuration Information
Element.

EndUser
aEndUser

input Contains the EndUser system-wide identifier

UserContext
aSuspendContext

input A user context identifier. A value of 0 indicates the client
wishes to establish a new user context. A value > 0 indicates
the client wishes to reconnect to a previously suspended user
context.

PathSpec
rPathSpec

input A Sequence of Steps, representing a path to the
ServiceGateway and possibly to a service.

UserContext
aResumeContext

output The user context assignment for this client to Service-
Gateway session.

PathRefs
rPathRefs

output The object references opened as a result of this attach, e.g.
ServiceGateway and a service. Each ObjRef maps to a
corresponding ObjKey over the network.

DateTime
rDateTime

output ANSI-C standard holds date and time broken down into
their elements. Local time of the ServiceGateway.

5.5.7.4 DSM ServiceGateway Detach

DSM ServiceGateway Detach Detach from a ServiceGateway domain of services. (READER)

Client-Service IDL Syntax

module DSM {
 interface ServiceGateway : Directory {

void Detach (
in boolean aSuspend)
raises (NO_SUSPEND);

 };
};

Semantics

A client/end user may invoke ServiceGateway Detach to disconnect from a ServiceGateway. This will
effectively remove the client from a Session. If aSuspend is true, the ServiceGateway will inform Services
which are maintaining user context for this end user to save state for a possible resumption of those

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

185

Services. It is up to the application to determine how state will be saved and maintained between Sessions.
The client may later invoke ServiceGateway Attach with a UserContext identifier equivalent to current
UserContext (prior to the Detach), in order to Resume from the saved state.

Invoking ServiceGateway Detach will result in a User-to-Network Session Teardown sequence. The
User-to-Network UserData consists of the arguments of this primitive.

Privileges Required:
READER

Parameters
type/variable direction description
boolean
aSuspend

input Direction to application as to whether to maintain state after
the service connection is broken.

5.5.7.5 DSM ServiceGateway ModResource

DSM ServiceGateway ModResource Service request to add/delete network resources. (BROKER)

Client-Service IDL Syntax

module DSM {
 interface ServiceGateway : Directory {

void ModResource (
in u_long aUserContext, // which maps to a Network Session
// requested resources
in NetResources rReqResources,
// resources granted
out NetResources rActResources);

 };
};

Semantics

If a Service receives a request from a Client that requires a change in Network resources between the
Service and the Client, it can invoke ServiceGateway ModResource to initiate the change. rReqResources
is used to identify a list of Resources and associated parameters. rActResources identifies the Resources
and parameters that were granted.

Privileges Required:
READER

Parameters
type/variable direction description
ServiceGateway
object

input A reference to a DSM ServiceGateway object.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

186

u_long
aUserContext

input Identification of a UserContext

NetResources
rReqResources

input Requested Resources.

NetResources
rActResources

output Resources Granted.

5.6 Extended Interfaces

The DSM-CC Extended interfaces are optional. Each of these interfaces may be implemented at the
discretion of the Service Provider. In a CORBA server environment, the equivalent of LifeCycle Create
may be defined individually by each object, as is done in CosNaming. The DSM LifeCycle Create is offered
as a means of having a common function that is inherited and recognized in DSM systems. In a non-
CORBA system, LifeCycle Create assures uniqueness of object references.

Likewise, in a CORBA server environment, there is an Interface Repository where new interfaces are
defined. In a CORBA server environment, the Interfaces object is not needed, whereas in a non-CORBA
system, the Interfaces operations are used to verify interface definitions and to assure uniqueness of
interface types.

The Security interface may not be required if passwords or encrypt keys are never exchanged.

The Service interface is not needed for small systems where ServiceGateway is the broker for all resolves.
For scalable systems, the Service interface is used to enable the ServiceGateway to broker a connection to a
service on a physically separate server, and to enable Services to act as brokers and make decisions based
on client Profile and identification.

The View interface is not required if none of the system’s clients (providers and consumers) has need for
sorting or filtering Directory information or accessing a database.

Create (O)

LifeCycle

Select (R)
Read (R)
Fetch (R)
Update (W)

View

R ::= Reader
W ::= Writer | R
B ::= Broker | W | R
O ::= Owner | B | W | R
M ::= Manager | O | B | W | R

Launch (B)
Unlaunch (B)

Service

Authenticate(R)

Security

Define(M)
Undefine(M)

Interfaces

Abstract Interfaces

Instantiable Interfaces

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

187

5.6.1 View

Multimedia client-server applications using MPEG for audio, video and file access also have a need for
viewing information in the perspective of the end user, as opposed to how the information is stored at the
server. The View primitives provide operations for sorting and filtering data such that directories and
database information can be presented to the user in a more palatable form.

Using the View interface, the relational model can be applied to objects in directories. The View Type in
this case is NON_DB, meaning the directory is not a database. The objects’ exported attributes and their
associated values are used in a View Select query to produce a sorted and filtered result set. The result set
can then be browsed using View Read.

Alternatively, the View interface can be applied to an actual database at the server. The View Type for this
case is either SQL89, SQL92, or SQL3. View Select and View Read are again used by the calling
application to retrieve database attributes. Note that name for SQL3 may change as that standard nears
completion.

For all View Types, the SQL language syntax is used as the basic query form.

View Fetch is provided which will return a window of results, as opposed to a single result row or attribute
object. A View Read from the calling application can result in a View Fetch which will prefetch results in
anticipation of the cursor location in the next View Read.

Using the application portability interface, Directory Open can be pipelined with View Select and View
Fetch in deferred synchronous mode, resulting in the pipelined execution of the operations.

The overlapped execution and local results caching overcomes a potentially significant response time issue
in long-latency networks.

5.6.1.1 Non-Database View
The View interface can be used as an extension of the Directory Interface to enable searching, sorting and
filtering of Directory objects, using a minimal SQL set. A NON_DB View type indicates that the View is
not a Database, but does support limited SQL queries against a container of objects, e.g., a Directory.

The result set from the view contains temporary attribute objects which are browsable by the client. For
example, a client can sort objects by the Access Size attribute, using view.

The SQL set supported by a NON_DB ViewType is as follows:

SELECT, as defined in SQL92, with keywords (in order normally found):
ALL is the default and specifies that all objects that satisfy the SELECT statement should be

returned
FROM indicates which object types to perform the query against
WHERE specifies conditions
ASC sort in ascending order
DESC sort in descending order
GROUP BY return summary information about groups of objects
HAVING return summary information about groups of objects
ORDER BY the order in which rows are returned
UNION combine the results of two select statements
INTERSECT combine the results of two select statements
MINUS combine the results of two select statements

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

188

Conditions, i.e., [attribute operator value] combinations, as defined in SQL92 Some attributes are stored in
structures. The query will specify attributes within structures in ANSI-C syntax, i.e., <attribute structure
name>.<attribute name>. Operators in the query must compare a value to a basic type, e.g., an integer or
string.

The following are strictly NOT allowed for NON_DB ViewType:

1. DISTINCT, since there are no duplicate objects within a name context
2. CONNECT BY, START WITH, since hierarchy is explicit through use of Directories
3. FOR UPDATE OF, since writes are not allowed through SQL on NON_DB View
4. NO WAIT, since locks may not be set with NON_DB View
5. plus any other non-SELECT statement

5.6.1.2 Database View

A View object may represent an actual database at the server. The View Types for a database are SQL89,
SQL92 and SQL3. Each of these refers to a SQL standard. Based on the type, the syntax and semantics of
that standard are applicable.

5.6.1.3 View Procedures

The following steps outline the query sequence:

1. The client application makes the Directory Open of a View object, followed immediately by a View
Select with a SQL statement.

2. The DSM Library issues Directory Open, View Select and View Fetch RPCs in synchronous deferred
mode, allowing them to be pipelined.

3. The RPC Server establishes the query, executes it, and creates a results area for all rows matched. The
RPC Server fetches the initial set of result rows. In addition it marks which rows are to be returned.

4. The RPC reply sent to the client with a subset of the rows matched.

5. The rows returned from the View Fetch are stored in a local buffer at the client.

The following steps outline the browsing sequence:

1. The client obtains the initial set of rows or objects from View Fetch in its local buffer, as described
above.

2. The client perform can obtain a row by invoking View Read with cursor value that points into the
matching result set at the Server. The DSM Library will invoke the remote interface View Fetch as
needed or to prefetch a window of rows in anticipation of further Reads.

3. Finally the client issues View Close is used to close the View and the query.

5.6.1.4 View Definitions, Exceptions

module DSM {
interface View {

// ViewType identifies the Query set supported by the View
// NON_DB indicates service is not a Database but performs minimal
// searches, filters and sorts using SELECT as described in the DSM spec

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

189

// SQL89 indicates the View is a SQL89-compliant database
// SQL92 indicates the View is a SQL92-compliant database
// SQL3 indicates the View is a SQL3-compliant database
const char NON_DB = ‘N’;
const char SQL89 = ‘1’;
const char SQL92 = ‘2’;
const char SQL3 = ‘3’; // this is reserved for SQL3
attribute char Type;
const AccessRole Info_Get_ACR = READER;
const AccessRole Info_Put_ACR = OWNER;
typedef string SQLStatement;
struct ResultDescribe {

s_short aNumberOfColumns; //number of attributes or columns
s_short aPrecision; //count of digits in numbers
s_short aScale; //count of digits to right of decimal point
boolean aNullOK; }; //NULL OK in numbers

typedef sequence<any> BufDescribe; //describes type, length of each attribute
exception BUF_TOO_SMALL ExceptUser; //local buffer space requested is too small

 exception BUF_TOO_BIG ExceptUser; //local buffer space requested is too big
 exception BAD_SYNTAX ExceptUser; //illegal SQL syntax
 exception INV_CURSOR ExceptUser; //cursor out of bounds
 };
};

5.6.1.5 Summary of View Primitives

Defined in View:

DSM View Select Execute a SQL read statement. Fetch an initial set of result objects to client
buffer space. (READER)

DSM View Read Obtain the attributes of a single row or object.

DSM View Fetch Fetch additional result rows in the context of a View Select query.
(READER)

DSM View Update Execute a SQL write statement. (WRITER)

module DSM
 interface View {

const AccessRole Select_ACR = READER;
const AccessRole Read_ACR = READER;
const AccessRole Fetch_ACR = READER;
const AccessRole Update_ACR = WRITER;

 };
};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

190

5.6.1.6 DSM View Select
DSM View Select Execute a SQL read statement. Fetch an initial set of result objects to client

buffer space.

Client-Service IDL Syntax

module DSM {
 interface View {

void Select (
in u_long aBufSize, // app memory allocated
in SQLStatement rSQLStatement,
out ResultDescribe rResultDescribe, // describes full result
out ObjData rReturnBuffer) // memory location for fetch to use
raises (BAD_SYNTAX, BUF_TOO_SMALL, BUF_TOO_BIG);

 };
};

Semantics

View Select sends the SQL statement specified by rSQLstatement to the View object for execution.
aBufSize defines the size of the local cache rReturnBuffer . rResultDescribe contains a description of the
fields in the data returned in rReturnBuffer . rReturnBuffer specifies the location of the local results
cache, where the DSM Library can prefetch result rows.

The client will allocate the buffer space for rReturnBuffer based on available memory it has at the time of
invocation. The server will honor this size by not returning a sequence larger than the buffer space
allocated. If the number of a single attribute value to be returned plus the overhead of _maximum and
_length parameters of the sequence exceeds aBufSize, a BUF_TOO_SMALL exception will be returned.
If the buffer size allocated exceeds the buffer space capability of the server, a BUF_TOO_BIG exception
will be returned.

Privileges Required
READER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

191

Parameters
type/variable direction description
u_long
aBufSize

input The client buffer space allocated for rReturnBuffer

SQLStatement
rSQLStatement

input Standard SQL statement, subject to restrictions of the
View Type.

ResultDescribe
rResultDescribe

output Description of return fields.

ObjData
rReturnBuffer

output Results buffer of rows and fields.

5.6.1.7 DSM View Read
DSM View Read Obtain the attributes of a single row or object.

Client-Service IDL Syntax

module DSM {
 interface View {

void Read (
in u_short aCursor, // pointer into full result list
out BufDescribe rObjDescribe, // describes attributes of the row or object
out ObjData rRow) // block of one row/object's data values

// described by rObjDescribe
raises (INV_CURSOR);

 };
};

Semantics

View Read is used to obtain the attributes of one object, or read a result row after a Select. aCursor
identifies an object in the list of objects, either in the name context, or in the Select full result.

The Read can be done independent of a Select. If Read is done without a prior Select, then all objects of the
name context are in the result set and a Remote interface Fetch is not performed. If Read follows a Select,
the Cursor refers to the result created by the Select, and the DSM Library performs Fetch to prefetch a
window of result rows in anticipation of the next Read.

Privileges Required
READER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

192

Parameters
type/field direction description
u_short
aCursor

input Index into the full result of a Select or the list of
objects in a name context.

BufDescribe
rObjDescribe

output Description of the object’s attributes or the result row
fields.

ObjData
rRow

output The Object’s attribute values or row field values.

5.6.1.8 DSM View Fetch
DSM View Fetch Fetch additional result rows in the context of a View Select query.

Client-Service IDL Syntax

module DSM {
 interface View {

void Fetch (
in u_short aCursor,
out BufDescribe rObjDescribe, // describes attributes per object row
out ObjData rReturnBuffer) // includes multiple rows or objects
raises (INV_CURSOR);

 };
};

Semantics

View Fetch is used to fetch multiple result rows, if applicable, from the server after the successful
execution of a View Select. Results are placed in the same buffer as the original View Select.

Privileges Required
READER

Parameters
type/variable direction description
u_short
aSQLcurser

input/output Cursor location within View query context.

BufDescribe
rObjDescribe

output Description of the object’s attributes or the result row
fields.

ObjData
rReturnBuffer

output The Object’s attribute values or row field values.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

193

5.6.1.9 DSM View Update
DSM View Update Execute a SQL write statement.

Client-Service IDL Syntax

module DSM {
 interface View {

void Update (
in SQLStatement rSQLStatement)
raises (BAD_SYNTAX);

 };
};

View Update sends the SQL statement specified by rSQLstatement to the View object for execution of
SQL inserts, deletes, and updates.. View Select returns Success upon successful execution of the SQL
statement string, else it will return an error indicating the completion status.

Use of View Update is not permitted for the NON_DB View Type. For NON_DB Views, Directory
commands such as bind and unbind should be used instead.

Privileges Required:
WRITER

Parameters
type/variable direction description
SQLStatement
rSQLStatement

input Standard SQL statement, subject to restrictions of the
View Type.

5.6.2 Service

The Service is an entity that provides function(s) and interface(s) in support of applications. Services will
typically include interfaces defined in this standard and may optionally extend the interface by defining new
operations not covered by DSM. Services register with the ServiceGateway using the ServiceGateway bind
operation(s). In the context of a Session, a Client requests connection to a Service through Directory Open
(specifying service name)sent to the ServiceGateway. After authorization and resolution of the Service
instance, the Client becomes associated with a Service through Service Launch from the ServiceGateway.

5.6.2.1 Summary of Service Primitives

DSM Service Launch Activate an end user context for a service object. (BROKER)

DSM Service Unlaunch Deactivate or suspend an end user context for a service object. (BROKER)

module DSM
 interface Service {

const AccessRole Launch_ACR = BROKER;
const AccessRole Unlaunch_ACR = BROKER;

 };
};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

194

5.6.2.2 DSM Service Launch
DSM Service Launch Activate an end user context for a service object. (BROKER)

Remote Interface IDL Syntax

module DSM {
 interface Service {

void Launch (
in ObjKey rClientRef, // unique identification of client over the network
in Profile rClientProfile, // profile of current client configuration
in EndUser aEndUser, // identification of end user
in UserContext aUserContext, // identification of application user context
in boolean aResume, // resume from previous state
in NetResources rNetResources, // network resources allocated
out ObjKey rServerRef) // unique identification of server over the network
raises (UNK_USER, BAD_PROFILE, NO_RESUME);

 };
};

Semantics

A ServiceGateway may send Service Launch to a Service to activate a client-service connection in
response to an Open (with specified Service Name) from the Client. This will allow the Client and Service
to begin communication. It will also pass key information about the client and the connection to the Service,
including unique network reference of the Client, Client Profile, an application user context, whether the
end user wishes to resume a previous user context, and initial network resources assigned. The Service
Launch reply contains the service’s unique network reference, which is then passed back to the Client in
the reply to the Open.

If, in the course of client-service interaction, the initial network resources assigned need to be modified,
e.g., if bandwidth requirements change, the Service can use ServiceGateway ModResource to accomplish
this.

Privileges Required:
BROKER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

195

Parameters
type/variable direction description
ObjKey
rClientRef

input Unique identification of the client over the network.

Profile
rClientProfile

input Profile of information about the client’s configuration.

EndUser
aEndUser

input Contains the EndUser system-wide identifier

UserContext
aUserContext

input User Context for this application run.

boolean
aResume

input If TRUE, resume using state from a previous UserContext.
If FALSE, use initial state.

NetResources
rNetResources

input Initial network resources that the ServiceGateway has
negotiated for this connection, e.g. pipes and bandwidth.

ObjKey
rServerRef

output Object reference chosen by the Service broker.

5.6.2.3 DSM Service Unlaunch
DSM Service Unlaunch Deactivate or suspend a user context for a service object. (BROKER)

Client-Service IDL Syntax

module DSM {
 interface Service {

void Unlaunch (
in ObjKey rClientRef, // unique identification of client over the network
in EndUser aEndUser, // identification of end user
in UserContext aUserContext, // identification of application user context
in boolean aSuspend) // suspend for later resume
raises (NO_SUSPEND);

 };
};

Semantics

A BROKER may use Service Unlaunch to remove an end user client context from a Service. If aSuspend
is true, the Service is instructed to save state for a possible resumption of that Service for that client. It is up
to the application to determine how it will save state.

Privileges Required:
BROKER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

196

Parameters
type/variable direction description
ObjKey
rClientRef

input Unique identification of the client over the network.

EndUser
aEndUser

input Contains the EndUser system-wide identifier.

UserContext
aUserContext

input User Context for this application run.

boolean
aSuspend

input Direction to application as to whether to maintain state after
the service connection is broken.

5.6.3 Interfaces
The DSM application space is constructed as a name space graph starting at the ServiceGateway. The nodes
represent objects of the various types specified by DSM as well as additional types that may be
implementation specific.

The Directory primitives provide browsing functions to traverse the graph. Each node has a minimum of a
name and type. The node may have other browsable information such as version and date, providing the
definition of the type exports these attributes. Each object type has an exported interface, which is defined
through Interfaces Define.

5.6.3.1 Interfaces Definitions, Exceptions

module DSM {
 // these interface types pre-defined and reserved by DSM
 typedef u_long IntfType;
 const u_long BASE_T = 0;
 const u_long ACCESS_T = 1;
 const u_long EVENT_T = 2;
 const u_long NAMING_CONTEXT_T = 3;
 const u_long STREAM_T = 4;
 const u_long FILE_T = 5;
 const u_long DIRECTORY_T = 6;
 const u_long SERVICEGATEWAY_T = 7;
 const u_long LIFECYCLE_T = 8;
 const u_long INTERFACES_T = 9;
 const u_long SECURITY_T = 10;
 const u_long SERVICE_T = 11;
 const u_long VIEW_T = 12;
 //
 interface Interfaces {

typedef sequence<octet, 1024> ReferenceData;
typedef string InterfaceDef;
exception INV_INTERFACE ExceptUser; //invalid interface definition

 };
};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

197

5.6.3.2 Summary of Interfaces Primitives

DSM Interfaces Define Define an object interface to the System (MANAGER)

DSM Interfaces Undefine Remove an object interface definition from the System.
(MANAGER)

module DSM
 interface Interfaces {

const AccessRole Define_ACR = MANAGER;
const AccessRole Undefine_ACR = MANAGER;

 };
};

5.6.3.3 DSM Interfaces Define
DSM Interfaces Define Define an object interface to the System (MANAGER)

Client-Service IDL Syntax

module DSM {
 interface Interfaces {

void Define (
in ReferenceData id, // unique Identifier
in InterfaceDef intf, // IDL definition
// how to use version is implementation-specific
out Version rVersion, // return new version if one exists
out IntfType aIntfType) // return system-wide object type
raises (INV_INTERFACE);

};
};

Semantics

Interfaces Define is used by an MANAGER to define an interface of an object to the system. The interface
definition specifies the exported interface of the object, i.e., exported methods and attributes. The interface
definition may ‘include’ other interfaces to allow new interfaces to extend the functionality of existing
interfaces. The object type is specified in the IDL interface definition. If the client is redefining an existing
interface, the existing type and new version are returned. If the client is defining a new interface, a new type
and initial version are returned.

The interface definition can specify the AccessRole for each method, as well as the Get AccessRole and
Put AccessRole for each exported attribute. If these are not specified, the AccessRole defaults to OWNER.

Following the Define(), the object type may be used in Create() to produce an object reference of a known
interface type.

Privileges Required:
MANAGER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

198

Parameters
type/variable direction description
ReferenceData
id

input Immutable identification information, chosen by the
object implementation at object creation time, and
never changed during the lifetime of the object.

InterfaceDef
intf

input Interface Repository object that specifies the set of
interfaces and associated exported attributes
specified by the object.

Version
rVersion

output Version assigned for this Define.

IntfType
aIntfType

output The DSM interface type.

5.6.3.4 DSM Interfaces Undefine
DSM Interfaces Undefine Remove an object interface definition from the System.

(MANAGER)

Client-Service IDL Syntax

module DSM {
 interface Interfaces {

void Undefine (
in ReferenceData id,
in Version rVersion,
in IntfType aIntfType);

 };
};

Semantics

An OWNER may use Interfaces Undefine to remove the definition of an interface from the system.

Privileges Required:
OWNER

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

199

Parameters
type/variable direction description
ReferenceData
id

input Immutable identification information, chosen by the
object implementation at object creation time, and
never changed during the lifetime of the object.

Version
rVersion

output Version assigned for this Define.

IntfType
aIntfType

output The DSM interface type.

5.6.4 LifeCycle
All objects have a life cycle. They are created. They may be non-persistent, e.g. created and accessed during
a Session, and then destroyed. They may be persistent, e.g. accessed over the span of many Sessions. They
are ultimately destroyed. The LifeCycle defines the basic Create, for entities which have this capability.

5.6.4.1 DSM LifeCycle Create
DSM LifeCycle Create Create an object instance from an object definition.

Client-Service IDL Syntax

module DSM {
 interface LifeCycle {

const AccessRole Create_ACR = OWNER;
void Create (

in IntfType aIntfType,
out ObjRef rObjRef);

 };
};

Semantics

LifeCycle Create is used to create an instance of an object type which was defined by Interfaces Define.
All of the DSM types in this document are pre-defined and therefore well-known. An object reference for
the instance is returned. This object reference can be used to bind this object to a Name Context, e.g. using
Directory bind .

Privileges Required:
OWNER

Parameters
type/variable direction description
IntfType
aIntfType

input A DSM defined object type, e.g. Directory, File,
Stream, for narrowing the type of object.

ObjRef
rObjRef

output A reference to an object instance.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

200

5.6.5 Security

5.6.5.1 DSM Security Authenticate
DSM Security Authenticate Request authentication with password or decryption key.

(READER)

Client-Service IDL Syntax

module DSM {
 const AccessRole Authenticate_ACR = READER;
 interface Security {

void Authenticate (
in Password rPassword,
in EncryptData rData);

 };
};

Semantics

The purpose of Security Authenticate is to enable the client to identify itself for the purposes of obtaining
access to (i.e., opening) an object. The Authenticate must be given with Directory Open if the object has
either a non-Null rPassword or EncryptData with length greater than 0 in its Perms attribute.
Authenticate must be followed immediately by another command. If an Open is received without a
corresponding authenticate preceding it, and authentication is required as described above, a NO_AUTH
exception will be given. The client is expected to know the reason for the NO_AUTH , and will respond
accordingly. If an encrypted data response is required, the exception will also carry EncryptData which
must be successfully processed by the client. The client must then send an Authenticate followed by the
Open (repeated), with proper password or processed encrypt data in the Authenticate.

This standard does not specify an encryption algorithm. It does enable the following sequence: a) the
service passes EncryptData to the Client, b) the Client processes the received EncryptData via the
encryption algorithm, c) the Client returns transformed EncryptData back to the Service, and d) the
Service verifies it via the encryption algorithm.

The atomic operation of the authenticate with the following operation from the client is implicit. That is, the
Service will wait for the next command from the application and execute the authenticate and the next
command together. If the authenticate generates an exception, the next command will generate an
exception.

Privileges Required:
READER

Parameters
type/variable direction description
Password
rPassword

input A character string password for authentication to open
an object.

EncryptData
rData

input A sequence of bytes used by an encryption mechanism.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

201

5.7 Application Portability Interfaces

The application portability interfaces provide a true API with a language mapping. It can be generated using
an OMG or DSM IDL compiler from the client-service IDL. If ANSI C is the language of choice, the
mapping shown in this section will be used. Applications can link with this interface as a set of simple
function calls which in turn invoke the remote procedure calls to the service via the DSM library.

The application portability interfaces define a library of functions calls that can by used by client
applications to invoke the DSM-CC Client-Service interface and local DSM Library functionality.

Applications that use these functions will be portable between clients that contain the DSM Library for
those operations that result in remote network access.

5.7.1 Consumer Client
The consumer client will typically use a limited set of DSM-CC functions. Utilizing download options, it
may keep only those function groups it needs for the application to be run. It may also store a basic set of
functions on a more permanent basis. The profile of a client’s DSM-CC User-to-User primitives at any
given time is summarized not only by the interface name, but by the privilege given the client. One client
can have Core READER interfaces, which include the following DSM-CC primitives:

� Base: IsA, Close
� Directory: Open, Close, Get, resolve, list
� Stream: Pause, Resume, Status, Reset, Play, Jump, Next
� Event: Subscribe, Unsubscribe
� File: Read
� ServiceGateway: Attach, Detach

Another client may have READER privileges for all Core interfaces, and WRITER privileges for the File
interfaces on some Services. A client in this case would have the following 13 DSM-CC primitives:

� Base: IsA, Close
� Directory: Open, Close, Get, resolve, list
� Stream: Pause, Resume, Status, Reset, Play, Jump, Next
� Event: Subscribe, Unsubscribe
� File: Read, Write
� ServiceGateway: Attach, Detach

Home settop devices are usually classified as minimal clients. While the Service Gateway complex must
implement the complete Core set of interfaces, a settop client need only implement those groups (by
privilege) that it needs to run an application.

5.7.2 Information Provider Client
An information provider client, on the other hand, will be accorded OWNER privileges. In addition to the
READER privileges listed above, the OWNER can perform the create, put, write, bind, destroy functions,
which enable loading of content to the service, and ultimate removal from the service. One kind of
information provider is the author. The author, using one of many available multimedia authoring tools, will
at times act in the capacity of loading content to the Service, and at other times will act as a consumer in the
capacity of viewing and testing the application.

