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EX 1: Discrete Random Variables

1. You are given a possibly biased coin, i.ep = P{heads} is not necessarily0.5. Find an exper-
imental arrangement where using the given coin you are able to choose randomly between two
alternatives A and B with equal probabilities, P{A} = P{B} = 0.5. (Hint: consider, for
example, the possible results of two consecutive trials)

Solution:

Denote heads b9 and tails byl. Consider an experiment consisting of two throws, the results of

consecutive throws are naturally independent. The possible outcomes and the respective probabilities
are,

P{00} = p?

P{01} = p(1 - p)
P{10} = (1 —p)p
P{11} = (1-p)?

In other words, the outcomé@3 and10 are equally likely. Thus, we can choose that outcomeeans
we choosed and outcomd 0 means we choosB. In all other cases we can repeat the experiment.

2. A connection consists oft unreliable consecutive links. On each link the probability that a trans-
mitted bit (0 or 1) is received correctly is 90% and with probability of 10% the received bit has
flipped into the other one. What is the probability that a transmitted bit is received correctly at
the other end of the connection?

Solution:

A bit is received correctly if 1) it does not get changed at all, or 2) the number of changes is a even
number. As we assume that the changing probability on each link is independent, the total number of
changes obeys binomial distribution with parameétér Hence,

2 2
P{bit ok} =) " P{2i change$ = > _ <24@> (1 —p)t
1=0 1=0

4 4 4
= 0.1 .0.9% .0.12.0.92 .0.1%.0.99
<0> 0.1°.0.9 +(2> 0.12.0.9% + A 0.1*-0.9

= 0.6561 + 0.0486 + 0.0001 = 0.7048.

3. Tower property.
a) Prove that for the conditional covariance it holds that,
Cov(X,Y|Z] =E[XY|Z] - E[X|Z]E[Y|Z].
b) Prove the tower property of covariance,
Cov[X,Y] =E[Cov[X,Y|Z]] + Cov[E [X|Z] ,E[Y|Z]].

Hint: use the tower property of expectation,E [X] = E [E [ X |Y]].
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Conditional expectatian

i) Conditional expectatiof [ X |Y'] is random variable,
E[X]Y] = h(Y),
for some function..
ii) Conditional expectation is linear,

iv) Tower property of expectation:

E[X] =E[E[X]Y]]
E[VIXY]] + V[E[X]Y]

=
>
I

iii) Constant terms can be taken outside from conditional expectation,

E[g(Y)|Y]=g(Y) and  E[g(Y)X]Y]=g(Y)E[X]Y]

(1.1)

Table 1: Conditional expectation.

Solution:

a) Using the results presented in Tddle 1 gives,

Cov[X,Y|Z] E'E[(X - E[X|2])- (Y - E[Y|2))|2)

—E[XY - XE[Y|Z] - E[X|Z]Y +E[X|Z]E[Y|Z]|Z]

= E[XY|Z]-E[X|Z]E[Y|Z] - E[X|Z]E[Y|Z] + E[X|Z]E

= E[XY|Z] -E[X|Z]E[Y|Z].
b)
Cov[X,Y] =E[XY] - E[X]E[Y]
=E[E[XY|Z]] -E[E[X|Z]]-E[E[Y]Z]]

and adding and subtracting telr{E [ X | Z] - E [Y| Z]] gives,
=E[E[XY|Z] - E[E[X|Z]-E[Y|Z]

Y]

Note thatCov[X, X]

|Z
+E[E[X|Z]-E[Y[Z]] - E[E[X]|Z]]- E[E[Y]Z]]
=E[E[XY|Z] -E[X|Z] - E[Y|Z]]
+E[E[X]|Z]-E[Y[Z]] - E[E[X]|Z]]- E[E[Y]Z]]
=E[Cov]X,Y|Z]| + Cov[E [X|Z] ,E[Y|Z]].

= V [X] and the tower property of variance is a special case of b).

4. Consider binomially distributed random variables.

a) Let N ~ Bin(n, p) denote the size of a population, for which we do random selection intk
subsets with probabilitiesq;, >, g; = 1. Let IN; denote the size of subset Show that each
IN; obeys binomial distribution.

b) Let Nf,i=1,...,

k, be a set of independent and binomially distributed random variables,

N} ~ Bin(n, pq;). Determine the generating function of sumN™* = Ny + ... 4+ N}
c) Whyis N* = N generally?
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Solution:

a) Generally, whem independent trials are performed where the probability of success on each

b)

trial is p, the total number of succesful trials, denoted¥y obeys binomial distribution)N. ~
Bin(n, p).

Consider the size of sgtdenoted byN;. According to Fig[1 an individual ends up in setif
two consecutive trials are succesful: first with probability@nd then with probability of;. In
other words, with probability gpg; both trials are succesful and hen¥e ~ Bin(n, pg;).