The author will see one stream service or file service which offers OWNER, WRITER and READER
privileges. The DSM-CC User-to-User primitives enable MPEG multimedia content to loaded and
delivered, using common navigational and access primitives, with just a few additional OWNER and
WRITER primitives.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

202

C Mapping

The IDL compiler will generate the following parameters in the C mapping equivalent of the IDL. The
standard CORBA compiler generates:

� the object to which the function will be sent, and
� the environment (exception) structure.

The DSM IDL Compiler generates the above 2 parameters, and with Synchronous Deferred option on,

will also generate:

� a RequestHandle, which is used as an index to RPC completion status. The RequestHandle will be
generated for those operations which have a void return value in the IDL specification. It will take the
place of the void return value.

For these generated C mappings, the table describing the parameters of each primitive is augmented with
these entries:

DSM_<interface name>
object

input Object reference to which the call is made.

CORBA_Environment
ev

output The resulting status of the operation. If NULL, then the
operation succeeded, otherwise it points to the exception
data defined by this primitive’s interface.
ev is a void * which is cast into either a CORBA
ex_body, or one of the possible DSM exception
structures, as defined by the raises statement.

DSM_RequestHandle output Synchronous Deferred completion status.

Please refer to the CORBA architecture specification for additional details on C mapping rules. In addition,
the CORBA architecture specification has example code on how exceptions can be handled in C.

Below is a brief overview of types frequently used by DSM:

5.7.2.1 Basic Data Types
The basic IDL data types used in DSM map as follows:

IDL DSM shorthand C
short s_short CORBA_short
unsigned short u_short CORBA_unsigned_short
long s_long CORBA_long
unsigned long u_long CORBA_unsigned_long

The implementation is responsible for providing the typedefs for CORBA_short, CORBA_long, etc.,
consistent with the IDL requirements for these types.

5.7.2.2 Constants
Constant identifiers are #defined in the C mapping:

5.7.2.3 Struct Types
A struct in IDL maps directly to the equivalent C struct.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

203

5.7.2.4 Sequence Types
A sequence type is converted to a struct with a maximum length, actual length and buffer pointer.

Example:

typedef sequence<octet, MAX_LENGTH> rSeq;

is converted to:

typedef struct {
CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
CORBA_octet * _buffer;

} rSeq;

5.7.2.5 Strings
IDL strings are mapped to 0-byte terminated character arrays; i.e., the length of the string is encoded in the
character array itself through the placement of the 0-byte.

5.7.2.6 Any

The CORBA typedef any maps as follows in C:

typedef struct any {
CORBA_TypeCode_type;
void * _value;}

 CORBA_any;

TypeCodes are generated by the IDL compiler or by a CORBA Interfaces Repository. TypeCodesexpected
to be commonly used by DSM are:

TC_boolean A bit. 0= False; 1 = TRUE.
TC_char A character.
TC_short A signed short.
TC_ushort An unsigned short.
TC_long A signed long.
TC_ulong An unsigned long.
TC_string a 0-byte terminated string.
TC_sequence_octet A sequence of octets.
TC_sequence_ulong A sequence of unsigned longs.

For other CORBA TypeCodes, refer to CORBA type definitions in orb.h.

5.7.3 Application Synchronous Deferred Operations
Applications can choose to initiate synchronous deferred requests to the various services on a per process
basis. DSM-CC synchronous deferred allows the application process to pipeline its function calls in a non-
blocking fashion. The DSM IDL compiler can be given the option to add a RequestHandle to operations as
the return value in place of void (or this can be done by hand if such a compiler is not available). The
resulting C compilation will have this RequestHandle, which can be used to issue synchronous deferred
requests. The following Config interface is then used by the application thread to change mode from
synchronous to synchronous deferred and back.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

204

// Pseudo IDL
module DSM {
 // RequestHandle is 0 if Config:: DeferredSync is FALSE (synchronous RPC)
 typedef u_long RequestHandle;
 // allow individual threads to configure dynamically as synchronous or deferred synchronous
 interface Config {

// if TRUE RPC mode is deferred synchronous
attribute boolean DeferredSync;
typedef sequence<RequestHandle, 1024> RequestList;
readonly attribute RequestList ActiveRequests;
void Wait (in RequestHandle aRequest); // like CORBA get_response
void Inquire (in RequestHandle aRequest); // inquire as to status

 };
};

Application I/F

Remote I/F

<Request>

Service

Create Request Object
Generate Remote Request
Reply to <Request>

Inquire Wait

Reply to Wait
Destroy Request Object

Reply to Inquire
(COMPLETED_NO)

Figure 32: Application and Service I/O

DSM Application Interface primitives can compile to be either synchronous deferred or synchronous. If the
client is multi-threaded, it can pipeline messages by sending them on separate threads. Each message does
not block the next because they are called from separate threads, the calling thread will wait on the reply
from the server. Each thread can set the mode for its RPCs through the Config interface. If DeferredSync is
set to FALSE, RequestHandle will always be 0 and each invocation from that thread will block until the
Remote reply is received. If DeferredSync is TRUE, the invocations will not block and the RequestHandle
will advance with each invocation.

The deferred synchronous mode works as follows: The client application issues a request by calling a DSM
primitive, at which time the DSM Library creates a request object for the transaction at hand. It then
initiates the remote procedure call (RPC), and replies immediately to the calling application. The client
application may elect to continue doing something else, issue separate requests or wait on any particular
outstanding request. An Inquire primitive is provided to allow the application to check the status of the
transaction. If Inquire returns without an exception, the operation is completed. If it returns an exception
with either COMPLETED_NO or COMPLETED_MAYBE, the operation is not complete. The Wait
operation can be invoked to block until a reply has been received. This is similar to the CORBA
get_response operation.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

205

A successful Inquire signifies that the RPC reply data is valid. If the application has pointers to reply data as
a result of the request, it may now access this data. The Request Object is destroyed in the DSM Library for
any of the following reasons:

� Null exception from an Inquire invocation.
� Reply to Wait upon remote reply received.
� Destruction of higher level containment object. For example, if a remote reply is received and the DSM

Library determines that the parent Service is closed, the corresponding request object is destroyed.

5.7.4 API Definitions

Because nearly all of the Client-Service interfaces have a 1-1 mapping with the Application Portability
interfaces, the semantics and parameter descriptions are maintained in the Client-Service Interfaces portion
of this document. Please refer to that section for the descriptions of the interfaces or their operations.

5.7.4.1 C Mapping for the Synchronous Interface
The synchronous C mapping of the DSM-CC Core interfaces are shown below. These functions are
generated directly from a standard CORBA IDL compiler. When called by the application, the function will
always block, i.e., it will not return until after the RPC has returned.

5.7.4.1.1 Base

5.7.4.1.1.1 Base API with 1-1 Client-Service Interface Mapping
The following two functions have a 1-1 Client-Service Interface to API mapping:

void DSM_Base_Close (
DSM_Base object,
CORBA_Environment * ev)

void DSM_Base_Destroy (
DSM_Base object,
CORBA_Environment * ev)

5.7.4.1.1.2 DSM_Base_IsA
The IsA functionality can have varying implementations, as described in the Client Base interface. It does
not necessarily result in an RPC to the Base object it is referring to.

Pseudo-IDL

module DSM {
 interface Base {

void IsA (
in IntfType aIntfType,
out boolean aVerdict);

 };
};

API: C Language Mapping

void DSM_Base_IsA (
DSM_Base object,

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

206

CORBA_Environment * ev,
 DSM_IntfType aIntfType,
 CORBA_boolean * aVerdict)

Semantics

Base IsA enables a client to test whether an object includes(inherits) a specified interface. The interface is
identified by aIntfType. If aVerdict is TRUE, the object includes that interface. If aVerdict is FALSE, it
does not.

Privileges Required:
READER

Parameters
type/variable direction description
IntfType
aIntfType

input A DSM defined object type, e.g. Directory, File,
Stream, for narrowing the type of object.

boolean
aVerdict

output TRUE or FALSE. TRUE if the object exports the
interface of aIntfType.

5.7.4.1.2 Directory
The following functions have a 1-1 Client-Service Interface to API mapping:

void DSM_Directory_list (
DSM_Directory object,
CORBA_Environment * ev,

 CORBA_unsigned_long how_many,
 CosNaming_BindingList * bl,
 CORBA_Object * bi)

CORBA_Object DSM_Directory_resolve (
DSM_Directory object,
CORBA_Environment * ev,

 CosNaming_Name * n)

void DSM_Directory_Open (
DSM_Directory object,
CORBA_Environment * ev,

 DSM_PathType aPathType,
 DSM_PathSpec * rPathSpec,

DSM_PathRefs * rPathRefs)

void DSM_Directory_Close (
DSM_Directory object,
CORBA_Environment * ev)

void DSM_Directory_Get (
DSM_Directory object,
CORBA_Environment * ev,

 DSM_PathType aPathType,
DSM_PathSpec * rPathSpec,

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

207

DSM_PathValues * rPathValues)

void DSM_Directory_Put (
DSM_Directory object,
CORBA_Environment * ev,

 DSM_PathType aPathType,
 DSM_PathSpec * rPathSpec,

DSM_PathValues * rPathValues)

5.7.4.1.3 Stream
The following functions have a 1-1 Client-Service Interface to API mapping:

void DSM_Stream_Pause (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream_NPT * rStop)

void DSM_Stream_Resume (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream_NPT * rStart,
 DSM_Stream_Scale * rScale)

void DSM_Stream_Status (
DSM_Stream object,
CORBA_Environment * ev,
DSM_Stream_Stat * rAppStatus,

 DSM_Stream_Stat * rActStatus)

void DSM_Stream_Reset (
DSM_Stream object,
CORBA_Environment * ev)

void DSM_Stream_Jump (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream_NPT * rStart,
 DSM_Stream_NPT * rStop,
 DSM_Stream_Scale * rScale)

void DSM_Stream_Play (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream_NPT * rStart,
 DSM_Stream_NPT * rStop,
 DSM_Stream_Scale * rScale)

void DSM_Stream_Next (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream rNextStream)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

208

5.7.4.1.4 Event
The following functions have a 1-1 Client-Service Interface to API mapping:

void DSM_Event_Subscribe (
DSM_Event object,
CORBA_Environment * ev,

 CORBA_string aEventName,
 DSM_u_short * aEventToken)

void DSM_Event_Unsubscribe (
DSM_Event object,
CORBA_Environment * ev,

 DSM_u_short aEventToken)

5.7.4.1.5 File
The following functions have a 1-1 Client-Service Interface to API mapping:

void DSM_File_Read (
DSM_File object,
CORBA_Environment * ev,

 DSM_u_longlong * aOffset,
 DSM_u_long aSize,
 CORBA_boolean * aReliable,
 DSM_ObjData * rData)

void DSM_File_Write (
DSM_File object,
CORBA_Environment * ev,

 DSM_u_longlong * aOffset,
 DSM_u_long aSize,
 DSM_ObjData * rData)

5.7.4.1.6 ServiceGateway

This function is called to the invoke ClientSessionSetupRequest and receive
ClientSessionSetupResponse network messages:

void DSM_ServiceGateway_Attach (
DSM_ServiceGateway object,
CORBA_Environment * ev,

 DSM_ObjRef rClientRef,
 DSM_Profile rClientProfile,
 CORBA_unsigned_long * aEndUser,
 DSM_UserContext aSuspendContext,
 DSM_PathSpec * rPathSpec,
 DSM_UserContext * aResumeContext,
 DSM_PathRefs * rPathRefs,
 DSM_DateTime * rDateTime)

This function is called to invoke ClientReleaseRequest and receive ClientReleaseConfirm network
messages:

void DSM_ServiceGateway_Detach (
DSM_ServiceGateway object,

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

209

CORBA_Environment * ev,
 CORBA_boolean aSuspend)

5.7.4.1.7 Security
This function has a 1-1 Client-Service Interface to API mapping.

void DSM_Security_Authenticate (
DSM_Security object,
CORBA_Environment * ev,

 DSM_Password rPassword,
 DSM_EncryptData * rData)

5.7.4.1.8 View
The following functions have a 1-1 Client-Service Interface to API mapping:

void DSM_View_Select (
DSM_View object,
CORBA_Environment * ev,

 DSM_u_long aBufSize,
 DSM_View_SQLStatement rSQLStatement,
 DSM_View_ResultDescribe * rResultDescribe,
 DSM_ObjData * rReturnBuffer)

/* Note: Read can generate Client-Service View Fetch depending upon the aCursor position. */

void DSM_View_Read (
DSM_View object,
CORBA_Environment * ev,

 DSM_u_short aCursor,
 DSM_View_BufDescribe * rObjDescribe,
 DSM_ObjData * rRow)

void DSM_View_Update (
DSM_View object,
CORBA_Environment * ev,

 DSM_View_SQLStatement rSQLStatement)

5.7.4.2 C Mapping for the Synchronous Deferred Interface
When a synchronous deferred C mapping is desired, either the IDL compiler or the programmer must
follow these rules:

1. The IDL operations must specify a return value of void.
2. The type DSM_RequestHandle will be substituted for the void return value.

A function with the synchronous deferred C mapping can operate either synchronously or asynchronously,
using the Config interface. The following are the synchronous deferred C mappings for DMS-CC interfaces:

5.7.4.2.1 Config
These functions are used to configure the DSM Library RPC mechanism.

void DSM_Config_Inquire (
DSM_Config object,
CORBA_Environment * ev,
RequestHandle aRequest)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

210

void DSM_Config_Wait (
DSM_Config object,
CORBA_Environment * ev,
RequestHandle aRequest)

5.7.4.2.2 Base
The following functions have a 1-1 Client-Service Interface to API mapping with a substituted
RequestHandle as the return value:

DSM_RequestHandle DSM_Base_Close (
DSM_Base object,
CORBA_Environment * ev)

DSM_RequestHandle DSM_Base_Destroy (
DSM_Base object,
CORBA_Environment * ev)

/* Note: see the synchronous function DSM_Base_IsA for semantics */

DSM_RequestHandle DSM_Base_IsA (
DSM_Base object,
CORBA_Environment * ev,

 DSM_IntfType aIntfType,
 CORBA_boolean * aVerdict)

5.7.4.2.3 Directory
The following functions have a 1-1 Client-Service Interface to API mapping with a substituted
RequestHandle as the return value:

DSM_RequestHandle DSM_Directory_list (
DSM_Directory object,
CORBA_Environment * ev,

 CORBA_unsigned_long how_many,
 CosNaming_BindingList * bl,
 CORBA_Object * bi)

DSM_RequestHandle DSM_Directory_Open (
DSM_Directory object,
CORBA_Environment * ev,

 DSM_PathType aPathType,
 DSM_PathSpec * rPathSpec,

DSM_PathRefs * rPathRefs)

DSM_RequestHandle DSM_Directory_Close (
DSM_Directory object,
CORBA_Environment * ev)

DSM_RequestHandle DSM_Directory_Get (
DSM_Directory object,
CORBA_Environment * ev,

 DSM_PathType aPathType,
DSM_PathSpec * rPathSpec,
DSM_PathValues * rPathValues)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

211

DSM_RequestHandle DSM_Directory_Put (
DSM_Directory object,
CORBA_Environment * ev,

 DSM_PathType aPathType,
 DSM_PathSpec * rPathSpec,

DSM_PathValues * rPathValues)

5.7.4.2.4 Stream
The following functions have a 1-1 Client-Service Interface to API mapping with a substituted
RequestHandle as the return value:

DSM_RequestHandle DSM_Stream_Pause (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream_NPT * rStop)

DSM_RequestHandle DSM_Stream_Resume (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream_NPT * rStart,
 DSM_Stream_Scale * rScale)

DSM_RequestHandle DSM_Stream_Status (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream_Stat * rAppStatus,
 DSM_Stream_Stat * rActStatus)

DSM_RequestHandle DSM_Stream_Reset (
DSM_Stream object,
CORBA_Environment * ev)

DSM_RequestHandle DSM_Stream_Jump (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream_NPT * rStart,
 DSM_Stream_NPT * rStop,
 DSM_Stream_Scale * rScale)

DSM_RequestHandle DSM_Stream_Play (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream_NPT * rStart,
 DSM_Stream_NPT * rStop,
 DSM_Stream_Scale * rScale)

DSM_RequestHandle DSM_Stream_Next (
DSM_Stream object,
CORBA_Environment * ev,

 DSM_Stream rNextStream)

5.7.4.2.5 Event
The following functions have a 1-1 Client-Service Interface to API mapping:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

212

DSM_RequestHandle DSM_Event_Subscribe (
DSM_Event object,
CORBA_Environment * ev,

 CORBA_string aEventName,
 DSM_u_short * aEventToken)

DSM_RequestHandle DSM_Event_Unsubscribe (
DSM_Event object,
CORBA_Environment * ev,

 DSM_u_short aEventToken)

5.7.4.2.6 File
The following functions have a 1-1 Client-Service Interface to API mapping with a substituted
RequestHandle as the return value:

RequestHandle DSM_File_Read (
DSM_File object,
CORBA_Environment * ev,

 DSM_u_longlong * aOffset,
 DSM_u_long aSize,
 CORBA_boolean * aReliable,
 DSM_ObjData * rData)

RequestHandle DSM_File_Write (
DSM_File object,
CORBA_Environment * ev,

 DSM_u_longlong * aOffset,
 DSM_u_long aSize,
 DSM_ObjData * rData)

5.7.4.2.7 ServiceGateway
This function is called to the invoke ClientSessionSetupRequest and receive
ClientSessionSetupResponse network messages:

RequestHandle DSM_ServiceGateway_Attach (
DSM_ServiceGateway object,
CORBA_Environment * ev,

 DSM_ObjRef rClientRef,
 DSM_Profile rClientProfile,
 CORBA_unsigned_long * aEndUser,
 DSM_UserContext aSuspendContext,
 DSM_PathSpec * rPathSpec,
 DSM_UserContext * aResumeContext,
 DSM_PathRefs * rPathRefs,
 DSM_DateTime * rDateTime)

This function is called to invoke ClientReleaseRequest and receive ClientReleaseConfirm network
messages:

RequestHandle DSM_ServiceGateway_Detach (
DSM_ServiceGateway object,
CORBA_Environment * ev,

 CORBA_boolean aSuspend)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

213

5.7.4.2.8 Security
This function has a 1-1 Client-Service Interface to API mapping with a substituted RequestHandle as the
return value:

DSM_RequestHandle DSM_Security_Authenticate (
DSM_Security object,
CORBA_Environment * ev,

 DSM_Password rPassword,
 DSM_EncryptData * rData)

5.7.4.2.9 View
The following functions have a 1-1 Client-Service Interface to API mapping with a substituted
RequestHandle as the return value:

DSM_RequestHandle DSM_View_Select (
DSM_View object,
CORBA_Environment * ev,

 DSM_u_long aBufSize,
 DSM_View_SQLStatement rSQLStatement,
 DSM_View_ResultDescribe * rResultDescribe,
 DSM_ObjData * rReturnBuffer)

/* Note: Read can generate Client-Service View Fetch depending upon the aCursor position. */

DSM_RequestHandle DSM_View_Read (
DSM_View object,
CORBA_Environment * ev,

 DSM_u_short aCursor,
 DSM_View_BufDescribe * rObjDescribe,
 DSM_ObjData * rRow)

DSM_RequestHandle DSM_View_Update (
DSM_View object,
CORBA_Environment * ev,

 DSM_View_SQLStatement rSQLStatement)

6. User Capabilities
The userCapabilities information element has a special form that facilitates both compact descriptions and a
general approach toward extensibility. The precise definition of this information will be shown below after
the introduction of two key concepts which will be used in this section.
The first concept is to use referential rather than literal data whenever possible. This means that a tag can
be set which indicates an entire capability set which will be known to the server. This concept is similar to
the terminfo concept used in UNIX�, where for example, “VT100” indicates a set of terminal
characteristics. This example is also illustrative of the migration of a term from a particular manufacturer’s
product to a generally useful term which summarizes a known set of attributes. By specifying the first item
in this information element to be an identifier associated with a manufacturer, the meaning of the rest of the
data in the message is “anchored” to the definitions used by that manufacturer. The name used to refer to
the manufacturer is the OUI, Organizational Unique Identifier, which is registered with the IEEE as
specified in IEEE-802.1990.
The second concept which will be used here is that all tags and associated data will be ASCII characters
organized as “TAG” or “TAG=VALUE” items. All items will be terminated by a comma (ASCII 0xc2).
Thus, the entire client configuration information element will be expressed as a single ASCII string.

This approach has several advantages:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

214

� This document will define a set of tags thought to be generally useful. However, manufacturers can
extend this list indefinitely with items of interest to their own products.

� In many if not most cases, a simple set of referntial tags can be sent which will resort in a compact
message (an example will be shown below). Additional tags need to be sent only to indicate
capabilities which are not summarized by the simple referential tags.

6.1 userCapabilities Message Structure
Syntax Value Octets

Text
Terminating_null_octet 0x00 1

2
Text - sequence of non-null octets with an embedded field structure as explained below
Terminating_null_octet - Required to terminate the capabilities list and always 0x00 in value.

The Text section is comprised of a sequence of comma (0xc2) terminated logical fields. The first field shall
be the Manufacturer_OUI_code which is the manufacturer’s Organizational Unique Identifier code as
specified by IEEE-802.1990 concatenated with the Manufacturer_id which is the manufacturer assigned
name for the client configuration. Both the value and semantics of this field are determined by the
manufacturer. All remaining fields in this section are optional and may be used to modify the configuration
indicated by the Manufacturer_id . The following rules apply to the syntax of the text section:

1. The first field shall be the Manufacturer_OUI_code concatenated with the
Manufacturer_id .

2. The Manufacurer_OUI_code shall be encoded as two hexidecimal digits per byte with no
delimiters. For example, if the OUI code were the decimal value 12951793 then it would be
expressed as as three hexidecimal bytes concatenated together, C5A0F1. Each hexidecimal
byte must be encoded as two upper case ASCII characters.

3. All remaining fields shall consist of tags and their arguments if they take any.
4. Tags and arguments shall be ASCII strings which can contain any non-blank characters

excluding the characters reserved by the syntax (see Table 106)
5. Arguments shall be separated from the tag by an “=“ sign (0xd3).
6. A reserved list of tags is defined in Table 107, Table 108 and Table 109 below.
7. A semicolon (0xb3) in the argument can be used to indicate an embedded list.
8. Numeric arguments to tags shall be expressed as ASCII representations of decimal values.
9. ASCII characters as used here shall refer to 7 bit ASCII restricted to the values 3210 to 12710

inclusive.

Any other tags may be specified by the manufacturer. The tags in Table 108 and Table 109 require
arguments. that must be expressed using this syntax. In summary, the syntax of a field can be expressed as:

TAG[=ARGUMENT[;ARGUMENT[...]]] ,

The following characters are reserved by the message syntax and may not appear as part of a tag name or
an argument.

Table 106: Client Configuration syntax reserved characters

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

215

Character Hex Value Usage
comma ‘,’ 0xc2 Field terminator
semi-colon ‘;’ 0xb3 Argument list separator
equal ‘=‘ 0xd3 Tag assignment operator
Null 0x00 Message terminator

6.2 Tag_value_list: predefined tags.
Device descriptors fall into three categories:

1. Boolean - indicating the presence or absence of a capability. By default all undeclared booleans are
false.

2. Declarative - these are strings that assign or declare a value to a configuration attribute.

3. Scope - these are strings used to bound or declare a range to a configuration attribute.

Table 107: Boolean Descriptor Tags

descriptor_tag Meaning
11172-2 The device is able to decode constrained parameter bit streams as defined in ISO/IEC

11172-2..
11172-3 The device is able to decode MPEG-1 compliant audio syntax.
13818-2 The device is able to decode MPEG-2 compliant video syntax. By virtue of backwards

compatibility setting this attribute implies setting 11172-2. There is no need for 13818-
2 compliant devices to assert 11172-2 as well, this would be redundant.

13818-3 The device is able to decode MPEG-2 compliant audio syntax. By virtue of backwards
compatibility setting this attribute implies setting 11172-3. There is no need for 13818-
3 compliant devices to assert 11172-3 as well.

IRTx An infrared transmitter is supported
PGMS The device is able to demultiplex MPEG-2 program streams or MPEG-1 systems

streams.
RS232 An RS-232 device is available.
SAP Ability to handle secondary audio program streams. This capability is usually software

that allows the user to select which audio stream to decode based on the associated
stream descriptor.

TS The device is able to demultiplex MPEG-2 compliant transport streams.
MCR The device is equipped with a magnetic card reader.

P1394 A P1394 consumer electronics serial expansion capability is present.
MHEG An ASN.1 MHEG engine is installed.
MHEGA An alternate SGML MHEG engine is installed.

Table 108: Declarative Descriptor Tags

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

216

descriptor_tag Meaning
CPU Identifies the CPU part used for application execution in the client device.
OS Declares the operating system that will be available to application programs.
GOVP Identifies the hardware graphics processor available in the device. The convention is to

supply the chip part number as defined by the manufacturer (e.g. CD-I compatible
graphics would be MCD210).

CLRSP Color space. Common values are RGB, YUV and DYUV.
MSD The device has is a mass storage peripheral. This tag takes arguments which include the

following:
� SRO serial read only
� SRW serial read write
� RRO random read only
� RRW random read write

NBCAUDIO An ISO/IEC 13818-7 Non Backward Compatible audio decoder is installed.
AT The named Anti Taping technology is available in the client device.
NETIF A description of client network interfaces. The value is defined in section 6.3.
NETSTACK A description of protocol layers of the client networking stack. The value is defined in

section 6.4.
DOWNLOAD The networking technology used for client download. The value is defined in section

6.5.
SOFTWARE A description of the currently loaded software in the client device.
CLIENT Allows you to include another definition by reference. This tag has two distinct uses.

One is to declare a particular model from a manufacturer’s family of products Another
use is for a manufacturer to indicate that his product has similar capabilities as another
manufacturer’s product. In either the case, the data in this field will be the
concatenation of the Manufacturer_OUI_code and the Manufacturer_id . Care
should be taken when using this descriptor_tag, The declared values of the referenced
client will supersede previously declared values of the corresponding descriptor_tags
of the current settings. e.g. If you specifically declared RAM=“4096000” and then use a
CLIENT reference that contained a different RAM declaration the referenced
CLIENT’s RAM figure would supersede the explicit RAM declaration.

Table 109: Scope Descriptor Tags

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

217

descriptor_tag Meaning
NVRAM The total amount of Non Volatile RAM (in bytes), the device is equipped with.
GHRES The horizontal graphic resolution in pixels.
GVRES The vertical resolution in pixels.
CLRBITS The number of bits comprising each color component.
ALPHA The number of bits in the alpha channel.
PLANES The number of graphic planes supported
PCMCIA The number of PCMCIA ports present.
OSVER The version and revision of the operating system.
RAM The total amount of RAM (in bytes) available to application programs.
VRAM The total amount of Video RAM (in bytes) in the device.
SNUM The serial number of the client device.
MSDSIZE The storage capacity of an attached mass storage device (in.bytes).