N1

Figure 1: The no. of succesful trials obeys binomial distribution.

The generating function of binomially distributed random variable is
— b (1 =)t Bt = 1 — n
G(z) ;:0 <Z> p-(l=p)" "2 =pz+(1-p)",

and thus the generating function f" is

Gi (2) = (pgiz + (1 — pg;))" .

The generating function of the sum of random variables is the product of generating functions,
le.

G (2) =Gi(2) ... Gi(2) = [ (pgrz + (1 = pq1)) - ... - (parz + (1 — pax))]" -
Note that the sum is binomially distributed onlygf = ... = ¢, = 1/k, for which we have
N* ~ Bin(kn,p/k).
The difference is simply due to the fact that in a) the random varialijesre not independent

For example, when; = 1/k for all j, based on above we hadé* ~ Bin(kn, p/k), when clearly
N ~ N* (means are equal, but, e.g. the variancec are different).

5. Prove (without using the generating function), that the sum of two Poisson random variables,
N7 ~ Poissong@;) and Ny ~ Poissongs), is also Poisson distributed:(IN; 4+ N2) ~ Poisson@i+
az). Prove the same result with the aid of generating functions.

Solution:

Poisson-distributionP{N; = n} = (@) o—ai,

n!

P{N=n} = P{N+Ny=n}=) P{Ny=j} P{No=n—j}

=0
n . . n
() 4 (a2)"7  _ e lrre) n! (ag)" 7
=2 e ey TR > T (@) (e2)"
P 7 SR A
n.
_ M-e*(“ﬁ@), (binomial theorem)
n.:
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thus the sumV = N; + N, is Poissong; + a»).
On the other hand, IeX' ~ Poisson(a). Then the generating function of the random variaklés

— X7 _ - jaj —a _ ,—a - (az)j _ ,—azaz _ (z2—1)a
g.X(Z)—E[Z]—E et =e E —=e % =e .
: J! : J!
J=0 J=0

Let N(z) denote the generating function of su¥ + N, for which we obtain
N(z) = Ni(2) - Na(z) = elz=Dar , g(z—1)az — o(z—1)(ar+az)

Hence,N obeys Poisson distribution with parametgr+ as.
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EX 2: Continuous Distributions, Stochastic Processes

1. Customers arrive in groups at a queueing system. The number of customers in each group is
either 1 or 3 with equal probabilities. During a certain time period the number of arriving
groups K obeys Poisson distribution with meam = 4.

a) Determine first the generating function of the number of arriving customersN during the
time period, and then derive the meanE [N] and the variance V [IN] using the generating
function.

b) Derive the mean and variance using the chain rule (tower property) of expectation by condi-
tioning on the number of arriving groups K.

Solution:

a) LetA denote the number of customers in one group,
P{A=1}=P{A=3}=1/2
The total number of arriving customers is a random sum
N=A +...+ Ag,

whereK ~ Poisson(4). Thus, the generating functions are
1 1
Ga(2) = 52+ §z3
ai i
Ok (2) = Z e E= ez e,
7

Gn(2) = G (Ga(z)) = 254272,
The mean value is

Gh(z) = 27272 L9 (3,2 4 1),
E[N]=gy(1) =8,

and similarly the variance a¥:

d ! d 2(z3+2-2) 2
- — 9. = 2Hz2) 1
= 2Gn (2) 7 ¢ 2(3z% 4+ 1)
_ 462(z3+z—2) (322 + 1)QZ + 262(z3+z—2)(922 +1)
=227 (22(1 + 322)2 + (922 + 1))
d

E[N?] = <% zgfv(z)>| = 2-(2-4%+10) = 84,

V[N]=E[N?] - E[N]* = 84 — 8 = 20.
b) The variances ofl andK are

VAl =(1/2)- (1-2°+(B-2?%) =1,

) -
=4,

and hence,
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2. Let X; ~ Exp(X;), i = 1,2, 3, be independent exponentially distributed random variables.
Find

a)P{X; < X3 < X3}
b) P{Xl < le maX(Xl,Xz,Xg) = X3}

Solution:

a) Directly by integration we obtain
P{Xl < Xo <X3} :/ P{Xl <t}-P{X3 >t}~f2(7f)dt
0
:/ (1 — e Mbe Mt r\e M2 gt
0

o /oo e,(,\2+)\3)t dt — A /00 e,()\1+,\2+)\3)t dt
0 0

1 1
2 ()\g—i-)\g) 2 <)\1+)\2+)‘3>

AMAg
()\1 + Ao + )\3)()\2 + )\3).

P{ANB . .
b) GeneralyP{A|B} = % which can be applied here.
Firstly,
P{maX(Xl,XQ,Xg) = Xg} = P{Xl < X9 < Xg} + P{XQ <Xi< Xg}
B A2 ( 1 N 1 >
_)\1+)\2—|—)\3 )\1+)\3 )\2+)\3
_ A1Ag Mt A t2)
AL+ A2+ A3 (A1 +A3)(A2 + Az)
A1+ A+ 2)3
=P{X; < Xy < Xg}———F——=.
X 2 * A1+ A3
Hence,
P{Xl < X9 < Xg}
P{X; < X X1, X9, X3) = X3} =
{ 1 < 2|maX( 1, 29 3) 3} P{maX(Xl,XQ,Xg) — X3}
At
A1+ Ay + 2)3 ’
3. A Markov chain with states 1, .. . , 4 has the following transition probability matrix:

1—p O p 0
_ q 0 q O
b= 0O 0 1—p p
1 0 0 0

a) What must the value ofq be?
b) Draw the state transition diagram of the system and classify the states.

¢) What is the probability that the system is in state4 at time 4 assuming it is in state2 at time
2?
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Solution:

a) The sum of the transition probabilities away from stateust be equal ta,
1
gt+q=1 = 1=73

b) From fig[2 it can be seen that statés transient and irreducible. The classification of the other

states depends on the valuepof
1p

q
when classification @‘/\
p=0 statesl and3 are absorbing and statdransient o
0 < p < 1 statesl, 3,4 form a chain and are positively y q

recurrent (but not periodic). The states of chain
also form a closed set.

p=1 statesl, 3, 4 are positively recurrent and periodic P Q

with period of3. 1p
Figure 2: State diagram.

c) First we notice that the initial state is impossible as there it is impossible to be ir2 siiene2.
Assuming that this is still the case, the system is in state 3"¢ step with probability of%, from
where the system cannot reach staigith one step. Similarly, with probability 05 the system
goes to statg, from where it moves to statewith probability ofp. Thus, the asked probability

is @
4. Define the state of the system at th@®” trial of an infinite sequence of Bernoulli(p) trials to be
the number of consecutive succesful trials preceeding and the current trial, i.e. the state is the
distance to previous unsuccesful trial. If thent? trial is unsuccesful, thenX,, = 0; if it succeeds

but the previous one was unsuccesful, theX,, = 1, etc. a) What is the state space of the system?
b) Argue that X,, forms a Markov chain. ¢) Write down the transition probability matrix of the

Markov chain (give its structure).

Solution:

(a) X, can be any integer froito co
(b) The experiments are independent:

X X, +1 with probability ofp,
nHl 0 with probability of1 — p,

that is the state of the system at time- 1 depends only on the state at timeThat is the Markov
property and hence the system is a Markov chain.

(©)
1—-p p 0 0
1—-p 0 p O
P=11-p 0 0 p

5. An individual possessesn umbrellas which he employs in going from his home to office and
vice versa. If it is raining he will take an umbrella with him, provided there is one to be taken
where he is. If it is not raining, then he never takes an umbrella, whatever direction he is going.
Assume that, independent of the past and each other, it rains on his way to office or home with
probability p. Define the state of the system b if where he is there arei umbrellas. Show that

8
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the equilibrium probabilities of this Markov chain are wop = q/(¢ + n) andw; = 1/(q + n),
i =1,...,n,"where q = 1 — p. Assumingn = 2, what value of p maximizes the fraction of
time he gets wet?

Solution:

When the system is in statethere arex — ¢ umbrellas in the other place. Thus, the system will move
to staten — 7 orn — i + 1 depending on whether the person takes an umbrella with him or not. This
leads to the following transition probability matrix:

0 0 O 0 0 1

0 0 O 0 g p

0 0 O q p O
P =

0 g p 0 0 O

qg p O 0 0 O

Substituting the given steady state probabilities gives,

1 ;o
@.q 1 1 wheni = 0,

- q_, 1, =_1 | =
J pE 1+ 7 P =T wheni = n.

and thus they satisfy the global balance conditions- Zj mjp;i and alsoy_, m; = 1, and hence are
the probabilities in the steady state.

Casen = 2:

The proportion of trips he gets wet in the long runris- p = qq;—q; =: w(q). The maximum can be
obtained by derivation,

(1-29)(¢+2)—(¢—¢*) _2-4¢-¢
(¢ +2) (¢+2)?2 -
w'(q) =0 & 2—4g—¢>=0 = ¢ =—-2+6,

w'(q) =

thusp* = 3 — /6 ~ 0.55 maximizes the probability that person gets wet.
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EX 3:

1. a)

b)

Markov, birth death and Poisson processes

Consider a Markov chain with n states, states:; + 1,...,n being absorbing states. Argue
that the state transition matrix P of the chain is of form

k 2 k—1
P:(‘g ]ij’> and show that P’“=<AB }(I+A+A I+A )B>,

where A onny X ni-matrix, Bisni X ng-matrix and I is a unit matrix of proper size.