Note: If an MSD tag used an embedded list to declare multple devices, then the
MSDSIZE must list the associated sizes in the same order as the MSD embedded list.

MSDBLK The block size (in bytes) of the mass storage device .
Note: If an MSD tag used an embedded list to declare multple devices, then the
MSDBLK must list the associated sizes in the same order as the MSD embedded list.

CRYPT The name of the en/de/cryption algorithm supported. (e.g. RSA).
SCRAM The name of the conditional access scrambler. Typical value might be “DVBSS”

(Digital Video Broadcaster’s Super Scrambler.
AUDLYRS The MPEG audio layers (expressed in digits) supported by the device’s MPEG audio

decoder.
MPEGPROF The profile level supported by an MPEG-2 compliant decoder. This is expressed as

profile and level separated by the ‘@’ sign. (e.g. MP@ML would equate to Main
Profile / Main Level). This tag only applies to the video decoder.

6.3 The NETIF Descriptor Tag
The NETIF descriptor tag describes the client network interfaces. The value of this tag is a string with the
following syntax:

NETIF=“IDENT:<id>&MAXBW:<bw>&DIR:<UP,DOWN,BIDIR>&UU”

where the subdescriptors are described in Table 110. The ampersand character “&” is used to separate
subdescriptors. Multiple network interfaces may be defined by including the semicolon “;” argument
separator and adding another complete value string.

Table 110: NETIF Subdescriptors

Subdescriptor Meaning
IDENT A client assigned integer identifier for this network interface.
MAXBW The maximum rate at which the client is capable of receiving data over this interface

expressed as the number of bits per second.
DIR An enumerated value of the direction of data transfer capable over this interface.

Possible values are UP for data from the client, DOWN for data to the client, and
BIDIR for data both to and from the client.

UU A boolean descriptor whose presence indicates the User to User RPC may be delivered
to the client over this interface.

An example of the use of the NETIF tag is:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

218

NETIF=“IDENT:1&MAXBW:10000000&DIR:DOWN;IDENT:2&MAXBW:56000&DIR:DOWN&UU;I
DENT:3&MAXBW:56000&DIR:UP”

6.4 The NETSTACK Descriptor Tag
The NETSTACK descriptor tag is used to identify the networking stack present on the client. The value is
a string of a name and version, separated by the letter “v”, of the presentation (6), session (5), transport (4)
and network (3) layers of the protocol stack separated by the ampersand “&” character. For the value of the
NETSTACK descriptor, protocol names are forbidden from using the lower case letter “v” so the separation
between name and version is unambiguous. If no version number of a protocol is specified, then only the
name is included in the value and the “v” separator is not used. An example describing the OMG IIOP
protocol stack which uses CDR version 1.0 for presentation, UNO version 1.0 for session, TCP with an
unspecified version number for transport, and IP version 4 for network would be:

 NETSTACK=“CDRv1.0&UNOv1.0&TCP&IPv4”

If multiple protocol stacks are operational, then additional stacks would be specified using the semicolon
“;” argument separator.

6.5 The DOWNLOAD Descriptor Tag
The DOWNLOAD descriptor tag is used to identify the networking stack which is present on the client to
perform software download. The value is a string equivalent in format with the NETSTACK descriptor
defined in section 6.4.

6.6 Example Tag_list.
This section does not include new normative text. An example is shown of the use of the Tag_list defined
in section 3.1.8.13.2 above. Note that the actual message would not include any space or newline
characters separating fields as shown here.

SNUM=“1234567”, 13818-2, 13818-3, TS, AUDLYRS=“12”,
CPU=“MCD68331”, OS=“OS9”, OSVER=“1.20”, NVRAM=“1024000”, RAM=“2048000”,
NTSC, GOVP=“MCD210”, GHRES=“360”, GVRES=“240”, PLANES=“2”,
CLRSP=“RGB”, CLRBITS=8

Please refer to informative Annex G for a more detailed discussion of how one might fully implement this
section in both the client and the server.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

219

7. Download
1. There is still an issue as to the meaning of the word Server as used in this section;

i.e., is there a separate scenario of Client - Network download?
2. “Broadcast” scenario name should be replaced with “Non-Flow Controlled”

name or some similar such thing since the presence of flow control seems to be
the distinguishing factor

3. Delete term superblock throughout
4. Need to make sure the download type is added to the general message header

dsmccType list
5. Its not clear how all scenarios map into the protocol, e.g. use of special meanings

for window size, ackperiod, etc. This needs more review for technical purity by
the group.

7.1 Overview
The download protocol is intended to be a very lightweight yet fast data or software download from a
Server to a Client or from the Network to a Client. The protocol is designed to support both a more
traditional flow controlled download as well as a broadcast option that are both based on a similar message
set.

A complete download operation transfers a download ‘Image’ to the Client. The image is sub-divided into
one or more ‘Modules’. The entire image and each module are divided into ‘Blocks’. All blocks within a
download image other than the last block of a module are of the same size.

Modules are a delineation of logically separate groups of data within the overall image. A typical, but not
normative, use of this feature is to indicate groups of data that need to be loaded into continuous memory.
This example allows the Client to fragment the allocated memory chunks by module size rather than having
to allocate a memory chunk of the image size.

The block size is negotiated to meet requirements for efficiencyand effective error detection performance.
Each block contains data from only one module.

The download protocol addresses two scenarios: one in which flow control is used and one in which there
is no flow control of the downloaded image. An example of the latter case would be where the downloaded
data is broadcasted to multiple Clients simultaneously.

In the flow controlled scenario the Client and Server negotiate a window size for a one way sliding window
protocol. The sliding window applies only to DownloadDataBlock() messages and not other control
message exchanges. The complexity of the sliding window protocol is on the Server side only because of
the one way nature.. The size of the window can be negotiated by the Client and Server. When the window
is negotiated, the Server also selects an ack period that is equal or smaller than the window size. The ack
period is a simple way to limit the rate that the Client sends acks back to the Server and therefore limits the
network traffic and protocol stack processing caused by the acks. The window size is irrelevent for the
broadcast (non flow controlled) case because there is no flow control.

7.2 Preconditions and Assumptions

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

220

7.2.1 User-to-User Download This should go into the U-U section and the
following should only be generic p’s and a’s

7.2.1.1 Flow Control Case
1. A Session has been established between the Client and Server
2. A Connection between the Client and Server has been established and identified

for use for Download messages from the Client to the Server.
3. A Connection between the Client and Server has been established and identified

for use for Download messages from the Server to the Client. This connection
may be for all messages or all messages except DownloadDataBlock().

4. If necessary a Connection between the Client and Server has been established and
identified for use for DownloadDataBlock() messages from the Server and Client.

5. These connections provide a datagram service that delivers packets that are
reliably delineated. The payload data of these packets may have non zero bit error
probability. The datagrams may not have flow control and may be delivered out
of order or dropped.

These requirements should be moved to U-U download section

7.2.1.2 Broadcast case
1. A broadcast channel has been identified to the Client for delivery of

DownloadDataBlock() and DownloadInfoResponse() messages to the Client.
2. A Connection between the Client and Server may have been established and

identified delivery of a DownloadInfoRequest() messages from the Client to the
Server.

7.2.2 User-to-Network Download (Config)
It has not yet been fully agreed that we will support the use of this download protocol from the Network to
the Client during or in substiture for the UN Config.

7.2.2.1 Flow Control Case

7.2.2.2 Broadcast Case

7.3 Download Methods

7.3.1 Flow Controlled

7.3.1.1 Network Models
In these network models the thin lines represent point to point connections between the Server and a single
Client. The fat lines represent a separate logical connection that provides higher bandwidth data delivery
than the ‘thin line’ connections.

The first model has a single connection in each direction. The Server-to-Client connection carries all the
DownloadDataBlock() messages as well as all the other download signalling and control messages.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

221

Client Server

Control

Control, Data

The second model uses separate Server-to-Client connections for data and control. The
DownloadDataBlock() messages travel over the high bandwidth connection but all other messages travel
over the other connections.

Client Server

Control

Control

Data

The third network model has a single high bandwidth connection from the Server-to-Client which carries all
of the Server-to-Client messages. This model is logicaly the same as the first model but is worth pointing
out since the protocol stack for the ‘fat line’ may be different than for the ‘thin line’.

Client Server

Control

Control, Data

7.3.1.2 Scenarios

Needs to have some introductory text. Network is not needed in this discussion and shouldn’t be shown in
diagram.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

222

CLIENT NETWORK SERVER

DownloadDataBlock

DownloadDataResponse

DownloadDataBlock

DownloadDataBlock

DownloadDataBlock

DownloadDataResponse

DownloadInfoRequest

DownloadStartRequest

DownloadInfoResponse

Super Block

Super Block

7.3.2 Non-Flow Control
In this section, no mechanism for controlling the downloaded image data flow is used. The
DownloadDataBlocks are sent repeatedly in a carousel fashion over the high speed channel. A common
example of this case is a broadcast carousel.

7.3.2.1 Network Models
In these network models the thin lines represent point to point connections between the Server and a single
Client. The fat lines represent a separate logical connection that provides higher bandwidth data delivery
than the ‘thin line’ connections and carry the download image information. In all cases the
DownloadDataBlock() messages travel over the ‘fat line’.

In the first model a full bidirectional pair of connections is available between the Client and Server. The
DownloadInfoResponse() message is probably delivered over the ‘thin line’ Server-to-Network connection
in this case.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

223

Client Server

Control

Control

Data

The second model has a Client-to-Server connection but only has (or only uses) the broadcast Server-to-
Client path. In this case both the DownloadInfoResponse() and DownloadDataBlock() messages are
delivered over the broadcast path.

Client Server

Control

Control, Data

The third model is a purely broadcast case. In this model it is assumed the Client has already determined
where to find the broadcast channel. Both the DownloadInfoResponse() and DownloadDataBlock()
messages are delivered over the broadcast path.

Client Server

Control, Data

7.3.2.2 Scenarios
Left as an exercise to the reader!

7.4 Messages

7.4.1 Use of DSMCCMessageHeader()
(NEW) DSMCC General Message Header
Protocol Discriminator 1 byte
dsmccType 1 byte
messageId 1 byte
messageLength 2 bytes
CALength 1 byte
{CA bytes}
{Message bytes}

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

224

1. General Message Header format above belongs in Section 2, DSM-CC Message
Header.

2. This format still requires review by the full DSM-CC group.

messageId - see Table below

Message Name messageId Description
DownloadInfoRequest 0x0001 Client request download parameters
DownloadInfoResponse 0x0002 Server provides download parameters
DownloadStartRequest 0x0003 Client asks Server to start sending data
DownloadDataBlock 0x0004 Server sends one download data block
DownloadDataResponse 0x0005 Client acks or naks downloaded data

blocks
DownloadCancel 0x0006 Client or Server cancels or aborts

download due to severe error or
entitlement failure

DownloadServerInitiate 0x0007 Server requests Client to initiate a
download.

7.4.2 Other Common Message Fields
downloadTransactionId - Used to associate the messages from one each download sequences. This is
useful for differentiating old versus new sequences that could temprorarily coexist due to abort and retry
scenarios. The upper two bits of this sixteen bit field are used to indicate who allocated the transaction id
(Client, Network, Server). It is up to each entity to assign unique transaction ids (unique within the
retirement period of the id).

bits field values description
bit 15,14 00 Client

01 Server
10 Network
11 Broadcast Server ???

bit 13-0 xx xxxx xxxx xxxx transaction sequence number

checksum - A 32 bit checksum calculated over the entire message including the DSMCCMessageHeader().
The checksum is calculated by seeding a 32 bit register with zero and then doing a 32 bit XOR with all
bytes of the message 32 bits (MSB first) at at time. If the message length is not a multiple of four bytes then
the message is padded out with zero bytes at the end for the purpose of the checksum calculation only.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

225

7.4.3 DownloadInfoRequest

DownloadInfoRequest() {
DSMCCMessageHeader(messageId = 0x0001)
downloadTransactionId 2 byte
maximumBlockSize 2 bytes
bufferSize 4 bytes
capabilitiesLength 2 bytes
userCapabilities capabilitiesLength
privateDataLen 1 byte
privateData privateDataLen
checksum 4 bytes

}

maximumBlockSize - is the maximum block size in number of bytes that the Client agrees to support. The
server will select an actual blockSize which is no larger than this size. A value of zero means that the Client
places no restrictions on the maximum block size.

bufferSize - informs the server the maximum number of bytes the Client can receive before requiring flow
control (ack). The Server would then select a window size no larger than FLOOR[bufferSize / blockSize].
bufferSize must be equal to or larger than maximumBlockSize. A buffer size of zero means there is
unlimited buffer size available, or equivilently the Client can absorb data at a rate greater than the
maximum physical network can deliver.

capabilitiesLength -

userCapabilities -

privateDataLen -

privateData -

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

226

7.4.4 DownloadInfoResponse

DownloadInfoResponse() {
DSMCCMessageHeader(messageId = 0x0002)
downloadTransactionId 2 bytes
blockSize 2 bytes
windowSize 1 byte
ackPeriod 1 byte
tCDownloadWindow 4 bytes
tCDownloadScenario 4 bytes
numberOfModules 1 byte
for(i=0; i<NumberOfModules; i++) {

moduleSize 4 bytes
modulePrivate 3 bytes
moduleDescriptorLength 1 byte
moduleDescriptor moduleDescriptorLength

}
checksum 4 bytes

}

blockSize - is in units of bytes and will be less than or equal to the maximumBlockSize sent in the
RequestInfo message. This is the payload size of every Block carried in the DownloadDataBlock()
message, except for the last Block of each module which may be smaller than blockSize.

windowSize - is the number of blocks in the sliding window. A value of zero means that the window is the
size of the entire image and that no acks are to be sent by the Client. A window size of zero can be used
only if the Client set the bufferSize to zero in the DownloadInfoRequest() message. The Client does not
need to know the windowSize to implement the protocol but is provided as a sanity check.

ackPeriod - is the number of blocks the Client would normally be required to receive before sending an
Ack (DownloadDataResponse). The ackPeriod does not limit when a Nak can be sent. The Client also
always sends an Ack for last block in the image (except for broadcast).

tCDownloadWindow - is in units of microseconds and is the time out period for each ack.

tCDownloadScenario - is in units of microseconds and is the time out period for the entire download.

numberOfModules - is the number of modules in the download image. The first module in the list is
module number zero.

moduleSize - is the length of each module in bytes.

modulePrivate - not clear both modulePrivate and moduleDescriptor are needed. Can they be combined?

moduleDescriptorLength -

moduleDescriptor -

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

227

7.4.5 DownloadStartRequest

DownloadStartRequest() {
DSMCCMessageHeader(messageId = 0x0003)
downloadTransactionId 2 bytes
checksum 4 bytes

}

7.4.6 DownloadDataBlock

DownloadDataBlock() {
DSMCCMessageHeader(messageId = 0x0004)
downloadTransactionId 2 bytes
moduleNumber 1 byte
blockNumber 2 bytes
checksum 4 bytes
{block data}

}
moduleNumber - module number that this Block belongs to. Module number zero is the first module in
the module list in the DownloadInfoResponse() message.

blockNumber - block number of this module.

block data - blockSize bytes of Block data, except for the last Block of each module which may have
fewer than blockSize bytes.

7.4.7 DownloadDataResponse

DownloadDataResponse() {
DSMCCMessageHeader(messageId = 0x0005)
downloadTransactionId 2 bytes
reason 1 byte
moduleNumber 1 byte
blockNumber 2 bytes
checksum 4 bytes

}
reason - indicates the reason for the response. In the Flow Controlled case the Ack is sent when each
complete Super Block is received as well as when the last Block in the Image has been received.

0x01 Ack
0x02 Nak (checksum error)
0x03 Nak (missing block)
0x04 Nak (tCDownloadWindow timeout)

moduleNumber -

blockNumber -

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

228

7.4.8 DownloadCancel

DownloadCancel() {
DSMCCMessageHeader(messageId = 0x0006)
downloadTransactionId 2 bytes
reason 1 byte
moduleNumber 1 byte
blockNumber 2 bytes
checksum 4 bytes

}

reason - A reason code to explain the cancel

0x01 tCDownloadScenario timeout
0x02

moduleNumber - The module number at the time of the cancel.

blockNumber - The block number at the time of the cancel.

7.4.9 DownloadServerInitiate
This message is sent by the Server to the Client. It is a request for the Client to initiate a download by first
sending the DownloadInfoRequest() message.

DownloadServerInitiate() {
DSMCCMessageHeader(messageId = 0x0007)
downloadTransactionId 2 bytes
privateDataLength 1 byte
privateData privateData
checksum 4 bytes

}

downloadTransactionId -

privateDataLength -

privateData -

checksum -

7.5 Flow Controlled Scenario

7.5.1 Getting Download Protocol Parameters
Before starting the download procedure the Client and Server must exchange basic parameter information to
be used during the download. The Client initiates this information exchange by sending the
DownloadInfoRequest.

The Client provides a maximum supported block size.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

229

The Client provides an available buffer size for receiving download data without requiring the Server to
pause while waiting for an ack. The Server must select a blockSize and windowSize that meet the
requirements:

blockSize <= maximumBlockSize

windowSize * blockSize <= bufferSize

The server responds with the DownloadInfoResponse message. This message includes the blockSize,
windowSize, ackPeriod, download protocol timers, and a module size table.

The ackPeriod must be less than or equal to the windowSize. A larger ackPeriod reduces the ack traffic
back to the Server. An ackPeriod less than the windowSize allows the Client to send an ack before the
Server stalls due to a full window. Two suggestions for choosing windowSize and ackPeriod are:

1. (windowSize - ackPeriod) < (ackLatency * transferRate / blockSize)
2. ackPeriod > (ackLatency * transferRate / blockSize)

The ackLatency represents the delay (seconds) to send an Ack through the network and the Client and
Server protocol stacks. The transferRate is the expected average delivery rate (bytes/second) that the
Server would provide if it did not have to wait for Acks. The term (ackLatency * transferRate / blockSize)
is the expected number of blocks that the Server could send during the period that an Ack is delivered. The
first suggestion says that an Ack should be sent in advance of the window being filled such that the ack is
received before the Server stalls because the window is full. The second suggestion says that Acks should
not be sent any more often than the period that it takes to deliver an Ack. There are other reasons, such as
burden on the Server and network to handle Acks, to make the ackPeriod even larger than the second
suggestion.

The module table is a list of modules. The table is needed to know how many modules are in the image and
the number of blocks that are in each module. This information is needed in order to interpret the
moduleNumber and blockNumber fields in the DownloadDataBlock and DownloadDataResponse
messages. In particullar this information is needed in order to know when the download is complete (for
either flow controlled or broadcast case).

tCDownloadScenario is selected by the Server such that it is larger than the longest period required for a
successful download. The expected download time is the expected bit rate times the Image size. The
Server should use some conservative estimate of bit rate such that the download will not timeout needlessly
during an otherwise successful download.

7.5.2 Starting Download
Once the Client receives the DownloadInfoResponse() message the Client typically would allocate memory
for each of the modules in the image. Since in some systems the allocation of memory can take a
substantial amount of time the Server will not start the download until the DownloadStartRequest() is sent
by the Client and received by the Server.

7.5.3 Acks and Naks
Acks and Naks are both coded in the DownloadDataResponse() message by way of the reason field. When
a DownloadDataResponse(Nak) is sent the moduleNumber and blockNumber fields are set to point to the
first Block that has not yet been received correctly and therefore needs to be re-sent. When a
DownloadDataResponse(Ack) is sent the moduleNumber and blockNumber fields are set to point to the
next Block that is expected to be received.

The Client would normally send a DownloadDataResonse(Ack) after it has received and stored ackPeriod
Blocks. Note the importance of having stored the Blocks in their end destination in memory since the Ack
implies that the Client is ready to receive windowSize Blocks beyond the Acked Block. In other words an
Ack advances the window to windowSize Blocks beyond the Acked Block.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

230

A Nack must be sent if a Block is received that is not the next expected (in sequence) Block of the image.
The moduleNumber and blockNumber fields of the DownloadDataResponse(Nack) point to the next
extected Block of the image. The Server responds to a Nack by resending starting at the Block that was
pointed to by the Nack. A Nack implicitly is also an Ack for the Block just before the Nacked Block.

Messages that are received but fail the checksum are to be dropped. In this case the Client would typically
send a Nack message that points to the next expected Block since the dropped message probably was the
next DownloadDataBlock(). This assumes that the logical connection over which the message datagrams
are delivered to the Client is being used exclusively for the download protocol at that moment. If for some
reason this assumption is not true the Client would need to wait for the first DownloadDataBlock() message
that had an out of sequence moduleNumber, blockNumber before a Nack could be sent.

When the last Block of the last Module has been received by the Client it must send an Ack immediately
regardless of the ackPeriod. This Ack should point to blockNumber zero of the next logical
moduleNumber. This module number is one larger than the last moduleNumber in the module list.

7.5.4 Timers and Retransmission
Client

tCDownloadInfoReq
tCDownloadWindow
tCDownloadScenario

Server
tSDownloadScenario

When the Client sends the DownloadInfoRequest() message the Client starts the tCDownloadInfoReq timer.
If the DownloadInfoResponse() message is received this timer is cancelled. If this timer expires the Client
may retransmit the DownloadInfoRequest() message. The tCDownloadInfoReq value is provided by U-N
Config. The number of allowed retransmissions is implementation specific. (do transactionId’s change on
retransmission of DownloadInfoRequest - probably not)

Server needs timeout while waiting for DownloadStartRequest()... (rely on server scenario timer?)

The tCDownloadScenario timer is used to timeout the entire download procedure. The value for this timer
is provided by the Server in the DownloadInfoResponse() message. This timer is useful for the Client to
detect severe failures such as the Server hanging during the download. When the Client sends the
DownloadStartRequest() message the Client starts the tCDownloadScenario timer. If this timer expires then
the Client shall abort the download, and send a DownloadCancel(reason = scenarioTimeout) message to
the server, and cancel the tCDownloadWindow timer. After the download has timed out the Client shall
reject any download messages from the server that have the downloadTransactionId of the canceled
download. The Client may retry the download but with a new downloadTransactionId.

Server needs scenario timer too... (start on DownloadInfoRequest?)

The tCDownloadWindow timer is used to timeout Acks/Nacks used to advance the sliding window. The
value for this timer is provided by the Server in the DownloadInfoResponse() message. This timer is useful
for the Client to detect that an Ack or Nack was not received by the Server. When the Client sends the
DownloadStartRequest() or a DownloadDataResponse(Ack/Nack) message the Client starts or restarts the
tCDownloadWindow timer. If this timer expires then the Client shall send a
DownloadDataResponse(Nack/tCDownloadWindow, Module/Block = next expected) to the Server and
also restarts the tCDownloadWindow again. The timer can timeout repeatedly and each time the Nack
would be resent. If there is a severe problem the tCDownloadScenario timer would eventually expire.

7.5.5 Abort
Either the Client or the Server can abort the download by sending a DownloadCancel() message to the
other. Potential reasons for an abort are:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

231

1. Server responds with an illegal blockSize, windowSize or ackPeriod in
DownloadInfoResponse().

2. Client runs out of memory during download.
3. Client receives modules which are inconsistent with the module table in the

DownloadInfoResponse().
4. The downloadTransactionId changes during a broadcast download. {this should

be in broadcast section}

7.6 Broadcast Scenario

7.6.1 Image Assembly
The blockSize and the module table in the DownloadInfoResponse() message enables a Client to start
receiving data right out of sequence during a broadcast download. This also enables the Client to start
receiving data even if it starts listening in the middle of the download.

The first step is that the Client must receive the DownloadInfoResponse() message either from a point-to-
point signaling channel or from the broadcast carousel. This message includes the blockSize and module
table. Before starting to receive data the Client should allocate memory for each module and initialize a
scoreboard to track which Blocks from the Image have been received. Below is some simple pseudo code
for the initialization and for the what do with each received Block.

Variables:
M numberOfModules
S[m] size in bytes of module m
SB[m] size in blocks of module m
A[m] address in memory where block is to be stored
R[m][b] one bit received flag for each block of image (one bit flag)
SBI total number of Blocks in the Image
RBI number of received unique Blocks

Initialization:
M = numberOfModules;
for(i=0; i<M; I++) {

S[i] = moduleSize[i];
A[i] = malloc(S[i]);
SB[i] = (S[i] + blockSize - 1) / blockSize;
for(j=0; j<SB[i]; j++)

R[i][j] = 0;
}

For each block received (m=moduleNumber, b=blockNumber):
RECEIVE_BLOCK(m,b);
if(!R[m][b]) {

R[m][b] = 1;
STORE_BLOCK(A[m] + b * blockSize);
RBI++;
if(RBI == SBI)

DOWNLOAD_DONE;
}
else

DISCARD_BLOCK;

The array SB[m] used in the example above is also useful for the flow controlled case in order to track what
is the next expected Block to be received in order to Ack or Nack.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

232

7.6.2 Timers
The tCDownloadScenario is used in a similar manner as in the flow controlled case, except that the timer is
started when the Client first starts looking for the broadcast data.

7.6.3 Image Coherency
There needs to be protection against the case when the image is updated on the carousel. This could
potentially happen during the period that a user is doing a broadcast download. This situation is detected by
monitoring the downloadTransactionId in each DownloadDataBlock() message. If the image is ever
updated the downloadTransactionId should be changed. If the Client detects that this ID changes during
the download then a coherency problem has been detected and the download should be aborted and possibly
retried.

The downloadTransactionId is used slightly differently in the broadcast case versus the flow controlled
case. In the broadcast case it is more of a version number. For broadcast the downloadTransactionId used
for control messages will probably be different from the downloadTransactionId in the
DownloadDataBlock() messages.

When the Client first receives a Block from the broadcast channel the downloadTransactionId of that Block
becomes the current downloadTransactionId or version for that image. If a subsequent block is received
with a different downloadTransactionId then there is a coherency problem (due to update of the carousel)
and the download should be aborted.

Note that the downloadTransactionId is not intended to be used as a multiplex address. It is assumed that
some other method exists for the Client to efficiently filter the Blocks from the desired Image from the
broadcast carousel. For example, if MPEG-2 Transport Streams are used then all the Blocks of one Image
would be in one unique PID.

7.7 MPEG-2 Transport Streams

7.7.1 Encapsulation of Messages
When the Download messages are to be carried in MPEG-2 Transport Streams the encapsulation is the
same as for U-N messages as described in Section 6 of Working Draft 2. This note belongs in that section.

7.7.2 Broadcast Carousel Directories
In the broadcast case there probably needs to be a way of carrying some form of directory in the broadcast
channel. In the case of Transport Stream the most logical solution is to use a separate PID for each Image.
A Program Map Table (PMT) could carry the list of Download PIDs with an appropriate list of descriptors
for each PID/Image.

These descriptors are TBD. We may want to assign of the DSMCC stream_type values to identify a
download stream.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

233

8. Normal Play Time, Stream Mode and Stream Events

8.1 Purpose
Normal Play Time (NPT) is a continuous timeline over the duration of an Event (Event defined in 13818-1).
The NPT refers to the real time of the event regardless of ‘trick mode’ presentations. For example, when a
video is played in reverse NPT counts down rather than up and when a video is played at 10x speed NPT
progresses at 10x regular rate. The NPT provides an absolute timeline to which references can be made for
operations such as a jump.

A timeline of some sort already exists in an MPEG Program - the System Time Clock (STC) which is
recovered from the stream via the Program Clock Reference (PCR) timestamps. This timeline by itself does
not satisfy the requirements for the NPT. First, it always moves forward at a normal rate regardless of the
presentation direction and speed of the event. Second, it may be discontinuous.

Besides the Normal Play Time concept, this standard describes two additional mechanisms to communicate
the status of a stream: the streamMode descriptor and the streamEvent descriptor.

8.2 Conversion between NPT and STC Timebase
[This section has not been verified for technical accuracy yet. There may be some issues with units
conversion. There should not be any reference to STC ‘frequency’ here.]

Example of NPT_descriptor usage. At any time during the course of stream playback there is a valid
System Time Clock (STC) value (as defined in section D.0.3 of this Recommendation/International
Standard) and a valid NPT value. Translation between these two timebases is required in the client device.
For example, to display the NPT time to the viewer the client device can examine the STC, compute the
corresponding NPT value and display the result.

The following linear equation describes the relationship between an NPT time value corresponding to an
STC value, STCi, in terms of the fields in the NPT descriptor:

NPT = (300*(STCi - STC_reference)/system_clock_frequency) � (scale_numerator/scale_denominator) +
NPTr

with

NPTr = 27 � (NPT_reference_seconds � 106 + NPT_reference_microseconds) /
system_clock_frequency

NPT = (300 � (STCi - STC_reference) � (scale_numerator/scale_denominator) +

(27 � (NPT_reference_seconds � 106 + NPT_reference_microseconds)) /
system_clock_frequency

From NPT the parameters NPT_seconds and NPT_microseconds can be calculated as follows:

NPT_seconds=

(300 � (STCi - STC_reference) � (scale_numerator/scale_denominator) +

(27 � (NPT_reference_seconds � 106 + NPT_reference_microseconds)) DIV(27� 106)

NPT_microseconds=

((300(STCi - STC_reference) � (scale_numerator/scale_denominator) +

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

234

(27 � (NPT_reference_seconds � 106 + NPT_reference_microseconds)) -

NPT_ seconds� 106) / 27

Note that this equation is only valid in the context of a single STC interval (being defined as a continuous
set of STC values with no discontinuities). For example assume that the current value of the NPT
parameters are STC_reference = 12000, NPT_reference_seconds = 0.3, NPT_reference_microseconds=0,
scale_numerator=2, scale_denominator=1 (2x fast-forward). Then given that the current value of the STC,
STCi is 1000, the corresponding NPT value is

NPT_seconds = 300 � (1000 - 12000) � 2 + (27 � 0.3 � 106)) DIV (27 � 106) = 0

NPT_microseconds = ((300 � (1000-12000) � (2) + (27� (90� 106))-0)/27=55555

Note that the values used for STC_reference and NPT_reference do not have to actually be realized by the
NPT clock or STC at any given point in time. That is to specify the linear translation one only needs to
specify one point on the translation line and it is immaterial where that point lies.

8.3 NPT Uncertainty
There are three situations where the NPT time may be unknown or invalid.

The first case is a stream where an NPT_reference_descriptor has not yet been received for the first time.
In some streams the NPT may never be included. [In this case we could say that the STC should be
somehow used as a default NPT time?].

The second case is the period between a STC (PCR) discontinuity and the delivery of a new
NPT_reference_descriptor. This is referred to as the ‘NPT gray area’. It is possible to solve this problem
in two ways. First, an NPT_reference_descriptor can be sent in advance of the discontinuity by using the
post_discontinuity_indicator. Second, if the NPT gray area is detected a projection of the old STC timeline
can be made to approximate the needed STC time for the NPT calculation. The second method assumes
that there is no change in the speed scale at the discontinuity. Generally discontinuities of the PCR due to
edits and changes in presentation are two different kinds of events.

Using transport stream, when a system time-base discontinuity occurs it invalidates the current NPT
parameters. In order to maintain accurate NPT in the client an NPT_descriptor with the
post_discontinuity_indicator set to ‘1’ must be send prior to the system time-base discontinuity.

8.4 Descriptors

8.4.1 NPT Reference Descriptor
The NPT descriptor contains information allowing the client to maintain NPT for a specific program.

Table 8-1 -- NPT Reference Descriptor

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

235

Syntax No. of bits Mnemonic

NPT_reference_descriptor() {
descriptor_tag 8 uimsbf
descriptor_length 8 uimsbf
post_discontinuity_indicator 1 bsblf
reserved 6 bslbf
STC_reference 33 uimsbf
scale_numerator 16 tcimsbf
scale_denominator 16 uimsbf
NPT_reference_seconds 32 tcimsbf
NPT_reference_microseconds 32 uimsbf

}
Semantic definition of fields in NPT descriptor

post_discontinuity_ indicator -- the post_continuity_indicator is a 1bit field indicating when set to ‘1’ that
the NPT descriptor will become valid at the next system time-base discontinuity (as defined in section
2.4.3.5 of part 1 of this Recommendation/International Standard). If the post_continuity_indicator is set to
‘0’ the NPT descriptor is valid until the next system time-base discontinuity or a new NPT_descriptor has
been received. [This was NOT agreed to in the group. We already have a current_next_indicator. The
introduction of this new feature needs some more thought into how it fits into the big picture]

[The following definition is derived from the definition of PTS in section 2.4.3.6 of ISO/IEC 13818-1]

STC_reference -- The STC_reference is a 33 bit unsigned integer. It indicates the STC time for which the
NPT equals the NPT_reference as coded in the NPT_reference_field, tstcr(k). The value of STC_reference
is specified in units of the period of the system clock frequency (as defined in section 2.4.2.1 of part 1 of
this Recommendation/International Standard) divided by 300 (yielding 90 kHz). The STC_reference_time
is derived from the STC_reference according to equation x-x+1 below.

STC_reference(k)=((system_clock_frequency � tstcr(k)) DIV 300) % 233

(x-x+1)

where

tstcr(k) is the time for which the NPT equals the NPT_reference as coded in the
NPT_reference_field.

scale_numerator, scale_denominator -- The signed 16 bit integer scale_numerator and the unsigned 16
bit integer scale_denominator indicate the rate and direction at which the stream is currently playing. A
negative numerator indicates reverse direction, whereas a positive number indicates forward direction. 1/1
indicates normal play speed.

NPT_reference_seconds, NPT_reference_microseconds -- The signed 32 bit integer
NPT_reference_seconds and the unsigned 32 bit integer NPT_reference_microseconds indicate the value of
the NPT, NPTr, corresponding to the STC_reference value coded in the STC_reference field. [NPTr has
the dimension of seconds.] The value of NPT_reference_seconds is specified in units of the period of the
system clock divided by 27000000. The value of NPT_reference_microseconds is specified in units of the
period of the system clock divided by 27.

NPT_reference_seconds(k)= (system_clock_frequency � NPTr(k)) DIV(27� 106)

NPT_reference_microseconds(k)=

((system_clock_frequency � NPTr (k))-NPT_reference_seconds� 106)/ 27

[DIV and % as defined in section 2.2.1 of this Recommendation/International Standard]

Issues: How often shall NPT_descriptors be sent?

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

236

8.4.2 NPT Endpoint Descriptor

The NPT descriptor contains information allowing the client to maintain NPT for a specific Event.

Table 8-2 -- NPT Endpoint Descriptor

Syntax No. of bits Mnemonic

NPT_endpoints_descriptor() {
descriptor_tag 8 uimsbf
descriptor_length 8 uimsbf
NPT_start_seconds 32 tcimsbf
NPT_start_microseconds 32 uimsbf
NPT_stop_seconds 32 tcimsbf
NPT_stop_microseconds 32 uimsbf

}
 Semantic definition of fields in NPT descriptor

NPT_start_seconds, NPT_start_microseconds -- The signed 32 bit integer NPT_start_seconds and the
unsigned 32 bit integer NPT_start_microseconds indicate the value of the NPT corresponding to the begin
of the current event [as defined in section 2.1.25 of part 1 of this Recommendation/International
Standard]. NPT_start_seconds and NPT_start_microseconds are specified and calculated in the same way
as NPT_reference_seconds and NPT_reference_microsecons as specified in section x.x.

NPT_end_seconds, NPT_end_microseconds -- The signed 32 bit integer NPT_end_seconds and the
unsigned 32 bit integer NPT_end_microseconds indicate the value of the NPT corresponding to the end of
the current event [as defined in section 2.1.25 of part 1 of this Recommendation/International Standard].
NPT_end_seconds and NPT_end_microseconds are specified and calculated in the same way as
NPT_reference_seconds and NPT_reference_microsecons as specified in section x.x.

8.4.3 Stream Mode Descriptor
The StreamMode_descriptor contains information about the mode of the stream allowing the client to
request the status of a stream in progress.

Table 8-3 -- Stream Mode Descriptor

Syntax No. of bits Mnemonic

StreamMode _descriptor() {
descriptor_tag 8 uimsbf
descriptor_length 8 uimsbf
StreamMode 8 uimsbf

}
Semantic definition of fields in StreamMode_descriptor

StreamMode -- This 8 bit field indicates the current mode of the stream.

Table 8-4 -- Stream Mode Values

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

237

Value Meaning

0 Pause

1 SearchPlay

2 SearchPlayPause

3 PauseSearchPlay

4-255 ITU-T Rec. H.222.X |ISO/IEC 13818-6 Reserved

8.4.4 Stream Event Descriptor
The Stream Event Descriptor contains information allowing the transmission of application-specific events
(events as defined in Section ???, to be distinguished from those defined in section 2.1.25 of part 1 of this
Recommendation/International Standard) in a way so that they are synchronous with the Transport Stream
packets if a Transport Stream is used or that they are synchronous with the Program Stream PES packets if
a Program Stream is used.

Table 8-5 -- Stream Event Descriptor

Syntax No. of bits Mnemonic

StreamEvent _descriptor() {
descriptor_tag 8 uimsbf
descriptor_length 8 uimsbf
event_id 16 uimsbf
NPT_event_seconds 32 tcimsbf
NPT_event_microseconds 32 uimsbf
for (i=0; i<N; i++) {

private_data 8 uimsbf
}

}

 Semantic definition of fields in StreamEvent_descriptor

event_id -- -- The unsigned 16 bit integer event_id indicates the type of the application-specific event to
which the descriptor refers to.

NPT_event _seconds, NPT_event_microseconds -- The signed 32 bit integer NPT_event_seconds and
the unsigned 32 bit integer NPT_event_microseconds indicate the value of the NPT corresponding to the
point in time when the event will occur. NPT_event_seconds and NPT_event_microseconds are specified
and calculated in the same way as NPT_reference_seconds and NPT_reference_microsecons as specified in
section x.x. A value of NPT_event_seconds of '1000 0000 0000 0000 0000 0000 0000 0000' indicates that
the event occurs at the present time.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

238

9. Transport

9.1 U-N Messages Transport Requirements
The transport mechanism for U-N messages is user defined. The transport mechanism includes the
transport layer and all underlying layers. The table below summarizes the minimum requirements for this
transport mechanism.

Table 9-1

Transport Function Requirement
Reliability of Data Error detection must be provided. Corrupted messages should be

discarded.
Reliability of Delivery The delivery of the message need not be guaranteed.
Flow Control Transport need not regulate the rate of transmission of messages.
Fragmentation and Reassembly Transport is responsible for any required fragmentation and

reassembly of messages.
Delivery Order of Messages Transport need not be responsible for in order delivery of messages.
Addressing

An example of a suitable transport is UDP/IP.

9.2 U-U Initial Download Transport Requirements
The transport mechanism for U-U Initial Download messages is user defined. The transport mechanism
includes the transport layer and all underlying layers. The table below summarizes the minimum
requirements for this transport mechanism.

Table 9-2 -- U-U Initial Download Transport Requirements

Transport Function Requirement
Reliability of Data
Reliability of Delivery
Flow Control
Fragmentation and Reassembly
Delivery Order of Messages
Addressing

9.3 U-U Remote Procedure Call Transport Requirements
The transport mechanism for U-U RPC Primitives is user defined. The transport mechanism includes the
transport layer and all underlying layers. The table below summarizes the minimum requirements for this
transport mechanism.

Table 9-3 -- U-U RPC Transport Requirements

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

239

Transport Function Requirement
Reliability of Data Defined by RPC requirements (?)
Reliability of Delivery Defined by RPC requirements (?)
Flow Control Defined by RPC requirements
Fragmentation and Reassembly Defined by RPC requirements
Delivery Order of Messages Defined by RPC requirements
Addressing

9.4 Encapsulation within MPEG-2 Transport Streams

9.4.1 Role of MPEG-2 Transport Stream in Protocol Stack
None of the DSM-CC messages are required to be carried within an MPEG-2 Transport stream, with the
exception of the NPT Time Stamps. However, if MPEG-2 Transport Streams are used to deliver DSM-
CC messages the encapsulation of these messages is defined by DSM-CC.

An MPEG-2 ‘Transport Stream’ provides Data Link Layer services. It can play a similar role in a protocol
stack as the ATM Layer in an ATM network.

MPEG-2 Systems 13818-1 includes a structure called Private Sections which DSM-CC uses to provide
reassembly of Transport Packets into larger DSM-CC messages, and optionally provides a CRC for
reliability. The Sections can play a similar role in a protocol stack as the ATM Adaptation Layer in ATM
networks.

9.4.2 DSM-CC Sections
Encapsulation of all DSM-CC messages in MPEG-2 Transport Streams use the DSMCC_section() structure
which inherits all of the Private Section syntax and semantics as defined by MPEG-2 Systems (ISO/IEC
13818-1). The mapping of DSMCC_section() into MPEG-2 Transport Packets and the maximum length of
a DSMCC_section() is also governed by the semantics for Private Sections defined by MPEG-2 Systems.

In some implementations it is very desirable to use the CRC_32 available in sections. Because some
systems may have difficulty calculating a CRC_32 it has been made optional. To be consistent with 13818-
1, if the section_syntax_indicator is set to ‘1’ the CRC_32 must be present and correct. In the case that
section_syntax_indicator is ‘0’ the payload of the section will be exactly the same except that the CRC_32
is replaced with the NO_CRC field which must be all ‘1’’s (0xFFFFFFFF). The private_indicator bit must
always be set as the complement of the section_syntax_indicator.

Implementations should be careful not to use the section_syntax_indicator as the only indication of the
presence of the CRC_32 since the section_syntax_indicator bit itself may be subject to a bit error. If the
section_syntax_indicator is ‘0’ then the indication is that the CRC is not present but the private_indicator
and NO_CRC_32 fields should be verified to be all ‘1’ and if they are not the section has suffered an error.
If the section_syntax_indicator is ‘1’ then private_indicator should be ‘0’ and the CRC_32 should be
correct and if they are not the section has suffered an error.

In the case that section_syntax_indicator is ‘0’ the syntax for Private Sections allows payload to begin
immediately after the section length field. The DSMCC_section() structure defines that section structure to
be identical regardless of the state of the section_syntax_indicator, with the exception of the validity of the
CRC.

Table 9-4 -- DSM-CC Section Format

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

240

DSMCC_section() {
table_id 8 uimsbf
section_syntax_indicator 1 bslbf
private_indicator 1 bslbf
reserved 2 bslbf
DSM_section_length 12 uimsbf
table_id_extension 16 uimsbf
reserved 2 bslbf
version_number 5 uimsbf
current_next_indicator 1 bslbf
section_number 8 uimsbf
last_section_number 8 uimsbf

if(table_id == 0x0A) {
DSMCC_LLCSNAP()

}
else if (table_id == 0x0B) {

DSMCCMessageHeader()
}
else if (table_id == 0x0C) {

DSMCC_Descriptor_List()
}

if(section_syntax_indicator == ‘0’) {
NO_CRC_32 32 bslbf

}
else {

CRC_32 32 rpchof
}

}

Semantic definition of fields in DSMCC_section

table_id -- This is an 8 bit field, which is the case of a DSMCC_section shall always be set to identify the
type of DSM-CC structure in the section payload. Note that it is the intent to set this to the same value as
the stream_type.

Table 9-5 -- DSM-CC Table IDs

table_id DSMCC Section Type
0x0A Multiprotocol
0x0B DSM-CC Messages Header (U-N)
0x0C DSM-CC Descriptors Loop
0x0D TBD

section_syntax_indicator -- This is a 1 bit indicator. When set to '1', it indicates the use of a valid
CRC_32. When set to ‘0’ the NO_CRC_32 field must be set to all ‘1’’s.

private_indicator - Set to complement of section_syntax_indicator.

DSMCC_section_length-- This 12 bit field specifies the number of remaining bytes in the
DSMCC_section. That is the number of bytes following the this field.

table_id_extension -- This is currently reserved by MPEG.

version_number --

current_next_indicator --

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

241

section_number --

last_section_number --

9.4.3 DSM-CC Stream Types
There are three different DSM-CC section types: Multiprotocol, DSMCCMessageHeader, and
DSMCC_Descriptor_List. DSM-CC has defined stream_type values defined so that the Program Map
Table (PMT) can point to separate PIDs for each of the different DSM-CC section types.

Is it o.k. for two or more different DSM-CC section types to share the same PID? The table_id values are
different for each so they are compatible.

Table 9-6 -- DSM-CC Stream Types

stream_type Description
0x0A Multiprotocol (U-U RPC)
0x0B DSM-CC Messages Header (U-N)
0x0C DSM-CC Descriptors (NPT)
0x0D TBD

9.4.4 Data Link Flow Control
Flow control for messages is generally managed by the transport layer protocol. Because MPEG-2
Transport can provide the ability to deliver data at extremely high bit rates the System Layer specification
(ISO/IEC 13818-1) provides a mechanism to set rules to regulate the burst delivery rate of MPEG-2
Transport Packets of the same PID. The mechanism is based on a model of a 512 byte Transport Buffer
(TB).

We need to say whether any of the PIDs of DSM-CC stream_type are subject to any TB rules. If so we
need to specify the leak rate.

9.4.5 DSM-CC Multiprotocol Encapsulation
The DSM-CC U-U RPC messages can be delivered over a transport layer selected by the implementor.
However, if these messages are delivered over an MPEG-2 Transport Stream the encapsulation of the
message must use the DSMCC_LLCSNAP() structure within a DSMCC_section. This multiprotocol
encapsulation is available for applications other than U-U RPC Primitives.

The DSMCC_LLCSNAP() structure provides logical link control. This structure allows the encapsulation
of a wide selection of network layer protocols, including the Internet Protocol (IP). The selected network
layer protocol encapsulates a selected transport layer such as TCP or UDP.

The LLC/SNAP is an ISO standard - what is the number? The structure below is taken from RFC 1483 -
we need to verify it from the ISO standard.

Comments on Maximum MTU.... We agreed that it would be based on 4Kbyte limit for private sections.
Exact semantics are needed.

Table 9-7 -- DSM-CC Multiprotocol Encapsulation

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

242

DSMCC_LLCSNAP() {
logical_link_control 24 bslbf

/* Routed ISO PDUs */
if(logical_link_control == 0xFEFE03) {

for(i=0; i<PES_packet_length-3; I++)
ISO_PDU_data_byte 8 bslbf

}

/* Sub Network Attachment Point (SNAP) */
/* encapsulated network layer routing */

 else if(logical_link_control == 0xAAAA03) {
/* SNAP header: */
organizationally_unique_id 24 bslbf

 protocol_id 16 bslbf

 /* Routed Non-ISO */
 if(organizationally_unique_id == 0x000000) {

/* Routed IP */
if(protocol_id == 0x0800) {

for(i=0; i<PES_packet_length - 8; I++)
NONISO_IP_PDU_data_byte 8 bslbf

}
/* Routed other non-ISO */
else {

for(i=0; i<PES_packet_length - 8; i++)
 NONISO_PDU_data_byte 8 bslbf

}
}

 else if(organizationally_unique_id == 0x0080C2) {
/* Link Layer Control (LLC) bridging */
/* 802.3 (ethernet) with FCS */
if(protocol_id == 0x0001) {

pad 16 bslbf
 for(i=0; i<PES_packet_length-14; i++)

IEEE802_3_PDU_data_byte 8 bslbf
IEEE802_3_FCS 32 bslbf

}

/* 802.4 with FCS */
if(protocol_id == 0x0002) {

pad 24 bslbf
for(i=0; i<PES_packet_length-15; i++)

IEEE802_4_PDU_data_byte 8 bslbf
 IEEE802_4_FCS 32 bslbf

}

 /* 802.5 (token ring) with FCS */
if(protocol_id == 0x0003) {

pad 24 bslbf
for(i=0; i<PES_packet_length-15; i++)

IEEE802_5_PDU_data_byte 8 bslbf
IEEE802_5_FCS 32 bslbf

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

243

}

/* FDDI with FCS */
if(protocol_id == 0x0004) {

pad 24 bslbf
for(i=0; i<PES_packet_length-15; i++)

FDDI_PDU_data_byte 8 bslbf
FDDI_FCS 32 bslbf

}

/* 802.3 (ethernet) without FCS */
if(protocol_id == 0x0007) {

pad 16 bslbf
for(i=0; i<PES_packet_length-14; i++)

IEEE802_3_PDU_data_byte 8 bslbf
}

/* 802.4 without FCS */
if(protocol_id == 0x0008) {

pad 24 bslbf
for(i=0; i<PES_packet_length-15; i++)

IEEE802_4_PDU_data_byte 8 bslbf
}

/* 802.5 (token ring) without FCS */
if(protocol_id == 0x0009) {

pad 24 bslbf
for(i=0; i<PES_packet_length-15; i++)

IEEE802_5_PDU_data_byte 8 bslbf
}

/* FDDI without FCS */
if(protocol_id == 0x000A) {

pad 24 bslbf
for(i=0; i<PES_packet_length-15; i++)

FDDI_PDU_data_byte 8 bslbf
}

/* 802.6 with Common PDU Header */
if(protocol_id == 0x000B) {

/* Common PDU Header */
IEEE802_6_CPDU_reserved 16 bslbf
IEEE802_6_CPDU_BEtag 16 bslbf
IEEE802_6_CPDU_BAtag 16 bslbf
for(i=0; i<PES_packet_length-14; i++)

IEEE802_6_PDU_data_byte 8 bslbf
}

/* 802.1 BPDU */
if(protocol_id == 0x000E) {

 for(i=0; i<PES_packet_length-8; i++)
 IEEE802_1_BPDU_data_byte 8 bslbf
 }

}

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

244

 }
}

9.4.6 U-N Messages
DSM-CC U-N messages are encapsulated in the DSMCCMessageHeader() (defined in section 2.3) within
the DSMCC_section().

The reference to section 2.3 is ‘hardwired’. Is there a trick in Word to make the reference automatically
track.

9.4.7 U-U Initial Download
TBD

9.4.8 U-U Remote Procedure Calls
For use of DSM-CC U-U RPC Primitives over MPEG-2 Transport Stream, the DSM-CC Multiprotocol
Encapsulation is required. The use of this encapsulation for the delivery of other user defined messages is
allowed but optional. For example, if TCP/IP is encapsulated in this manner to carry U-U RPC messages,
the same method can also be used to deliver IP for other user defined applications. In this example the IP
packets for both U-U RPC and user defined purposes may be delivered with the same PID.

9.4.9 NPT Time Stamps and DSM-CC Descriptors in MPEG-2 Transport
Streams

NPT time stamp descriptors must be carried in a DSMCC_Descriptor_List() within a DSMCC_section()
when carried in a MPEG-2 Transport Stream. The DSM-CC StreamMode and StreamEvent descriptors may
be carried in this same descriptor list. The number of descriptors in the loop is determined by the
stream_info_length field.

Table 9-8 -- DSM-CC Descriptor List

DSMCC_Descriptor_List() {
for(i=0; i<N; i++) {

reserved 3 uimsbf
stream_PID 13 uimsbf
stream_info_length 16 uimsbf
for (i=0;i<N1;i++) {

descriptor()
}

}
}

Semantic definition of fields in DSM-CC Descriptor List

stream_PID -- This is a 13 bit field specifying the PID of the Transport Stream packets which carry the
stream to which the following descriptor loop refers to.

stream_info_length -- This is a 16 bit field specifying the total length, in bytes, of the descriptors
immediately following the stream_info_length field.

9.5 Encapsulation within MPEG-2 Program Streams
TBD.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

245

When we used PES Packets the delivery of DSM-CC messages in Program Streams was more clear. We
certainly can define a way to carry DSM-CC messages in a PES Packet using the DSMCC stream_id for
use in Program Streams but we will need at least a one byte adaptation header to prevent emulation of
13818-1 Annex A DSM-CC. Need to refresh our memory as to how PSI sections are carried in Program
Streams.

This issue will be resolved in a later meeting

9.5.1 NPT Time Stamps and DSM-CC Descriptors in MPEG-2 Program
Streams

This section was not yet agreed upon by the committee

NPT time stamp descriptors when carried in a MPEG-2 Program Stream must be carried in a
DSMCC_program_stream_Descriptor_List() as a PES packet as defined in Section 2.4.3.6 of part 1 of this
Recommendation/International Standard. The DSM-CC StreamMode and StreamEvent descriptors may also
be carried in this descriptor list. The number of descriptors in the loop is determined by the
elementary_stream_info_length field.

Table 9-9 -- DSM-CC_program_stream_Descriptor List

DSMCC_program_stream_Descriptor_List() {
packet_start_code_prefix 24 bslbf
stream_id 8 uimsbf
packet_length 16 uimsbf
dsmcc_discriminator 8 uimsbf
for(i=0; i<N; I++) {

elementary_stream_id 8 uimsbf
elementary_stream_info_length 16 uimsbf
for (i=0;i<N1;i++) {

descriptor()
}

}
}

Semantic definition of fields in DSM-CC_program_stream_Descriptor List

stream_id -- This is a 8-bit field specifying the bitstream identification that takes the value '1111 0010' for
the DSMCC bitstream.

packet_length -- A 16-bit field specifying the number of bytes in the DSM-
CC_program_stream_Descriptor List following the last byte of the field.

dsmcc_discriminator -- This is an 8-bit unsigned integer that takes the value '1000 0000' for the DSM-
CC_program_stream_Descriptor List.

elementary_stream_id -- This is an 8-bit field indicating the value of the stream_id field in the PES packet
headers of PES packets in which the elementary stream is stored to which the descriptor loop following the
elementary_stream_id refers to.

elementary_stream_info_length -- This is a 16-bit field specifying the total length, in bytes, of the
descriptors immediately following the elementary_stream_info_length.

9.6 Encapsulation within MPEG-1 System Streams
The delivery of DSM-CC messages is not supported in MPEG-1 System Streams.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

246

10. INFORMATIVE ANNEX A
(This annex does not form an integral part of this International Standard)

RELATIONSHIP OF DSM-CC and MHEG

10.1 Overview of MHEG
MHEG provides a model and constructs for interchange of Multimedia objects between applications. It
assumes a requirements model in which data are exchanged in a layered model between different
components of an implementation. These components may have a symmetric or asymmetrical relationship
to each other and may be viewed as separate (client-server) or the same application. This model is shown in
Figure A-1.

Fig. A-1: MHEG Reference Model

Applications

Script

MHEG object
with its

content data

Non-MHEG
content data

Other
Protocol
Element

Component A

Applications

Script

MHEG object
with its

content data

Non-MHEG
content data

Other
Protocol
Element

Component B

A

S

M

C

OPE

MHEG explicitly supports scripting languages through a Script Class, but it does not specify a scripting
language of its own nor requires the use of any particular scripting language. Likewise, application-level
data exchange is not covered by MHEG.

At the lower levels of the model, the C-layer (non-MHEG content data) and OPE-layer (Other Protocol
Element) are also outside of the scope of MHEG. For C-layer data, MHEG looks to other monomedia
recommendations and standards specifications. One example of this layer would be MPEG (even though
MPEG has video, audio and systems components, it can be abstracted as a single class of data). The OPE-
layer is for the exchange of messages and acknowledgments which may be required by the application, but
not by MHEG itself.

MHEG offers support for multimedia interchange through an object-oriented approach. It provides for the
definition of MHEG objects with attributes for:

• identification of standard and standard version

• identification of class of MHEG object

• MHEG identifier of the MHEG object

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

247

• general object information (name, owner, …)

It also supports generic referencing mechanisms (logical name, head, tail, etc.) and a consistent approach to
generic types of attribute values (Boolean, Integer, etc.). Additionally, each MHEG object has a behavior
set associated with it. These include presentation behavior, preparation behavior, and some behavior classes
(action, link, and script) which may be used to modify other intrinsic behaviors. In particular, the script
class may be used to exchange scripts which describe very complex modifications to the intrinsic behaviors
of objects. The action object is used to exchange ordered sets of actions without reference to the objects or
related presentable objects.

Via its object model, expressed as various MHEG classes, MHEG acts as a container for the interchange of
multiple media types. It can encapsulate both, other standard interchange formats such as MPEG or JPEG,
and private encoding techniques. It also supports the final form of presentation of multiple media. It
provides for identification of the coding techniques used to enable the use of the appropriate presentation
resources on a specific platform. It also explicitly supports multimedia presentation by providing structures
for the composition of different media types into a presentation. These include time-sequencing, spatial
positioning and logical interaction between media.

MHEG's class set can be used to specify:

• objects containing monomedia information

• relationship between objects

• dynamic behavior between objects

• information to optimize the real-time handling of objects

MHEG's classes include, the content class, composite class, link class, action class, script class, descriptor
class, container class, and result class.

It should be noted that the MHEG standard does NOT define an API for the handling of objects on its
classes. Nor does it define methods on its classes. Thus, the use of object model is limited to attribute
inheritance between classes.

10.2 Detailed relationship of DSM-CC to MHEG

based on this cursory review, DSM-CC may be seen to fit into the OPE-layer of the MHEG model. The
overall relationship of MHEG, DSM-CC and scripting languages is shown in Figure A-2.

Fig. A-2: DSM-CC-centric view of MHEG, scripting language, and networks

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

248

Applications

Scripting
LanguageMHEG

DSM-CC

Transport

Network

This figure shows that applications may access DSM-CC directly or through an MHEG layer. Also,
scripting languages may be supported through an MHEG layer on top of DSM-CC. If an application
requires an extensive object-oriented approach for object attributes and encapsulation classes, the MHEG
layer may be considered.

Explicit support for database or file system access is not provided in MHEG through MHEG class
definitions or APIs.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

249

11. INFORMATIVE ANNEX B

Note: code contained in this section is for explanation purposes only. It is not intended for actual use, and
is incomplete from the standpoint of being compilable source code.

11.1 Sample Port and Use of CD-ROM Multimedia Application

This code sample illustrates the porting and use of a CD-ROM application for the MPEG heterogeneous
network environment. It is well known that CD-ROM applications are a popular form of multimedia
entertainment, and many authoring tools are structured for creating such programs. CD-ROMs and video
networks have one important thing in common: they both have a latency problem which requires the
application to prefetch in advance the multimedia objects to be used in forming the presentation to the end-
user. This sample shows the creation of a service which includes a Directory Interface. The Service’s
Directory hierarchy is constructed to match that of the equivalent CD-ROM application. When the
application starts up at the settop, the Service is opened which effectively presents the CD-ROM filesystem
to the client.

Prerequisites:

1. The content owner defines the CD-ROM service interface using Interfaces Define:

// Interfaces object reference is returned by an Open or Resolve to get
DSM_Interfaces *ifObject;
// information provider uniquely identifies the service with an id
// the id is unique for within that information provider’s id space
DSM_Sequence id = {,8,0x1234FFFFFFFFFF1};
// the Service Object interface is defined using IDL
string *intf =
“Module DSM {interface CDROMService : Service, Directory}”;
rh DSM_Interfaces_Define(

&ifObject, // Interfaces object reference
&ev, // exception info
&id, // information provider’s identifier of Service
&intf, // IDL interface definition
aType, // output, object type assigned
&rVersion); // output, initial or new version assigned

3. A reference for the Service is obtained using LifeCycle_Create.

4. The Service instance is registered with the ServiceGateway under the name “Encyclopedia” using
ServiceGateway_bind. At this time it is bound to the ServiceGateway name context.

5. The OWNER attaches to a ServiceGateway using ServiceGateway_Authenticate chained to
ServiceGateway_Attach. This reference is sgObject.

6. The OWNER opens the “Encyclopedia” Service:

// dbObject will be of type DSM_CDROMService
DSM_CDROMService *cdObject;
// create a reference Step where
// name is “Encyclopedia”, type is DSM_CDROMService, and
// object ref is cdObject
DSM_RStep *node = {“Encyclopedia”, DSM_CDROMService, *cdObject};

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

250

// Open the CDROMService, which resolves the reference cdObject
rh DSM_Directory_Open(

&sgObject, // target object this command is sent to
&ev, // exception info
DSM_DEPTH, // path type is a single node
&node); // contains name, type, ref

7. The Owner creates sub-Directories as needed and populates with the directory with the contents of the
CD-ROM.

READER Procedure:

The READER in this example is the client (settop) application. After browsing the available applications
offered by the ServiceGateway, the client open’s the “Encyclopedia” Service. Following the open, the client
obtains the initial application shell through Data_Get or the Initial Application Download procedure as
defined in section 3.1. The application shell, now at the client, takes charge of running the application. It
will have the object reference of the Service, which represents the equivalent of the CD-ROM directory
hierarchy. It can get, open and read multimedia file and data objects using the File and Directory Interfaces.
It can open video and audio streams and manipulate them using the Stream Interface. It can navigate
through its CD-ROM equivalent directory hierarchy using the Directory Interface.

11.2 Sample Creation and Use of a Movie Attributes Database Object

This code sample describes the creation and usage of a movie attribute database service. Such a service may
be used to search for movies and information about movies using the standard SQL Structured Query
Language. In a Movies on Demand scenario, prior to selecting a movie, the end-user is presented with list
boxes of choices for titles, directors and actors, plus check boxes or radio boxes for other movie attributes.
Since the server’s selection of movies changes from day to day, the information provider will continually
update the database with the latest information on available movies. Without changing the application or
requiring recompilation, the database may be updated at the server. When the end-user browses the
database, graphics object selections cause the application to send database queries on the DSM interface to
the database Service. The query reply can return new lists of titles, directors and actors, sorted and filtered,
which are then displayed in the list boxes of the application presentation.

OWNER Procedure:

1. The content OWNER installs an empty database at a Server.

2. The database service is defined using Interfaces Define. This object includes includes the Service,
View and Directory Interfaces in its IDL definition:

// ServiceGateway object reference is returned by ServiceGateway Attach
DSM_ServiceGateway *sgObject;
// information provider uniquely identifies the service with an id
// the id is unique for within that information provider’s id space
DSM_Sequence id = {,8,0x1234FFFFFFFFFF2};
// the Service Object interface is defined using IDL
string *intf =
“Module DSM {interface DBService : Service, View, Directory}”;
rh DSM_Interfaces_Define(

&sgObject // ServiceGateway object reference
&ev // exception info
&id, // information provider’s identifier of Service
&intf, // IDL interface definition

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

251

aType, // output, object type assigned
&rVersion); // output, initial or new version assigned

3. A reference for the Service is obtained using LifeCycle_Create.

4. The Service instance is registered with the ServiceGateway under the name “Movie Info” using
ServiceGateway_Bind. At this time it is bound to the ServiceGateway name context.

5. The OWNER attaches to a ServiceGateway using ServiceGateway_Authenticate chained to
ServiceGateway_Attach. This reference is sgObject.

6. The OWNER opens the database service, then creates and populates the database tables with movie
information:

Directed By

Director
director_id

name

Movie
movie_id

title
director_id

Mov_Act
actor_id
movie_id

Actor
actor_id

name
gender

Acted By Acts In

// dbObject will be of type DSM_DBService
DSM_DBService *dbObject;
// create a reference Step where
// name is “Movie Info”, type is DSM_DBService, and
// object ref is dbObject
DSM_RStep *dbNode = {“Movie_Info”, DSM_DBService, *dbObject};
// Open the View, which resolves the reference dbObject
rh DSM_Directory_Open(

&sgObject, // this command is sent to ServiceGateway
&ev, // exception info
DSM_DEPTH, // path traversal is DEPTH
&dbNode); // contains name, type, ref

// execute SQL statements to create and populate a movie table
string rSQLStatement =
 “CREATE TABLE movie(movie_id char(5), title char(30), director_id
 char(5))”;
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);

string rSQLStatement =
 “INSERT INTO movie VALUES (‘M3’, ‘Raiders of the Lost Ark’, ‘D2’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
string rSQLStatement =

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

252

 “INSERT INTO movie VALUES (‘M2’, ‘BeetleJuice’, ‘D1’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
string rSQLStatement =
 “INSERT INTO movie VALUES (‘M1’, ‘Batman’, ‘D1’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);

// execute SQL statements to create and populate a actor table
string rSQLStatement =
 “CREATE TABLE actor(actor_id char(5), name char(30), gender char(6))”;
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);

string rSQLStatement =
 “INSERT INTO actor VALUES (‘A7’, ‘Harrison Ford’, ‘male’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
string rSQLStatement =
 “INSERT INTO actor VALUES (‘A6’, ‘Kim Bassinger’, ‘female’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
string rSQLStatement =
 “INSERT INTO actor VALUES (‘A5’, ‘Michael Keaton’, ‘male’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
string rSQLStatement =
 “INSERT INTO actor VALUES (‘A4’, ‘Alec Baldwin’, ‘male’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
string rSQLStatement =
 “INSERT INTO actor VALUES (‘A3’, ‘Geena Davis’, ‘female’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
string rSQLStatement =
 “INSERT INTO actor VALUES (‘A2’, ‘Karen Allen’, ‘female’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
string rSQLStatement =
 “INSERT INTO actor VALUES (‘A1’, ‘Jack Nicholson’, ‘male’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);

// execute SQL statements to create and populate a director table
string rSQLStatement =
 “CREATE TABLE director(director_id char(5), name char(20))”;
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
string rSQLStatement =
 “INSERT INTO director VALUES (‘D2’, ‘Steven Spielberg’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
“INSERT INTO director VALUES (‘D1’, ‘Tim Burton’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);

// execute SQL statements to create and populate a mov_act table
string rSQLStatement =
 “CREATE TABLE mov_act(movie_id(5), actor_id char(5))”;
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
“INSERT INTO mov_act VALUES (‘M2’, ‘A4’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
“INSERT INTO mov_act VALUES (‘M2’, ‘A3’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
“INSERT INTO mov_act VALUES (‘M3’, ‘A7’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
“INSERT INTO mov_act VALUES (‘M3’, ‘A2’)”

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

253

rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
“INSERT INTO mov_act VALUES (‘M1’, ‘A5’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
“INSERT INTO mov_act VALUES (‘M1’, ‘A1’)”
rh DSM_View_Update(&dbObject,&ev,&rSQLStatement);
“INSERT INTO mov_act VALUES (‘M1’, ‘A6’)”

READER Procedure:

The READER in this example is the client (settop) application. The READER follows a similar procedure
(to Owner Procedure) for opening the View Service. A client with READER privileges only may not
perform write operations such as View WriteSelect, but may perform read operations such as View Select.

To retrieve the name of the director of the movie Batman:

string rSQLStatement =
 “SELECT name FROM director d, movie m WHERE d.director_id =
 m.director_id AND m.title = ‘Batman’”;
rh DSM_View_Select(

&dbObject, // View object this is sent to
&ev, // exception info
aBufSize, // size of memory allocated
&rSQLStatement, // SQL SELECT statement
&rResultDescribe, // description of return buffer
&rReturnBuffer); // sequence of result rows or objects

To retrieve the list of actors in Beetlejuice:

string rSQLStatement =
 “SELECT name FROM actor a, movie m, mov_act ma WHERE a.actor_id =
 ma.actor_id AND m.movie_id = ma.movie_id AND m.title =
 ‘BeetleJuice’”;

To retrieve the list of female actors in Beetlejuice:

string rSQLStatement =
 “SELECT a.name FROM actor a, movie m, mov_act ma WHERE a.actor_id =
 ma.actor_id AND m.movie_id = ma.movie_id AND m.title = ‘BeetleJuice’
 AND a.gender = ‘female’”;

DSM_View_Read can now be used to retrieve one actor at a time from the View.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

254

12. INFORMATIVE ANNEX C
(This annex does not form an integral part of this International Standard)

[The format of this annex does not match that of the rest of the document and needs to be changed. This
annex refers to User-User Application Download section.]

An Application Download Procedure Example Using MPEG-2 Transport

12.1 Scope
This informative annex is describes an example of what may occur during a boot sequence

12.2 Network configuration and restrictions

The network considered has the restriction that all high-speed data must be carried in a multiplexed MPEG-

2 Transport Stream which is broadcast such that many client users are receiving and interpreting the same

data. The Application Boot Messaging Path is a bidirectional network path exists which can only be

received by the client user and server user involved in a transaction (perhaps an X.25 connection) and the

unidirectional (Boot Server to Client) broadcast high-speed MPEG-2 Transport Stream connection.

The establishment of the Application Boot Messaging Path included negotion between the server and

network a free MPEG-2 Program (with at least one MPEG-2 PID to use for Boot Messaging). The

Application Boot Server and the Application Boot Initiator both know the Program number (and RF

Frequency, if necessary) allocated to the Boot Messaging path. The Application Boot Initiator passes the

Program number (and RF Frequency, if necessary) to the BLOB loader.

12.3 Application Boot Procedure chosen
The example contained in this appendix is constrained by the following Application Boot Procedure

options:

One Pass BLOB download

dsmAppInfoReq and dsmBLOBInfoResp messages are not used

12.4 Application Boot Initiator Actions
The Application Boot Initiator performs the actions necessary to establish the preconditions specified above

and in the Boot Sequence definition.

The ABI then notifies the BLOB Loader to begin the Boot Sequence, passing the appropriate network paths

and information to it, then enters a sleeping or waiting state until the Boot Sequence is completed either

successfully or unsuccessfully.

12.5 Application Boot Sequence

dsmAppBootReq message sent from BLOB Loader to Application Boot Server

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

255

The BLOB loader sends a valid dsmAppBootReq message over the Boot Messaging Path to the

Application Boot Server. The BLOB buffer size allocated (as indicated in the message) is sufficient to

receive the application modules which the ABS needs to send in order to support the client as described in

the Client Configuration information element. The ABS has every component necessary to support the

client available, and determines that it would like to respond with a dsmBLOBDataResp.

dsmBLOBDataResp message sent from Application Boot Server to BLOB Loader

The Application Boot Server collects all of the modules necessary to boot an initial application on the

Client, then constructs and transmits the dsmBLOBDataResp message over the Application Boot

Messaging Path using the allocated Program and one of the MPEG-2 PIDs allocated to that program

(ISO/IEC 13818-1 DIS reserves stream type 0x08 for ITU-T Rec. H.222.0 | ISO/IEC 13818-1 DSM CC).

BLOB Loader actions

Using the MPEG-2 Program number (and RF frequency, if necessary), the BLOB loader receives and

validates the dspBLOBDataResp message. If any errors have occurred, or the entire BLOB has not been

received within the network timeout period, and the maximum network retry count has not been exceeded,

the BLOB Loader restarts the Application Boot Sequence.

BLOB Loader notifies Application Boot Initiator of completion

The BLOB Loader notifies the ABI of successful completion of the BLOB loading process.

At this point the Application Boot Sequence is completed.

12.6 Application Boot Initiator Actions
After notifing the BLOB Loader to begin the Application Boot Sequence, the ABI entered a sleep or wait

condition until notification by the BLOB Loader that a BLOB download was successful or not..

If notified by the BLOB Loader that the download failed, it is expected that the ABI would attempt to take

some corrective action (if possible), or notify the Human Element or take some other unspecified action.

If the ABI was notified that the BLOB was loaded successfully, the ABI should perform the following

actions:

Validate each individual downloaded module

Notify the operating system of the existance of each module

If the BLOB contained one or more applications, notify the operating system to begin execution of each of
them. NOTE: it is possible for one BLOB to contain more than one application and to expect all of the
applications to execute concurrently.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

256

13. INFORMATIVE ANNEX D

(This annex does not form an integral part of this International Standard)

EXAMPLES OF USING DSM-CC USER-NETWORK MESSAGES WITH ATM

13.1 Introduction

The intent for this annex is to provide the reader an appreciation of DSM-CC operation over ATM. The
normative Section of this International Standard defines the DSM-CC functional model, this is reproduced
in Figure F1 below. In this annex examples are shown of how DSM-CC can be implemented over MPEG-2
based multimedia services configurations with ATM.

CLIENT SERVER

NETWORK
Connection

(User-to-Network)

Session
Connection

Configuration User-
to-

Network

User-
to-

User

User-
to-

Network

User-
to-

User

Connection
(User-to-User)

Figure F1: DSM-CC Functional Model

The following definitions taken from the normative text in this IS apply to Figure F1:

Connection: Transport link that provides the capability to transfer information between two or more end
points.

Session: Association between two or more Users, providing the capability to group together the
resources needed for an instance of a Service.

Service: A logical entity in the system that provides functions and interfaces in support of one or
more applications. The distinction of the service from other objects is that end-user access
to it is controlled by a service gateway.

Network: A collection of communicating elements that provides connections and may provide session
control and/or connection control to Users.

Client: Consumer of a service from one or more Servers.

Server: Provider of a service to one or more Clients.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

257

User: An end system that is connected to a Network and can transmit information to or receive
information from other such systems by means of the Network. A User may function as a
Client, Server, or both.

This annex presents a number of configurations conformant to the DSM-CC functional model. Figure F2
shows the categories of configurations. These are:

• Hybrid ATM Core-Shared Access MPEG Transport Stream (e.g., on Hybrid Fiber Coax)
• Hybrid ATM Core-Shared Access ATM (e.g., on Hybrid Fiber Coax)
• End-to-end ATM segregated with Proxy (e.g., ATM network with Client and/or Server

Q.2931 proxy signaling, but Session control done outside Q.2931)
• End-to-end ATM segregated direct (e.g., ATM network with Q.2931 by Client and Server,

but Session control done outside Q.2931)
• End-to-end ATM integrated (e.g., ATM network with Session control done on future

"extended" Q.2931)

Hybrid - ATM Core
Shared Media Access

MPEG TS Access

ATM Access

End-to-End
ATM

Segregated

Integrated

Direct

Proxy

Figure F2: Configuration Taxonomy

Figure F3 shows the characteristics of the above configurations from the perspective of the ATM control
plane (signaling) and the ATM user plane (ATM Bearer).

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

258

Q.2931 Signaling
End points

ATM Bearer
Channel

Hybrid- ATM Core
Shared Media (MPEG TA

or ATM) Access

SM * <--> Server
IWU*** <--> Server

End-to-End ATM
with Proxy

for connection setup

End-to-End ATM
Segregated Direct

Client <--> Server

Client <--> Server

Client <--> Server

Client <--> Server

Client <--> ServerEnd-to-End ATM
Integrated

Client <--> Server PSA

Configuration Client
Proxy

yes

yes

Not
Applicable

-

-

* SM = Session Manager is an implementation of the Network functions of the DSM-CC functional model
 in a block external to the ATM network.
**PSA = Proxy Signaling Agent
***IWU = InterWorking Unit

Server
Proxy

Client PSA <--> Server

yes

-

SM <--> Server PSA**

-

-

yesyesClient PSA <--> Server PSA

-

-

Figure F3: Configuration Characteristics

13.2 Associations Between ATM SVC and DSM-CC

13.2.1 Methods

From the basic principle of ATM SVC connectivity under the context of a multimedia service session, two
methods that tie the Call Reference (which represents the Q.2931 call concept) and the resourceNum (which
represents the DSM-CC session concept) are discussed:

1. The Session Method
2. The Network Method

It is NOT possible to use both the Session method and the Network method within the same session.

13.2.1.1 Session Method

The Session Method requires that any Server that needs an ATM SVC connectivity must inform the SM.
The SM then initiates a Q.2931 signaling procedure to establish an ATM SVC connection between the
Server and a Client (e.g., through a downstream headend equipment). The Q.2931 SETUP message
initiated by the SM to the Server includes the resourceId (in its entirety or in a compressed form see Section
2.2) to allow the Server to associate the resources with ATM connections.

The characteristics of the Session Method are as follows:

1. It maintains the DSM-CC session layer approach which views an ATM connectivity as one of the
resources to be assigned by the SM.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

259

2. It allows the multimedia Network provider to make high layer policy decision on all resource requests,
including the ATM connection resource (e.g., restrictions on the number of ATM connections per
session).

3. It allows the abstraction of the connection resources so that the multimedia Network architecture can be
hidden (e.g., using the concept of Class of Service instead of specifying detailed ATM parameters).

4. It allows multiple ATM connections to be requested and torn down through one session request.

13.2.1.2 Network Method

The Network Method allows any Server that needs an ATM SVC connectivity to do a Q.2931 signaling to
the Client. For those Networks which have Q.2931 signaling available at the Client, the Client may also do
Q.2931 signaling to the Server to initiate an ATM SVC. The Q.2931 SETUP message that the Server or
Client sends to the ATM UNI is required to contain a resourceId ((in its entirety or in a compressed form
see Section 2.2)) in an information element that has end-to-end significance (i.e., the ATM network will
transfer it transparently between Server, Client or SM. In the case when SM is involved (because of
interworking with the access media or Proxy signaling) and it receives a SETUP from its side of the UNI, it
will link up the Server with the Client (for Server initiated SETUP) or it will link up the Client with the
Server (for Client initiated SETUP). In the case of Client to Server connectivity for Networks which have
Q.2931 signaling available at both Client and Server, the involvement of the SM is typically not required in
establishing the connection.

The characteristics of the Network method are as follows:

1. It involves less signaling steps in establishing an ATM connection, while still preserving the association
between a session layer's resource and the ATM connection.

2. It reduces the capability of the multimedia Network provider to make high layer policy decision on the
ATM connection resource.

3. It can be used by Servers/Clients that request large volume of ATM connections to be set up with time
constraints.

Session and Network are two methods which could be used on any of the configurations identified in Figure
F2.

13.2.2 resourceId Mapping into B-HLI Correlation ID

As described in Section 2.1 the resourceId needs to be carried along the ATM SVC connection to allow the
Users to associate a connecton with resources. The current view is that B-HLI in Q.2931 is the proper field
to carry the resourceId. For this purpose a specific B-HLI type for MPEG-2 DSM-CC is required. A
codepoint for ISO/IEC 13818-6 MPEG-2 DSM-CC has been requested to ITU-T SG11 Q15/11 who is
responsible for providing the codepoint. However the B-HLI information field is currently limited to a
maximum size of 8 bytes which is not sufficient to carry the resourceId field of 12 bytes specified in the
normative body of this specification. In order to overcome this shortcoming two solutions are specified for
use in case of using MPEG-2 DSM-CC with ATM SVC. These are an IMMEDIATE solution and a
SUBSEQUENT solution. The Immediate solution will be applied in case of the B-HLI information field is
constrained to a maximum of 8 bytes and the Subsequent solution will be applied when the B-HLI field is
increased to accomodate the resourceId field or as an alternative an end-to-end information element is
created to carry the full resourceId.

13.2.2.1 Immediate Mapping to B-HLI Correlation ID

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

260

In order to be able to compress the resourceId field of 12 bytes to fit within an 8 byte B-HLI information
field, the deviceId values are created with local significance in implementations using MPEG-2 DSM-CC
with ATM SVC. With the consequence that the DSM-CC Networks will have a relatively limited size. In
addition the maximum number of Sessions is reduced from its normative value in order to maintain an
overall sessionId field size of 5 bytes down from 10 bytes as shown in Figure F4. In addition the 5 bytes
reduced sessionId value follows a specific format is adopted as shown below:

MSb 1,2 = 13818-6 reserved (00)

a) Network assigned
MSb 1-2 = Network assigned (11)
MSb 3-32 = reduced sessionId value

b) Server assigned
MSb 1-2 = Server assigned (10)
MSb 3-20 = reduced deviceId value of network domain significance.
MSb 21-40 = reduced session number value

c) Client assigned
MSb 1-2 = Server assigned (01)
MSb 3-32 = reduced deviceId value of network domain significance.
MSb 33-40 = reduced session number value

resourceId 12 bytes

2 bytes

10 bytessessionId

sresourceNum

2 bytes

B-HLI Correlation ID 7 bytes

5 bytes

sresourceNum

5 bytes

reduced sessionId value

Figure F4: Relationship of Immediate Correlation ID to resourceId

13.2.2.2 Subsequent Mapping to B-HLI Correlation ID
This mapping will allow the full resourceId of 12 bytes to be carried within the enhanced B-HLI field. In
this case the B-HLI Correlation ID will be identical to the resourceId.

13.3 Hybrid ATM Core-Shared Access MPEG Transport Stream
This DSM-CC configuration over ATM, uses MPEG transport stream on the access network and ATM on
the core network, see Figure F5. An interworking unit (IWU) operates between the core and the access
network. In addition to interworking, the unit contains functions of end-to-end session management control,
access network connection management control and configuration management control. The entire unit is
designated as IWU SM (Session Connection, and Configuration Management Controller).

� Messages between the Client and SM consist of both session and connection control messages (a).
These include DSM-CC User-to-Network messages shown in Figure F1.

� Messages between SM and the Server (b) are DSM-CC User-to-Network messages consisting mainly
of session control messages.

� The connection control messages (c) are interchanged between the Server and the ATM core network
and the SM and the ATM core network using Q.2931. Some of the information in these messages are

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

261

carried end-to-end between the Server and SM. At this time a minimum limit of 34 bytes has been
identified but no such information elements have been standardized in Q.2931.

The User-to-User connections (d) between the Client and the Server are established across both the MPEG
TS access network and the core ATM network. The establishment of these connections within the context
of a session occurs through the a, b and c message exchanges. Because of the differences in the transport
media of the MPEG TS access and the core ATM network, the network resources in each are different. A
session on the MPEG TS access network groups resources, identified by Packet Identifiers (PIDs) to carry
video program(s) shown in Figure F6 on the left side. The same session on the ATM network includes
virtual channels each of which may carry an MPEG transport with a single program,

Client Server

Key:

a: DSM-CC User-to-Network messages (handles Session and Connection resources)
b: DSM-CC User-to-Network messages (handles Session resources only)
c: B-ISDN Signaling
d: User-to-User messages

a b

c

d

c

d

IWU
SM

Note 1: An optional role of the IWU is to also manage the access network resources.
Note 2: The flow of content data is out of scope and is not shown

MPEG
Access

Network

ATM
Core

Network

 Note 1

 Note 2

Shared MPEG TS ATM VCs

Figure F5: DSM-CC over ATM/Shared Media Non ATM

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

262

IWU

 PID

|

|
|

|

|

|

SessionID

|

|

SessionID

|

|

|

 PID

 PID

 PID

MPEG TS

VC

VC

 Optional either
 MPEG TS

or
non-synchronized

packets

|

|

|

Session

1

n

Client Server

Shared Media
Non ATM

ATM Backbone

 Optional either
MPEG TS

or
non-synchronized

packets

Figure F6: Session Network Resource Interworking between Shared Media and ATM Backbone

on the right side. Figure F6 illustrates the same session on both sides of IWU. Because of the difference of
the network resources a mapping from one to the other is required for interworking. A session is identified
with a global sessionId.

13.3.1 Session Method Scenarios
To clarify the Session Method a Session Set-up scenario will be explored in detail. Additional Session
method scenarios will be provided which include the following:

• Resource Request
• Resource Deletion
• Session Tear-Down

13.3.1.1 Session Set-Up
This session is either established by a request from the Client (Client Session Set-Up scenario) or from the
Server itself (Server Session Set-Up scenario).

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

263

13.3.1.1.1 Client Session Set-Up

SETUP

Call Reference 1 SETUP

Call Reference 2
CAL L PROC

Call Reference 1
CI = VPI,VCI

CONNECT

CONNECTACKCONNECT

CONNECTACK

Q.2931

 BHLI = Correlation ID

CLIENT

SM
+

IWU SERVER

ClientSessionSetUpRequest

ServerAddResourceRequest

sessionId, loop (resourceCount, resourceDescriptor)

2
3sessionId, clientId, serverId

ServerSessionSetUpIndication

sessionId, clientId, serverId

4

ATM NETWORK

1

5

ClientProceedingIndication

6
ServerAddResourceConfirm

sessionId, loop (resourceCount, resourceDescriptor)

7
sessionId, response

8 ClientSessionSetUpConfirm

sessionId, loop(resourceCount,resourceDescriptor)

ServerSessionSetUpResponse

Note 2

Note 1

clientid

Note 3

* This can be repeated if there are more than one ATM connections belonging
to the session being inititiated (repeated <= resourceCount times)

sessionId, userDataCount
loop(userDataCount, userDataByte)

ServerConnectIndication

Indicates Optional Data FlowIndicates message May Be
Sent Zero Or More Times. Indicates Command May Be

Sent Zero or Only Once.

ClientConnectRequest
9 10

sessionId, userDataCount
loop(userDataCount, userDataByte)

Note 4

 BHLI = Correlation ID

Figure F7: Typical Sequence of Events: Client Session Set-Up

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM
Network- MPEG TS.

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network.
Note 4: Connections for the exchange of User-Network messages between Client and SM and Server and SM

are assumed.

Figure F7 provides a typical sequence of events for Client Session set-up. Before a Server can request
ATM SVC connectivity to the Client (i.e., before a Server may issue a ServerAddResourceRequest), it must
have begun establishment of an MPEG-2 based multimedia service session (i.e., it must have issued a
ClientSessionSetUpRequest).

DSM-CC protocol:

Step 1
The Client sends a ClientSessionSetUpRequest message to the SM.

Step 2
The SM verifies the clientId from the Network provider’s point of view, and if positive, contacts the proper
Server that has the service identified by serverId .

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

264

Step 3
Upon receipt of the ServerSessionSetUpIndication message, the Server verifies the clientId from the
Server’s point of view, and if positive accepts the request. The Server collects all resources that it needs
from the Network in order to support the selected service. If the service needs one or more ATM SVC
connections, the Server can embed the proper amount of “ATM SVC” resource descriptors in the
ServerAddResourceRequest message. These resource descriptors are tagged for negotiation, and contain
sufficient information for the SM to later establish a connection between the Server and the IWU in SM.

The encoding of the “AtmConnection” resource descriptor uses ATM UNI containing Q.2931 ATM User
Cell Rate and Quality-of-Service (QoS) parameters.

Step 4
Upon receipt of the ServerAddResourceRequest message, the SM can process the resource descriptors
included in the message. For an “ATM SVC” resource, the SM can verify the requested properties (e.g.,
User Cell Rate and QoS) against what is available in the access network. If the “ATM SVC” resource
descriptor is tagged as MANDATORY NEGOTIABLE and the available value is within the requested
range, then it can be satisfied and will be recommended by the SM to the Server.

Step 5
For any “ATM SVC” resource that is not rejected, the SM initiates a connection matching an available
access resource and containing both the sessionId and the resourceNum in the SETUP message.

Q.2931 protocol:

The SM initiates a Call/Connection procedure by sending a Q.2931 SETUP message to its ATM User-
Network Interface (UNI), with the following information elements:

� Call reference selected by SM
� Calling Party Number = ATM address of the IWU.
� Called Party Number = ATM address of the Server as derived from the serverId field.
� ATM Adaptation Layer Parameters ATM User Cell Rate and Quality-of-Service parameter = values

imported from the “ATM SVC” resource request descriptor.
� Broadband High Layer information (BHLI) = Correlation ID corresponding to this “ATM SVC”

resource.

After connections are established the SM can send a ServerAddResourceConfirm message indicating the
resources which were successfully allocated.

The ATM UNI acknowledges the SM with a CALL PROCEEDING message. From that message, the SM
extracts the assigned VPI and VCI values. These values will be used by the SM to connect the Client to the
ATM SVC connection being set up.

The exact procedure to connect the Client to the ATM SVC being set up depends on the network
architecture. In a passband architecture, this procedure may involve the SM translating the VPCI/VCI value
into an RF channel and other multiplexing information (such as MPEG-2 program number) which will be
sent to the Client via the DSM-CC ClientSessionSetUpConfirm message. The details of this procedure is
outside the scope of this annex.

When the Server is informed of the SETUP on its ATM UNI, it can access the Correlation ID from the
BHLI information, and associates the Call Reference with this session information. The Server maintains
this association until the ATM SVC connection is released.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

265

Both the SM and the Server maintain a Call Reference and Correlation ID association so that one can be
retrieved from the other.

DSM-CC Protocol:

Step 6
The ServerSessionSetUpResponse message will signal SM of the Server’s readiness to begin using the
connections.

Step 7
After all requested resources have been assigned, including the “ATM SVC” resources, the SM will inform
the Client through the ClientSessionSetUpConfirm message. Both Client and Server are now ready to
exchange User-to-User messages.

Step 9
Optionally the ClientConnectRequest can be used. This will be sent by the Client to indicate to SM the
acceptance of the Session and pass along data to the Server.

Step 10
The SM notes the starts of the Session and informs the Server to begin the Session.

13.3.1.1.2 Server Session Set-Up

For Further Study

13.3.1.2 Resource Request

After a session has been set up between the Client and the Server, either the Client or the Server can later
come back to the SM to request new resources within the context of the established session

13.3.1.2.1 Resource Request by the Server

The message flow is shown in Figure F8.

Step 1
The Server requests the needed connection resources by sending the ServerAddResourceRequest message
to SM with a list of resourceDescriptors.

Step2
If DSM-CC does not reject the requested “ATM SVC” resources, it proceeds by securing a connection on
the access network portion (through vendor specific commands) and initiates an ATM core network
connection matching the available access resources through Q.2931 signaling messages, containing both the
sessionId and the resourceNum in the SETUP message.

Step 3
SM informs the Client of the requested Client side resources.

Step 4
On receipt of ClientAddResourceIndication message, the Client determines if it is capable of using the
additional resources and if positive sends ClientAddResourceResponse to the network with the response
field set to rspOK. At this point the Client shall consider the additional resources as committed to the
Session.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

266

Step 5
After all requested connection are established and a positive ClientAddResourceResponse is received, the
SM sends a ServerAddResourceConfirm message indicating the additional resources were successfully
allocated. After sending the message, SM shall consider the additional resources as being committed to the
Session.

Step 6
On receipt of the ServerAddResourceConfirm the Server shall consider the additional resources as being
committed to the Session.

6
SERVER_RESOURCE_IND

7
sessionId, response

SETUP

Call Reference 1 SETUP

Call Reference 2
 BHLI = Correlation IDCAL L PROC

Call Reference 1
CI = VPI,VCI

CONNECT

CONNECTACKCONNECT

CONNECTACK

Q2931

CLIENT SERVER

2

ATM NETWORK

1
ServerAddResourceRequest

sessionId, loop(resourceCount, resourceDescriptor)

3
ClientAddResourceIndication

sessionId, loop(resourceCount, resourceDescriptor)

Note 2

Note 1

Note 3

ClientAddResourceResponse
4

sessionId, response
5 ServerAddResourceConfirm

sessionId, response, loop(resourceCount, resourceDescriptor)

SM
+

IWU

 BHLI = Correlation ID

Note 4

6

Figure F8: Typical Sequence of Events for Session Method: Server Resource Request

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM
Network- MPEG TS.

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network.
Note 4: Connections for the exchange of User-Network messages between Client and SM and Server and SM

are assumed.

13.3.1.2.2 Resource Request by the Client

For Further Study

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

267

13.3.1.3 Resource Deletion

After a resource has been successfully requested, either through the Session Set-Up scenario or the Session
Resource Request scenario, the originator of the resource request (Client or Server) can later come back to
the SM to request that the resource is to be deleted.

13.3.1.3.1 Resource Deletion by the Server

CLIENT SERVER

2

4

ATM NETWORK

1

6
SERVER_RESOURCE_IND

7
Session_id, response

ServerDeleteResourceRequest

sessionId, loop(resourceCount, resourceDescriptor)

sessionId, loop(resourceCount, resourceDescriptor)

ClientDeleteResourceIndication

ServerDeleteResourceConfirm

RELEASE

RELEASE

Call Reference 1

Call Reference 2

RELEASE COMPLETE

RELEASE COMPLETE

6

ClientDeleteResourceResponse

sessionId, response

Q2931

3

Note 2

Note 1

Note 3

SCCMC
+

IWU

Note 4
5

Figure F8: Typical Sequence of Events for Server Resource Deletion

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM
Network- MPEG TS.

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network.
Note 4: Connections for the exchange of User-Network messages between Client and SM and Server and SM

are assumed.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

268

DSM-CC protocol:

Step 1
The Server informs the SM of its request for deletion of one or multiple assigned resources via the
ServerDeleteResourceRequest message. The resources are identified by their corresponding Correlation
ID.

Step 2
The SM then informs the Client via the ClientDeleteResourceIndication message so that it can stop using
the identified resources.

Step 3
The Client accepts the deletion of resources by responding with a ClientDeleteResourceResponse with the
response field set to rspOK. At this point the Client shall consider the resource deletion process completed
and shall not use the deleted resources.

Step 4
Upon receipt of the ClientDeleteResourceResponse message, The SM will process the deletion of the
identified resources from the established session.

If the SM detects a Correlation ID identifying an “ATM SVC” resource, it can retrieve the corresponding
Call Reference and initiates a Q.2931 Call/Connection Clearing procedure at its ATM UNI.

Q.2931 protocol:

The SM sends a Q.2931 RELEASE message to the UNI, with the following information elements:

Call Reference = Call Reference retrieved from the Correlation ID.

When the Server receives the corresponding RELEASE message at its UNI, it retrieves the Call Reference
from the message and from the Call Reference, the associated Correlation ID which is then given to the
session in the Server for housekeeping chores.

DSM-CC protocol:

Step 5
After all the resources have been deleted, The SM will inform the Server of the outcome of the operation
via the ServerDeleteResourceConfirm message. At this point the SM may consider the resource deletion
completed.

Step 6
On receipt of the ServerDeleteResourceConfirm, the Server will consider the resource deletion procedure
completed.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

269

13.3.1.3.2 Resource Deletion by the Client

For Further Study

13.3.1.4 Session Tear-Down

After a session has been established through the Session Set-Up, either the Client or Server can later come
back to the SM to request that session is to be torn down. For a session containing an “ATM SVC”
resource, the scenarios follow below.

13.3.1.4.1 Session Tear-Down by Server

The message flows in this scenario are symmetrical to the flows in the Session Tear-Down by Client shown
in 3.1.4.2 below.

13.3.1.4.2 Session Tear-Down by Client

CLIENT SERVER

2 3

4

ATM NETWORK

1

6
SERVER_RESOURCE_IND

7
Session_id, response

RELEASE
RELEASE

Call Reference 1
Call Reference 2

RELEASE COMPLETE

RELEASE COMPLETE

6

ClientReleaseRequest

ServerReleaseIndication
sessionId, reason

ServerReleaseResponse
sessionId, reason

* This can be repeated if there are more than one ATM connections belonging
to the session being torn down

ClientReleaseConfirm

sessionId, response

sessionId, reasonNote 2

Note 1

Q.2931

Note 3

SM
+

IWU

Note 4
5

Figure F10: Typical Sequence of Events for Session Method: Client Session Tear-Down

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM
Network- MPEG TS.

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

270

Note 4: Connections for the exchange of User-Network messages between Client and SM and Server and SM
are assumed.

DSM-CC protocol:

Step 1
The Client informs the SM of its request for session tear-down via the ClientReleaseRequest message.

Step 2
The SM then informs the Server via the ServerReleaseIndication message.

Step 3
The Server acknowledges the request with a ServerReleaseResponse message. At this point the Server shall
consider the Session terminated.

Step 4
Upon receipt of the ServerReleaseResponse message, the SM will retrieve all resources allocated to the
identified session and proceed to delete those resources.

 If the SM detects an “ATM SVC” resource belonging to the session, it can retrieve the corresponding Call
Reference from the Correlation ID and initiates a Q.2931 Call Connection Clearing at its ATM UNI.

Q.2931 protocol:

The description of this Call/Connection Clearing procedure is similar to the one in the Resource Deletion
scenario.

DSM-CC protocol:

Step 5
After all the resources have been deleted, the SM will inform the Client of the outcome of the operation via
the ClientReleaseConfirm message.

Step 6
On receipt of the ClientReleaseConfirm the Client shall release all resources assigned to the Session. At
this point the Client shall consider the Session terminated.

13.3.2 Network Method Scenarios

To clarify the Network Method a Session Set-up scenario will be explored in detail. Additional Network
method scenarios will be provided which include the following:

• Resource Request
• Resource Deletion
• Session Tear-Down

13.3.2.1 Session Set-Up

In the Network Method, before a Server can request an ATM SVC connection to the Client or a Client can
request an ATM connection to a Server, a multimedia session must have been previously established. This

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

271

session is established via either a Client or Server Session Set-Up scenario as described by the DSM-CC
session protocol.

13.3.2.1.1 Client Session Set-Up

CLIENT SERVERATM NETWORK

ClientSessionSetUpRequest

clientId
serverId
userDataCount
loop(userData)

ServerSessionSetUpIndication

ClientSessionSetUpConfirm

sessionId
response
userDataCount
loop(userData)

ServerSessionSetUpResponse

sessionId
response
userDataCount
loop(userData)

1

3

4

5

Note 2

sessionId
clientId
userDataCount
loop(userData)

2
sessionId

SM
+

IWU

Note 1

Figure F11: Network Method: Client Session Set -Up

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM
Network- MPEG TS.

Note 2: Connections for the exchange of User-Network messages between Client and SM and Server and SM
are assumed.

During this Session Set-Up phase, the Client does not request any ATM SVC resources. Instead, all the
ATM SVC connections will be initiated later from the Server or Client using Q.2931 associated
Call/Connection procedures. In order to tie these future ATM connections to the session layer protocol, the
SM assigns a sessionId as part of the session establishment sequence. This sessionId must be included in all
subsequent Resource Requests. The SM is limited in the manner in which it may audit the resulting ATM
connections. Auditing will need to be done at the Q.2931 layer (using Call Reference values) as opposed to
the DSM-CC layer using Correlation IDs.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

272

13.3.2.1.2 Server Session Set-Up

CLIENT SERVERATM NETWORK

ServertSessionSetUpRequest

sessionId
serverId
clientId
userDataCount
loop(userData)

ClientrSessionSetUpIndication

sessionId
clientId
serverId
userDataCount
loop(userData)

ClientrSessionSetUpResponse

sessionId
response
userDataCount
loop(userData)

ServertSessionSetUpConfirm

sessionId
response
userDataCount
loop(userData)

12

3

4

5

Note 2

SM
+

IWU

Note 1

Figure F12: Network Method: Server Session Set -Up

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM
Network- MPEG TS.

Note 2: Connections for the exchange of information between Client and SM and Server and SM are
assumed.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

273

13.3.2.2 Resource Add Request

13.3.2.2.1 Resource Request by the Server

Whenever the Server needs an ATM SVC connection, it will initiate a Q.2931 Connection Set-Up
procedure as shown below:

CLIENT SERVERATM NETWORK

SETUP

Call Reference 2
BHLI = Correlation ID

SETUP

Call Reference 1
BHLI = Correlation ID

CONNECT

CONNECTACK

Q2931

CALL PROC

CONNECT

CONNECT ACK

Note 2

Note 1

Note 3

SM
+

IWU

Figure F13: Network Method: Server Session Set -Up

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM
Network- MPEG TS.

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network.

The Server sends a Q2931 SETUP message to its ATM User-Network Interface (UNI), with the following
information in elements:

 Call Reference = selected by Server

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

274

 Calling Party Number = ATM address of the Server
 Called Party Number = ATM address of SM
 Broadband High Layer information (BHLI) = sessionId

When the SM receives the SETUP message on its UNI, it recovers the Call Reference information element
and the sessionId from the SETUP message. From the sessionId, the SM knows who is the Client and
proceeds to establish a path from the IWU to the Client and connect that path with the ATM connection that
the Server just established.

13.3.2.2.2 Resource Request by the Client

A Client may also request an ATM resource using the Network method. Whenever the Client needs an
ATM SVC connection, it will initiate a Q.2931 Connection Set-Up procedure.

CLIENT SERVERATM NETWORK

SERVER_RESOURCE_IND
SETUP

Call Reference 2
 BHLI = Correlation ID

SETUP

Call Reference 3
 BHLI = Correlation ID

CONNECT

CONNECTACK

Q2931

CALL PROC

CONNECT

CONNECT ACK

Note 3

Note 1

Note 2

SM
+

IWU

Figure F14: Network Method: ATM Resource Request - Client Initiated

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM
Network- MPEG TS.

Note 2: Connection Control messages with Client will be specific to the type of access network.
Note 3: Only relevant parameters in each message are shown.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

275

The Client requests SM a connection to the Server. The SM sends a Q2931 SETUP message to its ATM
User-Network Interface (UNI), with the following information in elements:

 Call Reference = selected by SM
 Calling Party Number = ATM address of SM
 Called Party Number = ATM address of the Server
 Broadband High Layer information (BHLI) = sessionId

When the SM sends the SETUP message on its UNI, it associates the Call Reference information element
with the sessionId. From the sessionId, the SM knows who is the Server and proceeds to establish a path to
the Server and connects that path with the ATM connection that the Client just established.

13.3.2.3 Connection Clearing

13.3.2.3.1 Connection Clearing by the Server

The Server can delete an established ATM SVC connection by initiating the Q.2931 Connection Clearing
procedure:

CLIENT SERVERATM NETWORK

RELEASE

Call Reference 2

RELEASE

Call Reference1

RELEASE COMPLETE

Q2931

RELEASE COMPLETE

Note 2

Note 1

Note 3

SM
+

IWU

Figure F16: Network Method: Resource Deletion via Call/connection Release - Initiated by Server

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

276

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM
Network- MPEG TS.

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network.

When the SM receives the RELEASE message on its UNI, it keys off the Call Reference to retrieve the
sessionId.

The SM then releases the access network path and closes the usage record of the resource associated with
this Call Reference.

When the Server receives the RELEASE COMPLETE message on its UNI, it keys off the Call Reference to
retrieve the sessionId.

13.3.2.3.2 Connection Clearing by the Client

The Client can delete an established ATM SVC connection by initiating the Q.2931 Connection Clearing
procedure through SM:

CLIENT SERVERATM NETWORK

6
SERVER-RESOURCE-IND
Session-id, loop (resource-count, resource-descriptor)

RELEASE

Call Reference 2
RELEASE

Call Reference1 Q2931

RELEASE COMPLETE

Note 2

Note 1

Note 3

SM
+

IWU

RELEASE COMPLETE

Figure F16: Network Method: Resource Deletion via Call/connection Release -Client Initiated

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

277

When the Server receives the RELEASE message on its UNI, it keys off the Call Reference to retrieve the
sessionId.

When the SM receives the RELEASE COMPLETE message on its UNI, it keys off the Call Reference to
retrieve the sessionId.

The SM then closes the usage record of the resource associated with this Call Reference.

13.3.2.4 Session Tear-Down

A session can only be torn down through the DSM-CC Session Tear-Down scenario, initiated either by the
Client, Server or SM. Even if all the ATM SVC connections requested through the Network method have
been cleared, the session is still up if the Session Tear-Down scenario has not been invoked.

With the Session Tear-Down scenario, the SM will delete all the resources associated with the session.

13.3.2.4.1 Session Tear-Down by Server

The ATM SVC connections that have been established through the Network method can be cleared through
the Session method. See Section 3.1.4.1.

13.3.2.4.2 Session Tear-Down by Client

The ATM SVC connections that have been established through the Network method can be cleared through
the Session method. See Section 3.1.4.1.

13.4 Hybrid ATM Core-Shared ATM Access

This DSM-CC configuration over ATM, uses ATM on the shared access network and ATM on the core
network, see Figure F16. As in Section 3, an interworking unit (IWU) operates between the core and the
access network. In addition to interworking, the unit contains functions of end-to-end session management
control, access network connection management control and configuration management control. The entire
unit is designated as IWU SM (Session Connection, and Configuration Management Controller).

� Messages between the Client and SM consist of both session and connection control messages (a).
These include DSM-CC User-to-Network messages shown in Figure F1.

� Messages between SM and the Server (b) are DSM-CC User-to-Network messages consisting mainly
of session control messages.

� The connection control messages (c) are interchanged between the Server and the ATM core network
and the SM and the ATM core network using Q.2931. Some of the information in these messages are
carried end-to-end between the Server and SM. At this time a minimum limit of 34 bytes has been
identified but no such information elements have been standardized in Q.2931.

The User-to-User connections (d) between the Client and the Server are established across both the shared
ATM access network and the core ATM network. The establishment of these connections within the
context of a session occurs through the a, b and c message exchanges. Figure F17 illustrates the same
session on both sides of IWU. Even though both sides are ATM Networks, because of the different
assignment of network resources a mapping of VCs from one to the other is required for interworking. A
session is identified with a global sessionId.

The message flows for this scenario are the same as the Session Method and Network Method scenarios in
Sections 3.1 and 3.2 for hybrid ATM Core-Shared Access MPEG Transport Stream.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

278

Client Server

Key:

a: DSM-CC User-to-Network messages (handles Session and Connection resources)
b: DSM-CC User-to-Network messages (handles Session resources only)
c: B-ISDN Signaling
d: User-to-User messages

a b

c

d

c

d

IWU
SM

Note 1: An optional role of the IWU is to also manage the access network resources.
Note 2: The flow of content data is out of scope and is not shown

Shared ATM
 Access

 Network

ATM
Core

Network

 Note 1

 Note 2

Shared ATM VCs ATM VCs

Figure F17: DSM-CC over ATM/Shared Media Non ATM

IWU

VC

VC

 Optional either
 MPEG TS

or
non-synchronized

packets

|

|

|

Session

Client A

Server

Shared Media
(Shared ATM)

ATM Backbone

 Optional either
MPEG TS

or
non-synchronized

packets

VC

VC

 Optional either
 MPEG TS

or
non-synchronized

packets

|

|

|

Shared VCs

 Optional either
MPEG TS

or
non-synchronized

packets

Client B

Figure F18: Session Network Resource Interworking between Shared Media and ATM Backbone

13.5 End-to-end ATM segregated with Proxy

This DSM-CC configuration is shown in Figure F19. In this configuration, Q.2931 signaling termination for
the User (Client or Server side) could use a proxy signaling agent. This would allow for simplification at
the Client or the Server by it not having to implement Q.2931. In this contribution, the Client is shown to

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

279

have a Proxy Signaling Agent (PSA). In Figure F19, the PSA is shown co-located with the Session
Configuration Management Controller (SCMC). The particular functional grouping has no specific
implications and no conclusion should be drawn based on this Figure.

The Session Configuration Management Controller (SCMC) shown in Figure F19 does not indicate whether
the SCMC is centralized or distributed.

• Both the Client and the Server exchange session control messages (a,b) with the SCMC.
• Connection control messages (c1) are exchanged between the PSA and the ATM network
• Connection control messages (c2) are exchanged between the Server and the ATM network using

Q.2931.
• PSA messages (e) are exchanged between the SCMC and the Client.

Some of the information are needed to be carried on Q.2931 end-to-end between the PSA and the Server.
At this time no such information elements have been standardized on Q.2931.

Messages (a,e,b) can be categorized as being on the control or the user plane depending on the network
perspective taken. If the perspective of the ATM network is taken, messages (a,e,b) will be on the user
plane, however if the perspective of the DSM-CC network is taken, then messages (a,e,b) will be on the
control plane.

MPEG TSs are carried over end-to-end ATM Switched Virtual Channels. Each MPEG TS may carry a
combination of video, audio and synchronized data. Any parallel non-synchronized data may be carried
over separate virtual channels, see Figure F20.

Figure F20 shows session resources on the ATM network. These VCs are identified by virtual path and
virtual connection identifiers(VPI/VCIs). As stated above each VC may contain either an MPEG TS with
the appropriate PIDs or non-synchronized data.

ATM
Network

Client Server

Session
Manager

Proxy Signaling Agent

Key:

a,b: Session Management Control Messages (over PVC or pre-established SVC)
 c1, c2: Connection Signaling, Q.2931

 d: User-to-User Primitives
 e: Proxy Signaling Agent messages

c2

c1

ba, e

d

 Note 1: The ATM Network consists of ATM core, access and premise networks
 Note 2: Session Control can be implemented on an external platform and may

be centralized or distributed.
 Note 3: In this figure, the Proxy Signaling Agent (PSA) is co-located with the SCMC.

This is just ONE possibility for the PSA’s location in the Network

Note 2

Note 3

Note 1

Note 4: The flow of content data is out of scope and is not shown

Note 4

Figure F19: DSM-CC over End-to-End ATM Architecture with Client Proxy Signaling, but Session Control
Done Outside Q.2931

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

280

VC

VC

 Optional MPEG TS
or

non-synchronized
packets

|

|

|

Session

 Optional MPEG TS
or

non-synchronized
packets

Figure F20: Session Network Resources in End-to-End ATM Architecture

To clarify DSM-CC over end-to-end ATM, with Client Q.2931 Proxy Signaling where Session control done
outside Q.2931, a Session Set-up scenario will be explored in detail.

13.5.1 Session Method Scenario

13.5.1.1 Session Set-Up

Before a Client can request an ATM switched virtual channel connection to the Server, it must have a
multimedia session. This session is either established by a request from the Client (Client Session Set-Up
scenario) or from the Server itself (Server Session Set-Up scenario).

13.5.1.1.1 Client Session Set-Up, Client ATM Connection Set-Up

A Session is initiated by a Client sending to the SM a ClientSessionSetUpRequest message. This will
initiate the Session and a sessionId will be generated by the Client (or the SM if the Network assigns it).
All subsequent messages will contain the sessionId.

A session is identified with a global sessionId. A resource is identified by the globally unique identifier
consisting of Correlation ID.

The Server then decides whether or not the Client or the Server is to initiate Q.2931 signaling. If the Server
is to be the initiator, it just goes ahead and initiates Q.2931 signaling because it knows the initial set of
connections needed for the Session. If the Client is to be the initiator, the Server sends a
ServerAddResourceRequest message telling the Client what resources it should set up. The Client then
initiates Q.2931 signaling through the Proxy Signaling Agent (PSA), for the resources indicated in the
ServerAddResourceRequest.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

281

The Q.2931 SETUP messages include the Correlation ID to allow the Server to associate the resources
with the incoming ATM connection set-ups over Q.2931.

The message flows in this scenario are the same as in Section 3.1.1.1 for hybrid ATM Network-MPEG
Transport Stream Configuration. The only exception is that the IWU is replaced by the PSA and the
Calling Party number is the Client address as derived from the clientId field as opposed to the address of
IWU.

DSM-CC protocol:

The steps 1 through 4 are consistent with the steps in Section 3.3.1 for hybrid ATM Network-MPEG
Transport Stream Configuration.

Step 5

Q.2931 protocol :

The PSA initiates a Call/Connection procedure by sending a Q.2931 SETUP message across its ATM User-
Network Interface (UNI), with the following information elements:

· Call reference selected by Client
· Calling Party Number = ATM address of the Client.
· Called Party Number = ATM address of the Server as derived from the serverId field.
· ATM Adaptation Layer Parameters ATM User Cell Rate and Quality-of-Service parameter = values

derived from the “ATM SVC” resource request descriptor.
· Broadband High Layer Information (BHLI)= sessionId+resourceNum corresponding to this “ATM

SVC” resource.

When the Server is informed of the SETUP on its ATM UNI, it can access the sessionId+resourceNum
from the BHLI information element. It associates the Call Reference and its ATM connection with this
session and resourceNum. The Server maintains this association until the ATM SVC connection is
released.

Both the Client and the Server maintain a Call Reference and sessionId/resourceNum association so that
one can be retrieved from the other.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

282

SETUP

Call Reference 1 SETUP

Call Reference 2
CAL L PROC

Call Reference 1
CI = VPI,VCI

CONNECT

CONNECTACKCONNECT

CONNECTACK

Q.2931

 BHLI = Correlation ID

CLIENT

SM
+

IWU SERVER

ClientSessionSetUpRequest

ServerAddResourceRequest

sessionId, loop (resourceCount, resourceDescriptor)

2
3sessionId, clientId, serverId

ServerSessionSetUpIndication

sessionId, clientId, serverId

4

ATM NETWORK

1

5

ClientProceedingIndication

6
ServerAddResourceConfirm

sessionId, loop (resourceCount, resourceDescriptor)

7
sessionId, response

8
ClientSessionSetUpConfirm

sessionId, loop(resourceCount,resourceDescriptor)

ServerSessionSetUpResponse

Note 2

Note 1

clientid

Note 3

* This can be repeated if there are more than one ATM connections belonging
to the session being inititiated (repeated <= resourceCount times)

sessionId, userDataCount
loop(userDataCount, userDataByte)

ServerConnectIndication

Indicates Optional Data FlowIndicates message May Be
Sent Zero Or More Times. Indicates Command May Be

Sent Zero or Only Once.

ClientConnectRequest
9 10

sessionId, userDataCount
loop(userDataCount, userDataByte)

Note 4

 BHLI = Correlation ID

Figure F21: End-to-end ATM segregated with Client Proxy, Client initiates Session Set-Up, Client's PSA
initiates ATM connection

Note 1: The Session Manager/Proxy Signaling Agent (SM/PSA) can use proprietary Proxy Signaling
Agent messages to interact with the Client on ATM Network connection control.

Note 2: Only relevant parameters in each message are shown
Note 3: Only the session control messages are shown over the MPEG access network. Proxy Signaling

Agent messages between the Client and the SM can be proprietary and are not shown.
Note 4: Connections for the exchange of User-Network messages between Client and SM and Server and

SM are assumed.

DSM-CC Protocol:

Steps 6 through 10 are consistent with the steps in Section 3.3.1 for hybrid ATM Network-MPEG Transport
Stream Configuration.

An alternative to the above scenario is shown below where the connections are initiated by the Server. In
this scenario the need for ServerAddResourceRequest and ServerAddResourceConfirm messages is
obviated, but the resources are still managed by SM through Correlation ID.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

283

SETUP

Call Reference 1 SETUP

Call Reference 2
CAL L PROC

Call Reference 1
CI = VPI,VCI

CONNECT

CONNECTACKCONNECT

CONNECTACK

Q.2931

 BHLI = Correlation ID

CLIENT

SM
+

IWU SERVER

ClientSessionSetUpRequest
2

3sessionId, clientId, serverId
ServerSessionSetUpIndication

sessionId, clientId, serverId

4

ATM NETWORK

1

5

ClientProceedingIndication

6
sessionId, response

7
ClientSessionSetUpConfirm

sessionId, loop(resourceCount,resourceDescriptor)

ServerSessionSetUpResponse

Note 2

Note 1

clientid

Note 3

* This can be repeated if there are more than one ATM connections belonging
to the session being inititiated (repeated <= resourceCount times)

sessionId, userDataCount
loop(userDataCount, userDataByte)

ServerConnectIndication

Indicates Optional Data FlowIndicates message May Be
Sent Zero Or More Times.

ClientConnectRequest
8 9

sessionId, userDataCount
loop(userDataCount, userDataByte)

Note 4

 BHLI = Correlation ID

Figure F22: End-to-end ATM segregated with Client Proxy, Client initiates Session Set-Up, Server initiates
ATM connection

Note 1: The Session Manager/Proxy Signaling Agent (SM/PSA) can use proprietary Proxy Signaling
Agent messages to interact with the Client on ATM Network connection control.

Note 2: Only relevant parameters in each message are shown
Note 3: Only the session control messages are shown over the MPEG access network. Proxy Signaling

Agent messages between the Client and the SM can be proprietary and are not shown.
Note 4: Connections for the exchange of User-Network messages between Client and SM and Server and

SM are assumed.

DSM-CC protocol:

Steps 1 and 2 are consistent with the steps in Section 3.1.1.1 for hybrid ATM Network-MPEG Transport
Stream Configuration.

Step 3

Q.2931 protocol :

The Server initiates a Call/Connection procedure by sending a Q.2931 SETUP message across its ATM
User-Network Interface (UNI), with the following information elements:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

284

· Call reference selected by Server
· Calling Party Number = ATM address of the Server.
· Called Party Number = ATM address of the Client as derived from the clientId field
· ATM Adaptation Layer Parameters, ATM User Cell Rate and Quality-of-Service parameter.
· Broadband High Layer Information (BHLI)= sessionId+resourceNum.

When the SCMC is informed of the SETUP on its ATM UNI, it can access the sessionId+resourceNum
from the BHLI information element. It associates the Call Reference and its ATM connection with this
session and resourceNum. SM maintains this association until the ATM SVC connection is released.

Both the SCMC and the Server maintain a Call Reference and Correlation ID association so that one can
be retrieved from the other.

Step 4
SM completes the connection with the Client through Client to PSA proprietary messages not shown.

DSM-CC Protocol:

Step 5
After all the ATM SVC connections are attempted and at least the Mandatory non-negotiable connections
are successfully established, the Server sends a ServerSetUpResponse message to SM.

Steps 6 through 9 are consistent with steps 7 through 10 in Section 3.1.1.1 for hybrid ATM Network-MPEG
Transport Stream Configuration.

13.5.1.1.2 Server Session Set-Up, Client ATM Connection Set-Up

For Further Study

13.5.1.2 Add Resources Request

13.5.1.2.1 Add Resource Request by Server and ATM SVC connection set-up by Client

The message flows in this scenario are the same as in Section 3.1.2.1 for hybrid ATM Network-MPEG
Transport Stream Configuration. The only exception is that the IWU is replaced by the PSA and the
Calling Party number is the Client address as derived from the clientId field as opposed to the address of
SM + IWU.

13.5.1.2.2 Add Resource Request by Client and ATM SVC connection set-up by Server

For Further Study

13.5.1.3 Resource Deletion

13.5.1.3.1 Resource Deletion by Server and ATM SVC connection deletion by Client

The message flows in this scenario are the same as in Section 3.1.3.1 for hybrid ATM Network-MPEG
Transport Stream Configuration. The only exception is that the IWU is replaced by the PSA and the

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

285

Calling Party number is the Client address as derived from the clientId field as opposed to the address of
IWU.

13.5.1.3.2 Resource Deletion by Client and ATM SVC connection deletion by Server

For Further Study

13.5.1.4 Session Tear-Down

13.5.1.4.1 Session Tear-Down by Server ATM SVC connections deletion by Server

The message flows in this scenario are symmetrical to the flows in the Session Tear-Down by Client shown
in 5.1.4.2 below.

13.5.1.4.2 Session Tear-Down by Client ATM SVC connections deletion by SCMC

The message flows in this scenario are the same as in Section 3.1.4.2 for hybrid ATM Network-MPEG
Transport Stream Configuration. The only exception is that the IWU is replaced by the PSA, the Calling
Party number is the Client address as derived from the clientId field as opposed to the address of IWU and
the connections are cleared by the Server and not DSM-CC.

13.5.2 Network Method Scenarios

13.5.2.1 Session Set-Up

The message flows in this scenario are the same as in Section 3.2.1 for hybrid ATM Network-MPEG
Transport Stream Configuration

13.5.2.2 Resource Add Request

The message flows in these scenarios are the same as in Section 3.2.2 for hybrid ATM Network-MPEG
Transport Stream Configuration. The only exception is that the IWU is replaced by the PSA and the Called
Party number is the Client address as derived from the clientId field as opposed to the address of IWU.

13.5.2.3 Connection Clearing

The message flows in these scenarios are the same as in Section 3.2.3 for hybrid ATM Network-MPEG
Transport Stream Configuration. The only exception is that the IWU is replaced by the PSA and the Called
Party number is the Client address as derived from the clientId field as opposed to the address of IWU.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

286

13.5.2.4 Session Tear-Down

The message flows in these scenarios are the same as in Section 3.2.4 for hybrid ATM Network-MPEG
Transport Stream Configuration

13.6 End-to-End ATM Segregated Direct

This DSM-CC configuration is shown in Figure F23. MPEG TSs are carried over end-to-end ATM
Switched Virtual Channels. Each MPEG TS may carry a combination of video, audio and synchronized
data. Any parallel non-synchronized data may be carried over separate virtual channels, see Figure F24.

� In this configuration, the Session Configuration Management Controller (SCMC) is external to the
ATM network, see Figure F23. The Figure does not indicate whether the SCMC is centralized or
distributed.

� Both the Client and the Server exchange session control messages (a,b) with the SCMC.
� The connection control messages (c) are exchanged between the Client and the ATM network and

between the Server and the ATM network using Q.2931. Some of the information required to be
carried on Q.2931 may relate to prior activities on the SCMC and could be end-to-end between the
Client and the Server. At this time no such information elements have been standardized on Q.2931.

Messages (a,b) can be categorized as being on the control or the user plane depending on the network
perspective taken. If the perspective of the ATM network is taken, messages (a,b) will be on the user plane,
however if the perspective of the DSM-CC network is taken, then messages (a,b) will be on the control
plane.

Figure F24 is the same as Figure F20 for End-to-end ATM segregated with Proxy. It shows session
resources on the ATM network. These VCs are identified by virtual connections and virtual path
identifiers(VC/VPIs). As stated above each VC may contain either an MPEG TS with the appropriate
PIDs or non-synchronized data.

ATM
Network
Note 1

Client Server

Session
Manager

Key:
 a,b: Session Management Control Messages (over PVC or pre-established SVC)
 c: Connection Signaling
 d: User-to-User Primitives

cc

ba

d

Note 1: ATM Network includes ATM core, access and premise networks
 Note 2: Session Control is implemented on an external platform on a

standalone basis. It can be centralized or distributed. Also,
Configuration can be covered here, or within the network.

 Note 3: The flow of content data is out of scope and is not shown

Note 3

Note 2

Figure F23: DSM-CC over End-to-End ATM Architecture

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

287

VC

VC

Optional either
MPEG TS

or
non-synchronized

packets

|

|

|

Session

Optional either
MPEG TS

or
non-synchronized

packets

Figure F24: Session Network Resources in End-to-End ATM Architecture

The message flows for this scenario may be beyond the scope of DSM-CC and are For Further Study

13.7 End-to-End ATM Integrated

In this architecture the DSM-CC Network is no longer distinguished from the ATM Network. The session
control function is integrated with the ATM Network, but its function still remains the same as with End-to-
end ATM with separated session control, see Sections 4 and 5. Figure F25 shows end-to-end ATM with
session configuration and connection functions integrated into the ATM Network.

ATM
Network*

Client Server
Session Configuration and

Connection Functions

Key:
a: Session Configuration and Connection Functions and Signaling: Q.2931 extended to

carry DSM-CC session messages - The assumption is made that at least ONE VC (b)
will be set up as part of a session, and the client knows the QoS for it.

b: User-to-User Primitives

aa

b

*Note: ATM Network includes ATM core, access and premise networks

Figure F25: End-to-End ATM with integrated Signaling

The message flows for this scenario may be beyond the scope of DSM-CC and are For Further Study

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

288

14. INFORMATIVE ANNEX E
(This annex does not form an integral part of this International Standard)

Possible implementation and use of client_configuration_message Manufacturer_id

Upon receipt of the userCapabilities information element the server uses the
Manufacturer_OUI_code and the Manufacturer_id field as the unique identifier for the client
device. The server uses this unique identifier to access its own database of known capabilities for
the declared device. Typically the server will know all the well known aspects of the device such
as CPU, OS etc.. The optional device descriptors contained in the message would be used to
convey options. The options may redefine the base assumptions or declare new information. One
implementation would be to leverage the syntax and parsing mechanism used in UNIX’s terminfo
database.

In this implementation the following rules would apply to the capabilities file located on the server:

1. All lines in the entry end with a comma (hex 0x2C)

2. Each entry starts with a header line

3. The header line starts in column one

4. The header line must contain at least two entries separated by the vertical bar
character (hex 0x7C). At the very least the header line contains an alias and the long
description of the entry. Usually an additional abbreviated version of the
concatenated Manufacturer_OUI_code and Manufacturer_id fields is also given.

5. Each capability line is indented by 2 or more white space characters (space 0x20 or
tab 0x09)

6. Alias names must be unique throughout the entire database of devices.

7. Alias names must conform to the naming convention of files on the server.

Each entry in a DSM-CCinfo file starts with a header line that contains at least two entries
separated by the ‘|’ . The first entry is created by concatenating the Manufacturer_id to the end of
the Manufacturer_OUI_. The second alias may be an more readable version of the first. In either
case both aliases must be unique with respect to all known devices in the system. The last entry on
the header line is the long name of the device. Finally the line is terminated by a comma.

Following the header line are the capability entries. Each entry is separated from the next by a
comma and the line must always end with a comma. Below is an example of a DSM-CCinfo file

C5A0F1100|apx100|apex model 100,
SNUM=“1234567”, 13818-2, 13818-3, TS, AUDLYRS=“12”,
CPU=“MCD68331”, OS=“OS9”, OSVER=“1.20”, NVRAM=“1024000”, RAM=“2048000”,
NTSC, GOVP=“MCD210”, GHRES=“360”, GVRES=“240”, PLANES=“2”,
CLRSP=“RGB”, CLRBITS=8,

C5A0F1200|apx200|apex model 200
CLIENT=“C5A0F1-100”, RAM=“4096000”,

C5A0F1option1|apxopt1|apex option package one
RAM=“4096000”, PCMCIA=“2”, MCR, OSVER=“1.40”, RS232,

C5A0F1200a|apx200a| apex 200 with option 1 installed

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

289

CLIENT=“C5A0F1-200”, CLIENT=“C5A0F1-option1”

In the above example C5A0F1100 is defined very completely and serves as the base definition.
The second entry defines the next model which is the same as the previous except with more
memory. The third definition describes the elements of an option package. The final entry shows
how the CLIENT descriptor can be used to create different variations on base descriptions.

Each information provider is its own registration authority. It is expected that each manufacturer
will make available to information providers all the necessary information to construct their
“DSMCCinfo database.” Ideally manufacturers would create and test definition files like the one
provided in this annex. Each information provider may then wish to edit this information before
placing it on their system. The purpose of this editing would be to ensure consistency in
declarations, for example; the EC040, LC040 68331 and 68339 are all members of Motorola’s
68000 processor family and share a common instruction set. The information provider may wish
to edit the CPU entry of all files that use any one of the aforementioned processors to simply read
“68000”. This would simplify the parsing and branching software needed in the server.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

290

15. INFORMATIVE ANNEX F
(This annex dos not form an integral part of this International Standard)

DSM-CC User to User Asynchronous RPC

15.1 Purpose
This informative annex describes the use of standard RPC to create non-blocking RPCs. It also addresses
some general issues in using standard RPC in non-standard fashions.

15.2 Description
RPC provides the capability of creating distributed software systems using a programming paradigm that is
familiar to programmers who are experienced in non-distributed applications programming. It supports a
client-server model, where a client calls a function, as if it were in the local address space on the local
machine, and the RPC software transfers the arguments to the server host, invokes the server function and
returns the results to the client. To the client this appears to be a local function call (albeit a slow one).
The basic RPC model is synchronous: the client blocks until the server receives the request, process the
command, and returns the results. For many systems network delays and server processing time make it
impractical for the client to synchronize with the RPC server. These are the basic alternatives for creating
asynchronous RPC from synchronous RPC:

- use non-blocking RPC with client call-backs
- use a multi-threaded client with blocking RPC

15.3 3. Non-Blocking RPC with Client Callbacks
Non-blocking RPC allows the client to continue execution immediately after invoking the RPC, but before
the server completes the operation. This requires an RPC signature with no return values from the RPC
Server Function. The client local call may return after the RPC Argument are copied to a local transport
buffer or after the RPC arguments are successfully transfered to the server. The first case is often
associated with local batching of non-blocking RPCs and decreases network traffic in some cases. The
other case allows the client application the opportunitz to handle network errors (timeouts) when the RPC
uses a reliable transport mechanism.
Data are returned to the client by an RPC invoked the RPC Server on the client. This transfers the return
data to the client which is notified when the client RPC function executes. The RPC connection information
needed for the client call back must be sent to the RPC Server with the function arguments.
This approach requires that the client side define its own set of call-back RPCs (for all functions returning a
value) and that it either call an RPC server main loop, or recreate the RPC server functionality. The second
approach is more difficult to implement, but provides greater control over the call-back execution.
In cases where the server cannot process RPCs faster than they arrive, the non-blocking RPCs may block
the client. This occurs when a reliable transport is used and the server's buffers fill. New RPC message
buffers will be rejected by the RPC server and the client application will block until the RPC fails with a
time out or server buffers become available.

15.4 Multi-Threaded Clients
If the client operating system supports multi-threaded applications, then asznchronous RPC can be
implemented using blocking RPCs in separate threads, processes or tasks. This technique relies on
operating szstem services to communicate the RPC status and return valuse to the original thread:

- semaphores to wait on events from the RPC server and interface task
- shared memory spave for arguments and return values
signals to indicate completion

This technique works well in applications where few client RPCs are simultaneously called. Since each
RPC requires a separate thread of execution, it is somewhat wasteful of client operating system resources.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

291

Some operating systems may limit the number of concurrent threads of execution and this should be
accounted for in design of systems using this technique.
This technique works particularly well in systems where memory space is global and shared by all tasks.
Most real-time operating systems operate in this fashion. It has the advantage, over client call-backs, of
isolating the main client process from problems associated with RPC errors, timeouts and network
congestion.

15.5 General RPC Issues
The basic RPC mechanism selected to support asynchronous RPC operation must provide these functions:

- reliable transport
- unreliable transport
- support for non-blocking RPC
- guaranteed order of delivery of RPC buffers from the client

Optionally, the RPC mechanism should support batch transport of multiple RFCs.
Multi-threading a server is commonly employed to improve overall response time (fast functions are not
required to begin execution after completion of slow functions that arrived first) and to overcome the
transport buffer overflow problem mentioned previously. It is the responsibility of the server to maintain
the semantical ordering of consecutive commands received from a client. For example: if a server provides
an MPEG stream to a client, it is the servers responsibility to guarantee that the Pause executes before the
Resume if that is the order they were received.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

292

16. INFORMATIVE ANNEX G
(This annex does not form an integral part of this International Standard)

INTEROPERABLE RPC PROTOCOL STACK
Abstract:

The annex recommends an interoperable protocol stack for the presentation, session, transport, and network
levels. The solution comprises a) a framework which allows nodes to select a protocol stack, or interpose an
object which translates protocol stacks b) conventions to encode the message payload at the presentation
level, c) a message set for remote procedure call at the session level, and d) a pervasive protocol solution at
the transport level and network level.

Motivation:

If a client and a service distribute across a network, the question of interoperation arises. A concept which
frames the question is the notion of a domain. A domain is a collection of nodes, or at a fine grain objects,
which share consistent expectations about a convention which affects interoperation. While multiple
distinctions between domains are valid, the questions which the annex will explore are:

Type Domain: The objective is to encode invocation signatures which are intelligible to multiple
domains. The implication is that a domain which wishes to interoperate with another domain must provide
typecode space which the domain understands. A typecode is a Interface Definition Language construct
which encodes an interface name into a concrete value. A domain which wishes to interoperate with another
domain must either adopt the same typecode, or there must be mechanism which can translate the typecode
values.

Protocol Domain: While the protocol stack can be diverse, the spectrum frustrates interoperation.
For interoperationo be fesible, either a domain must share the same native protocol stack with another
domian, or there must be mechanism to translate the protocol stack. The solution, in the second case,
constitutes a protocol gateway.

Before the annex considers the solution, the discussion first explores the solution space. Te framework, as
we shall observe later, allows nodes to detect the situation where domains share a common native protocol
stack, but still converge if a more subtle solution exists.

Solution Space:

The spectrum of design options is extensive. The discussion below considers the spectrum. The next section
then describes a framework which, while it anticipates diverse design centers, also provides the mechanism
to converge to an interoperable solution.

In the example above a client native protocol, P(c), matches the service native protocol, P(s). The solution
should allow a node to detect that, although the node and another node reside in distinct domain, the nodes
share the native protocol, and can retain the native protocol to interoperate.

Domain(c)

Stub

P(c)

Domain(s)

Skeleton

P(s)

ServiceClient

P(c)==P(s)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

293

In the example above the native client protocol does not match the native service protocol, but the skeleton
can support the client native protocol. The solution is for the skeleton to link the client native protocol. The
service, from the perspective of the client, is indistinguishable from a service in the client protocol domain.
The companion solution, not shown, for the stub to link the service native protocol. The client, from the
perspective of the service, is indistinguishable from a client in the service protocol domain.

In the example above, the solution is to interpose a protocol gateway, as a distinct object, between the client
domain and the service domain. The protocol gateway translates the client native protocol into the service
native protocol. The protocol gateway, from the perspective of the client, resides in the client domain. The
protocol gateway, from the perspective of the service, resides in the service domain. The framework
interposes the gateway. The technique is not visible to the neither client at the ation level nor to the service
at the application level.

In the last example, the solution is to interpose two gateways. The first protocol gateway translates from the
client protocol to a canonical protocol, while the second gateway translates from the canonical protocol to
the service protocol. The solution accounts for the situation where a protocol gateway which directly
translates from the client native protocol to the service native protocol is not available. If there is a
convention with respect a protocol which a domain supports for interdomain interoperation it is feasible to
cascade a gateway which translates into the canonical protocol with the gateway which translates from the
canonical protocol to achieve interoperation. The solution does not mandate that the protocol within both
domains adopt the canonical protocol.

Interoperation Framework:

The recommendation is to adopt the Universal Network Object solution of the Object Management Group.
The specification resolves the basic questions of the first section. The description of the specification

Skeleton

Gateway(c-s)

Stub

P(c)=>P(s)Domain(c) Domain(s)

P(s)P(c)

Domain(s)

Skeleton

P(s)

Service

Domain(c)

Client

Stub

P(s)
P(c)

P(c)==P(c)

Gateway(i-s)

Domain(s)
P(c)=>P(i)=>P(s)

Stub
P(i)

Gateway(c-i)

Skeleton

Domain(c)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

294

divides into four sections. The first section will describe the framework which allows the design options
noted above, but provides the interface to converge to a solution. The second section describes conventions
at the presentation level which encode data structures which result from compilation of Interface Definition
Language into a concrete message payload. If the client side adopts te conventions, and a service adopts the
conventions, the client operation signature and the service operation signature are consistent. The third
section describes the message set of the session level. It realizes remote procedure call semantics. The last
section describes the semantics at the transport level and at the service level.

Protocol Selection:

The interoperation framework allows a node which resides in some protocol domain to discover the
protocol known to another domain. The interface adopts the concept of a profile interface. The profile
describes the protocol decisions which the native domain must adopt to interoperate with the remote
domain. The interface on which the solution builds is1:

typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;
struct TaggedProfile {

ProfileId aProfileId;
sequence<octet> aProfile;

};

The structure comprises a) the code which identifies the profile and b) an opaque value which contains
profile specific data. An example of a profile is the internet protocol which is the foundation of certain
protocol gateway solutions. The fields inside the sequence<octet> for the protocol are:

struct Version {
char major;
char minor;

};

struct ProfileBody {
Version aVersion;
string aAddress;
unsigned short aPort;
sequence<octet> aObjectKey;

};

The first field is the version as shown above. The second field, the network address, is the full internet
symbolic address. The third field is the target network port. The fourth field specifies the target object behi
the neywork port.

1 In some cases a semantic filed, for example aVersion, of the annex will differ from the description of the
Universal Network Object specification. The motivation for the difference is comprehension. Please refer to
the Universal Network Object specification the complete interface.

P(s)P(c)

Gateway(c-s)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

295

The figure above illustrates how the elements of the solution integrate. The service domain installs into the
client domain a profile object which articulates the protocols which the service domain supports. If the
client native protocol and the service native protocol match, the objects can interoperate without a protocol
gateway. If the client native protocol and the service native protocol do not match, the solution require the
interposition of a protocol a gateway. The client can find the gateway through whatever is the convention
for the client domain. In the case of Digital Storage Media, the client should expect to find the gateway in
the service gateway. The transport code in the stub, in concept, selects the gateway. The interposition of the
gateway, however, would not be visible to the client above the stub.

Common Data Representation:

The interoperation solution requires specification of how to translate an operation signature (here the type
space of the Interface Definition Language) into a message payload. The conventions of the interoperation
solution are known as the Common Data Representation. The annex will not describe all the conventions.
The objective will be to surface the questions which the translation raises, and note that for each question
there is a resolution.

The message payload can be thought of as an octet stream. The octet stream is a finite sequence of eight-bit
values with a clear point at which the stream begins. The position of an octet in the stream is known as its
index. The session software must understand the octet index to calculate alignment boundaries.

Encapsulation:

The interoperation solution distinguishes between two octet streams: a) a message and b) an encapsulation.
A message is the basic unit of data exchange. An encapsulation is an octet stream into which data structure
may be marshaled. Once a data structure has been encapsulated, the octet stream can be represented as the
opaque data type sequence<octet>, which can be marshaled into a message or another encapsulation. The
encapsulation allows complex constants to be pre-marshaled. Just as a message contains a field which
encodes the byte order, an encapsulation contains a field which encodes the byte order.

Alignment:

The primitive data types are encoded in multiples of octets. The alignment boundary of a primitive datum is
equal to the size of the datum in octets. The table below presents the alignment conventions:

 TYPE OCTET ALIGNMENT
 char 1
 octet 1
 short 2
 unsigned short 2
 long 4
 unsigned long 4
 float 4

ProfileDomain(c) Domain(s)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

296

 double 8
 boolean 1
 enum 4

The alignment is relative to the beginning of the octet stream. The first octet of the stream is octet index
zero. The octet stream begins at the start of the message header. In the case of encapsulation, the octet
stream begins at the start of the encapsulation, even if the encapsulation is nested in another encapsulation.

Primitive Data Types:

The encoding rules of the primitive data types are intuitive and will not be shown. The figure below
illustrates a few data types.

 Big Endian(char) Octet Little Endian(char) Octet
 0 0

 Big Endian(short) Octet Little Endian(short) Octet
MSB 0 LSB 0
 LSB 1 MSB 1

 Big Endian(long) Octet Little Endian(long) Octet
MSB 0 LSB 0

 1 1
 2 2

 LSB 3 MSB 3

 Big Endian(float) Octet Little Endian(float) Octet
S E1 0 F3 0
E2 F1 1 F2 1
 F2 2 E2 F1 2
 F3 3 S E1 2

 Big Endian(double) Octet Little Endian(double) Octet
S E1 0 F7 0
 E2 F1 1 F6 1
 F2 2 F5 2
 F3 3 F4 3
 F4 4 F3 4
 F5 5 F2 5
 F6 6 E2 F1 6
 F7 7 S E1 7

Compound Types:

A constructed type has no alignment restrictions beyond those of its primitive components. The rules which
relate to constructed type are:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

297

Struct: The structure consists of its components encoded in the order of their declaration in the
structure.

Union: The union consists of the discriminant tag of the selected type plus the representation of the
corresponding member.

Array: The encoding preserves the element sequence. Since the array length is fixed, the length
value is not encoded. In the case of multiple dimensions, the elements are order so that the index of the first
dimension varies most slowly and the index of the last dimension varies most quickly.

Sequence: The sequence consists of an unsigned long, which encodes the sequence length, plus the
elements, as encoded their type.

String: The string consists of an unsigned long, which encodes the string length, plus the individual
characters. The string terminates with the null character. The length includes the null character. The
character set is ISO Latin-1 (88599.1).

Enum: Each enumeration value is a unsigned long. The companion numeric values reflect the order
in which the identifier appears in the declaration. The first enum identifier has the numeric value zero. The
successive enum identifiers ascend in value, in order of declaration from left to right.

TypeCode:

The rules to encode typecode values build on the assignments shown below:

 TCKIND VALUE TYPE PARAMETER
 tk_null 0 empty none
 tk_void 1 empty none
 tk_short 2 empty none
 tk_long 3 empty none
 tk_ushort 4 empty none
 tk_ulong 5 empty none
 tk_float 6 empty none
 tk_double 7 empty none
 tk_boolean 8 empty none
 tk_char 9 empty none
 tk_octet 10 empty none
 tk_any 11 empty none
 tk_TypeCode 12 empty none
 tk_Principal 13 empty none
 tk_objref 14 simple string
 tk_struct 15 complex string(name) ulong(count) {string(memberName),

TypeCode(memberType)
 tk_union 16 complex string(name) TypeCode(discrimant) long(default),

ulong(count) {discriminant(labelValue)
string(memberName) TypeCode(memberType)}

 tk_enum 17 complex string(name) ulong(count) {string(memberName)}
 tk_string 18 simple ulong(maxLength)
 tk_sequence 19 complex TypeCode(elementType) ulong(bounds)
 tk_array 20 complex TypeCode(elementType) ulong(count)

{ulong(dimensionSize)}
 -none- Oxffffffff simple long(indirection)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

298

A complete description of the TypeCode conventions is beyond the scope of the annex. Please refer to the
Universal Network Object specification of the Object Management Group.

Session Interface:

The interoperation solution requires clear interface at the session level. The premise is that the session level
realizes a remote procedure call. The discussion of this section will focus on the message set which a client
and a service exchange. The next section describes the semantics at the transport level and the network
level.

The remote procedure message set shares a common preamble with the fields shown below. (While the
syntax below is identical to the standard, certain semantic names (for example aVersion below) differ to aid
comprehension.)

struct Version {
char major;
char minor;

};

struct MessageHeader {
char aProtocolName[4];
Version aVersion;
boolean aEndeanBit;
octet aMessageCode;
unsigned long aMessageSize;

};

Note that each message describes the byte order. If the source native byte order does not match the target
native byte order, the receive side is responsible for the translation.

The table below presents the message set, with the roles of the client and the service.

 Message Source of Message Value
 Request Client 0
 Reply Service 1
 CancelRequest Client 2
 LocateReply Service 3
 CloseConnection Service 4
 MessageError Client+Service 5

A brief description of each message follows. For a complete description, refer to the Universal Network
Object specification of the Object Management Group.

Request Message:

The request message includes three elements: a) the standard message header, b) the request
header, and c) the message body. The request header is:

struct RequestHeader {
ServiceContextList aServiceContextList;
unsigned long aRequestId;
boolean aExpectRequest;
sequence<octet> aObjectKey;

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

299

string aOperation;
Principal aRequestPrincipal;

};

The interpretation of each field is:

a) ServiceContextList: The signature of an operation allows the inclusion of a context to associate
with the operation. The service context list accounts for the option. The declaration is:

struct ServiceContext {
ServiceID aContextId;
sequence<octet> aContextValue;

};
typedef sequence<ServiceContext> ServiceContextList;

b) RequestId: The field allows the remote procedure software on the client side to scoreboard
results.

c) ExpectRequest: There is a construct in Interface Definition Language which allows the interface
to declare if an operation does not return results. The field encodes this state.

d) ObjectKey: The field identifies the target of the invocation. The description of the Internet
InterOperation Protocol describes the data found in the sequence<octet> field.

e) Operation: The field specifies the operation name.

f) Principle: The field relates to the Principle concept. A principal is a trusted object on which
authentication techniques build.

Reply:

The Reply message contains three elements: a) a standard message header, b) a ReplyHeader, and
c) a message body. The schema for the reply header is:

enum ReplyStatusType {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

struct ReplyHeadrer {
ServiceContextList aServiceContextList;
unigned long aRequestId;
ReplyStatusType aReplyStatus;

};

The interpretation of each field is:

ServiceContextList: The is the same field as found in the Request message.

RequestId: The client remote procedure software can exploit the field to scoreboard results.

ReplyStatusType: The service can indicate that the target object which realizes the operation does
not now reside at the service object location. The message body then provides the object reference, cast in

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

300

the interoperable signature, at which the target object resides. The infrastructure on the client side is
responsible for forwarding the original request to the that target object. The feature anticipates object
migration, which empowers techniques such as reaction to failures or load balance.

CancelRequest:

The CancelRequest message contains two elements: a) a standard message header and b) a CancelRequest
header. The schema for the cancel request header is:

struct CancelRequestHeadrer {
unsigned long aRequestId;

};

The RequestId specifies the invocation to which the message applies. Because the service could be unable
to reverse the operation, the service is not required to realize the request. The client could receive a
standard reply to the operation.

LocateRequest:

The message allows the client to establish a) whether the object reference is valid, b) whether the current
target of the operation can realize the request through the object reference, and c) to what address a request
for the object reference should be sent. The message complements the status found in the Reply message.
The client can discover whether the target of the operation realizes the operation before it invokes a request.
The message contains two elements: a) the standard message header and b) the LocateRequest header. The
schema for the locate request header is:

struct LocateRequestHeader {
unsigned long aRequestId;
sequence<octet> aObjectKey;

}:

LocateReply:

The LocateReply message is the reply to the LocateRequest message. The message contains three elements:
a) a standard message header, b) a LocateReply header, and c) a LocateReply body. The schema for the
locate reply header is:

enum LocateStatusType {
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

struct LocateReplyHeadrer {
unsigned long aRequestId;
LocateStatusType aLocateStatus;

};

CloseConnection:

The message allows a service to alert a client that the service intends to close the connection. The client
should not expect further responses. The message contains just the standard message header.

MessageError:

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

301

The conditions which can cause the message include a) an invalid message header b) an invalid version
number or c) an invalid message type.

Session Semantics:

The session level, in combination with the transport level and the network level, implements a remote
procedure call. The semantics are roughly those of a subroutine invocation, where the software which calls
the subroutine would expect the subroutine to a) execute the invocation (rather than fail with no
notification) b) execute the invocation just once, and c) preserve the order of successive invocations. The
next section explores the semantics further

Transport and Network Semantics:

The objective of the solution is to be implementable on a wide range of transport protocols. The
interoperation protocol, however, does expect certain semantics at the transport level and at the network
level:

Connection Establishment: The transport is to be connectionful. The connection bounds the scope
of RequestId.

Byte Stream: The transport is thought to be a byte stream. There are no restrictions on message
size, fragmentation, and alignment.

Reliable Transport: The transport is to be reliable. The transport is to guarantee that the target of
the message receive the byte stream in the order in which it was sent, at most once, and that the source of
the message receive an positive acknowledgment.

Connection Failure: The transport is to provide some reasonable notification of connection failure.
The object which establishes the connection should receive notification

Connection Establish: The connection establish phase is to translate to the connection abstraction
of Transport Control Protocol (Version tbd) and Internet Protocol (Version 4.0 to Version 6.0).

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

302

17. INFORMATIVE ANNEX H
(This annex does not form an integral part of this International Standard)
Implementation model for IP over ATM with DSM-CC

17.1 Purpose
The purpose of this annex is to clarify how IP family protocols might be implemented over DSM-CC
sessions, making explicit the relationship of IP to DSM-CC, and to make sure issues relevant to
implementing IP are surfaced. This contribution is proposed as an informative annex to the DSM-CC
specification.

17.2 Introduction
First, a caveat: the following descriptions are stripped to bare essentials for expository purposes; many
details are omitted , but hopefully nothing fundamental. Also, this is by no means the only way to
implement IP, nor does it pretend to be the optimal way, but hopefully it exposes all the critical issues.
To set some context, we will first outline how UDP/IP is often implemented over a connectionless data link
layer such as Ethernet. The figure on the next page shows a simplified block diagram of such an
implementation. Those familiar with sockets and IP can skip to section 3, which extends the model to IP
over ATM; section 4 further extends the model to IP over ATM with DSM-CC.
An important requirement of the extensions is that existing applications are completely unaffected by them,
so that they run unchanged over ATM and ATM with DSM-CC.

17.3 IP over Ethernet
The diagram below shows an application, the sockets layer, the UDP layer, the IP layer, the routing
function, the address resolution protocol (ARP) layer, and the network interface card (NIC) device driver,
which implements the data link layer.
The application talks to the UDP layer via some API -- a popular one is the sockets interface. The sockets
interface supports many protocol families, such as IP, XNS, and IPX; we will omit details of this and focus
on just IP. The sockets interface also supports many protocols within a family, such as TCP/IP and UDP/IP;
we will omit details of this and focus on just UDP/IP. The crucial point for our purposes is that the sockets
interface identifies the source and target systems via sockaddrs which consist of a protocol family ID and an
opaque address string specific to that protocol family.
The UDP layer can send a packet over the network to a port on another host. The host is identified by its IP
address, a 32 bit number unique in the network. The port is a 16 bit number, and identifies one of many
possible recipients within the host. UDP can also receive packets addressed to the host it is running on and a
specified port within that host.
The IP layer can send a packet to a host identified by its IP address. It can break packets too large to be sent
in one data link layer packet into fragments, and reassemble them upon reception.
The ARP layer can translate an IP address into an address suitable for use by the NIC hardware. In the ISO
OSI model, the IP address is a network layer address; the NIC address is a MAC address. The IP layer
treats the MAC address obtained from ARP as an opaque byte string.
The routing function can translate an IP address into the IP address of the first (or only) hop of a potentially
multi-hop route from the sending host to the receiving host. In the case that the target host is on the same
subnet as the sending host (i.e., it can be reached in one hop), the output IP address will be the same input
IP address, otherwise it will be the IP address of a router which can forward the packet to the target host or
another router closer to the target host.
 The NIC driver can send a packet to a destination host given its data link layer MAC address, and receive
packets addressed to its MAC address. (We omit details of hosts with more than one NIC.)

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

303

App

NIC Driver

ARPRouting

Sockets

UDP

IP

Sockets I/F

Figure 17-33. IP Model - Ethernet

17.3.1 Application interface to UDP
The application uses the sockets interface to send and receive UDP packets. The main APIs for this
purpose are sendto and recvfrom.
To send packets, the sendto API is used:
int sendto(SOCKET s, char * buf, int len, sockaddr * to,

int tolen);
s A descriptor identifying a socket.
buf A buffer containing the data to be transmitted.
len The length of the data in buf.
to A pointer to the address of the target socket.
tolen The size of the address in to.
Returns the number of bytes sent.

To receive packets, the recvfrom API is used:
int recvfrom (SOCKET s, char * buf, int len, sockaddr * from,

int * fromlen);
s A descriptor identifying a socket.
buf A buffer for the incoming data.
len The length of buf.
from A pointer to a buffer which will hold the source address upon return.
fromlen A pointer to the size of the from buffer.
Returns the number of bytes in the received packet.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

304

The “sockaddr” structure contains, for the IP protocol family, the IP address and port number of the source
or destination of the packet received or to be sent (respectively). In the calls above, the length of the address
is variable in order to support multiple protocol families.

17.3.2 Internal interfaces
The interfaces to UDP, IP, ARP, routing and the NIC are not public. What is presented here are not actual
interfaces of any implementation, but model ones that capture the fundamental capabilities of the main APIs
of the layers beneath sockets for IP implementations.

17.3.2.1 UDP
The model UDP layer interface is almost the same as the sockets interface, except that it knows that the
addresses are IP addresses.
int UDPsendto (SOCKET s, char * buf, int len, IPaddr to, short port);

s A descriptor identifying a socket.
buf A buffer containing the data to be transmitted.
len The length of the data in buf.
to IP address of the target host.
port Port number to send to in the target host.
Returns the number of bytes sent.

int UDPrecvfrom (SOCKET s, char * buf, int len, IPaddr * from,
short * port);

s A descriptor identifying a socket.
buf A buffer for the incoming data.
len The length of buf.
from A pointer to the IP address which will hold the source host’s address upon return.

17.3.2.2 IP
The mode IP layer interface is almost the same as the UDP interface, except that the port number is gone,
and the buffer has a UDP header (containing the port number among other things) on it in addition to the
application data.
int IPsendto (SOCKET s, char * buf, int len, IPaddr to);

s A descriptor identifying a socket.
buf A buffer containing the data to be transmitted.
len The length of the data in buf.
to IP address of the target host.
Returns the number of bytes sent.

int IPrecvfrom (SOCKET s, char * buf, int len, IPaddr * from);
s A descriptor identifying a socket.
buf A buffer for the incoming data.
len The length of buf.
from A pointer to the IP address which will hold the source host’s address upon return.

17.3.2.3 ARP
The function of ARP is to translate IP addresses into lower level addresses that can be used to actually send
packets.
STATUS ARPtranslate(IPaddr to, char * DLaddr, int * DLlen);

to IP address of target host to translate
DLaddr A buffer containing on return the lower level address of the target host.
DLlen The length of the data in Ladder.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

305

17.3.2.4 Routing
The function of the routing module is to map the IP address of the target host into the IP address of the first
(perhaps only) hop of a route from the source host to the target host.
STATUS Route(IPaddr to, IPaddr * first);

to IP address of target host to translate
first IP address of first hop

For brevity, how the routing module does this mapping is omitted. At the bare minimum, the host is
configured with the IP address of a default gateway, which is the router to use for all hosts not on the same
subnet as the sending host, and a subnet mask which can be used to computer whether a target host is on the
same subnet. For a given to address, if it is on the same subnet as the sending host, it is returned; if not, the
default gateway’s IP address is returned.

17.3.2.5 NIC Driver
The interface to the NIC driver looks similar to the interface to IP, except that the address has been
translated to a data link address, and the buffer being sent has an IP header prefixed. The underlying data
link has some maximum message size that the hardware can send in one unit; this is called the maximum
transmissible unit (MTU). The NIC driver will often add a data link layer checksum on transmission, and
check it on reception; packets that don’t check are usually discarded.
int NICsendto (SOCKET s, char * buf, int len, char * DLaddr,
int DLlen);

s A descriptor identifying a socket.
buf A buffer containing the data to be transmitted.
len The length of the data in buf.
DLaddr Opaque data link layer MAC address of the target system.
DLlen The length of the data in DLaddr.
Returns the number of bytes sent.

int NICrecvfrom (SOCKET s, char * buf, int len, char * DLaddr,
int * DLlen);

s A descriptor identifying a socket.
buf A buffer for the incoming data.
len The length of buf.
DLaddr Opaque data link layer MAC address of the sending system.
DLlen The length of the data in DLaddr.
Returns the number of bytes received.

int NICgetMTU (SOCKET s);
s A descriptor identifying a socket.
Returns the maximum transmissible unit for the medium.

17.3.3 Packet transmission flow
The flow for packet transmission falls out pretty naturally from the above modular decomposition.
1. Applications calls sendto which calls UDPsendto .
2. UDP adds UDP header and calls IPsendto .
3. IP calls Route to get the first hop IP address
4. IP calls ARPtranslate with that IP address to get the data link layer address.
5. IP calls NICgetMTU ; breaks packet into fragments if it is bigger than the MTU.
6. For each fragment, it calls NICsendto .

17.3.4 Packet reception flow
Is omitted for brevity.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

306

17.4 IP over ATM
In this section, we extend the implementation model to support ATM, via the addition of a connection
manager (CM) in between IP and ARP, and the NIC driver. The purpose of the CM is to create ATM
connections as needed to a given ATM address. A block diagram of this configuration follows below.
The CM performs the same functions for IP and ARP, and has the same interface, as the NIC driver did
above: given a data link MAC address, it can send/receive packets to/from that address. The only difference
is that now the opaque addresses contain ATM addresses -- essentially, the CM makes the ATM network
function as a (connection-oriented) data link as far as IP is concerned. If the CM is asked to send a packet to
a system with an ATM address to which no connection currently exists, it uses Q.2931 to create one.
Q.2931 messages are sent, using the NIC driver, over a permanent virtual circuit (PVC) to the ATM switch.
If a connection isn’t used for long enough, it releases it. When the CM initializes, it uses the ILMI (Interim
Local Management Interface) protocol specified by UNI 3.1 to obtain the ATM address of the host system.
ARP performs the same function and has the same interface as in section 1 above. However, in this
configuration, the address returned by ARP is an ATM address, which is transparent to IP, since it treats
them as opaque byte strings. Its internal working is also different -- instead of broadcasting ARP requests, it
sends them to an “ARP server” which has a database that maps IP addresses to ATM addresses. The ATM
address of the ARP server is typically in a configuration database; ARP uses the CM to open a connection
to it. RFC 1577 specifies how ARP works in an ATM environment.
The NIC driver’s interface is unchanged from above, but the DLaddr is an ATM VPI/VCI instead of the
MAC address; it can send/receive packets to/from Vcs.

App

Connection
Manager

ARPRouting

Sockets

UDP

IP

NIC Driver

Sockets I/F

Figure 17-1. IP Model - ATM

17.4.1 Packet transmission flow
The flow for packet transmission again falls out pretty naturally from the above modular decomposition.
1. Applications calls sendto which calls UDPsendto .

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

307

2. UDP adds UDP header and calls IPsendto .
3. IP calls Route to get the first hop IP address
4. IP calls ARPtranslate with that IP address to get the data link layer address.
5. If needed, ARP calls CM to get connection to ATM ARP server.
6. If not cached, ARP sends request for translation to ATM ARP server.
7. IP calls NICgetMTU entry in CM; breaks packet into fragments if it is bigger than the MTU.
8. For each fragment, it calls NICsendto of CM.
9. CM creates connection to target host if one doesn’t exist, using NICSendTo of NIC driver to send

Q.2931 messages over VCI 5.
10. CM sends IP fragment using NICSendTo entry of NIC driver.

17.5 IP over ATM with DSM-CC U-N Session Management
In this section, we extend the implementation model to support DSM-CC networks, via the addition of a
DSM-CC U-N session management module in between the CM and NIC driver. The (main) purpose of the
DSM-CC module is to create sessions as needed so that connections can be properly established to a given
ATM address. A block diagram of this configuration follows.
Everything is as above for ATM, except that when the CM is asked to create a connection to an ATM
address, and it has no session, then it uses DSM-CC module (via the DSM-CC ClientSessionSetUp message
sequence) to create one, and when a session has been used for long enough, it releases it. The CM then
includes the session ID in the BHLI of the Q.2931 messages that are used to create and release connections.
The DSM-CC layer sends DSM-CC messages using the NIC driver and a pre-provisioned PVC to the
SCCMC.

App

Connection
Manager

ARPRouting

Sockets

UDP

IP

NIC Driver

DSMCC
U-N Session

Sockets I/F

Figure 17-1. IP Model - ATM with DSM-CC U-N Session

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

308

17.5.1 Packet transmission flow
The flow for packet transmission again falls out pretty naturally from the above modular decomposition.
1. Applications calls sendto which calls UDPsendto .
2. UDP adds UDP header and calls IPsendto .
3. IP calls Route to get the first hop IP address
4. IP calls ARPtranslate with that IP address to get the data link layer address.
5. If needed, ARP calls CM to get connection to ATM ARP server.
6. If not cached, ARP sends request for translation to ATM ARP server.
7. IP calls NICgetMTU entry in CM; breaks packet into fragments if it is bigger than the MTU.
8. For each fragment, it calls NICsendto of CM.
9. CM calls DSM-CC U-N session manager module to create session if one doesn’t exist.
10. CM creates connection to target host if one doesn’t exist, using NICSendTo of NIC driver to send

Q.2931 messages over VCI 5.
11. CM sends IP fragment using NICSendTo entry of NIC driver.

17.6 IP over DSM-CC U-N Session and Connection Management
In this section, we extend the implementation model to support DSM-CC networks that are not based on
ATM, via the replacement of the CM with a DSM-CC U-N connection management module. In this
scenario, the DSM-CC connection manager module creates connection when needed, just like the CM in
previous scenarios, except that it uses DSM-CC ServerAddResources messages instead of Q.2931. A block
diagram of this configuration follows.

App

DSMCC U-N
Connection

ARPRouting

Sockets

UDP

IP

NIC Driver

DSMCC
U-N Session

Sockets I/F

Figure 17-1. IP Model - DSM-CC Session and Connection Management

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

309

17.7 Example with DSM-CC U-U and WWW
Here is an example showing the protocol stack for two applications: an ITV application using DSM-CC U-
U and a Web Browser.

App

Connection
Manager

ARPRouting

Sockets

UDP

IP

NIC Driver

DSMCC
U-N Session

Sockets I/F

DSMCC U-U

RPC

Web Browser

Figure 17-1. DSM-CC U-U Application and Web Bowser

17.8 Observations and Issues
Since in a pure IP/ATM environment, there are no other resources besides ATM connection resources,
Addesources messages aren’t needed in this configuration. Since it uses ILMI to obtain its ATM address,
UNConfig messages aren’t needed in this configuration.

Since IP makes no distinction between clients and servers, it always uses ClientSessionSetUp sequences to
establish sessions.
In this model, sessions start at boot and end at shutdown, due to the requirement that sessions be transparent
to IP. However, new applications, such as one to control session duration, are possible. With such an
application, multiple sessions in a single client or server would be possible.
Similarly there is no way, without sesssion aware apps, for a server to to carry sessions over to other servers
it is communicating with on behalf of a client. In order to do this, one would need getsockopt () and
setsockopt () calls to get and set the sessionId being used on an IP connection. Also, it would be

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

310

necessary to establish multiple connections for multiple sessions where otherwise one might do -- classical
IP over ATM only uses one connection per pair of hosts.

Committee Draft ISO/IEC 13818-6 -- MPEG-2 Digital Storage Media Command & Control
12-Jun-95

311