Let (g, 7) denote the state probability vector at thekth step, where,, corresponds to
statesl, ..., ny and 7 corresponds to statesn; + 1,...,n. Determine 7, and show that
limy o0 T = 7o + mo (I — A)™'B

Two persons have a duel, where each side can make one shot at his turn. This is repeated
until either duellist hits. The person having the first turn hits with a probability of p; and the
other person with a probability of p,. Form a Markov chain corresponding to the duel and
determine the winning probabilities of each duellist.

Solution:

a)

b)

Statesi; + 1,...,n were absorbing, i.e. the system remains in such a state forever if it ever enters
it, from which the0- andI-blocks in the partitioned matrix follow.
The latter proposition clearly holds whén= 1. Assuming that it holds fok — 1 gives

pF_p.ph-1_ (A’f A(I+A+...+Ak—2)B+B> _ (Ak (I+A+...+Ak—1)B)
0 I 0 I '

Generally the state probability distribution at tkté step ismoP*. Applying this gives
N LV (AF I+A+...+ADHB
(o m) P = (o ) (fy OFAT AT
= (moAF wI+A+...+AFH)B+7),

and hence
7r=mo(I+A+...+ A" HB + 7
and
klirrolo 7 =mo(I+A+ A%+ .. )B+7y=|7+m(I—-A)"'B.
A Markov chain corresponding to the duel is illustrated in the figure. The problem can be solved

by deduction. Letr;« denote the probability that the system ends in statend similarly, letro«
denote the respective probability for state Due to the lack of memory property of Markov chains
one can write

mi= =p1+ (L —=p1) - (1 = p2) - s,

from which it follows that @ (1-p1) @
b1 P2 — P1P2

Tpr=—"" and o= -—— 2% (1-p2)
P1+p2 — P1p2 p1+ P2 — P1P2

Alternatively one can apply the result of b). The state transition matrix is (states in order of
1,2, 1%, 2%)

0 1-p1 pp O

_|l=p2 0 0 po (0 1-p 0
P=1 o0 o 1 of 7 A_(1p2 0 )JaB (0 pg)

0 0 0 1

10
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Thus,

1 _
oAt L1,
p1+p2 —pip2 \1 —p2 1

and as the initial state distributionisy = (1 0), 7o = (0 0), one obtains that the probability
distribution of the absorbing states in the lirhit> co is

(1 1-p1) .<p1 0)_ 1

= . 1—9pl .
0 po p1+ p2 — p1p2 (p1 ( P )p2)

lim tp = ————
k—00 D1+ P2 — p1p2
2. Three persons A, B and C have a truel (cf. duel), where each participant can make a single shot

at his turn. A is a good shooter and hits always, B hits with a probability of 2/3 and C with a
probability of 1/3. The worst shooter C can start, and after him it is B’s turn if he is still alive,
and then the turn goes to A if he is still alive, etc. This is repeated until only one person is alive.
It is easy to see that it is advantageous for B to always aim at A first, and similarly, for A to aim
at B first, if the particular opponent is still alive.

a) Determine the probability that C' wins assuming that i) he aims atA first, and ii) he aims at
C first. Hint: Reduce the problem, with appropriate considerations, to cases where you can
apply the result of the case c) of the previous problem.

b) Even a better alternative for C'is to shoot in the air at the first round. Prove it.

Solution:

Let P{C|C A} denote the probability that C wins when only C and A are alive and itis C’s turn to shoot
next, and similarly for other combinations. Applying the result of ¢) of the previous problem yields

P{C]BC}:1—2/3+§§§_2/9 :;, (p1 = 2/3, ps = 1/3)
P(CICB) = - m;g 75 - : (1 = 1/3, p2 = 2/3)
P{C|CA} = 1/3, (p1=1/3, p2=1)
P{C|AC} = 0. (p1 =1, p2=1/3)

Consider next that C misses his first shot. In other words?{€tf| BAC'} denote the probability that
C wins when all three persons are alive and the next shooter is B. Clearly,

2 1 2 3 11 25
P{C|BAC} == -P{C|CB}+ = -P{C|CA} == -+ - == — =~ 0.397.
{CIBACY = 3 -P{CIOB) + 5 - P{OICA} = 5 - D 4 5 5 = o =~ 0.307
a) i) C’s strategy is to aim first at A:
1 2 1 50 59
P{Cwins} = = - P{C|B —-P{C|BCA} = — + — = — =~ 0.312.
{C wins} 3 {C] C}+3 {C|BCA} 21+189 189 0.3
i) C’'s strategy is to aim first at B:
. 1 2 50

b) The strategy that C shoots in the air at the first round and the shooting turn moves to B was already

considered earlier, i.e.
25

P{C|BAC} = = ~0.397,
which is clearly the most advantageous option for C. In fact, it turns out that by first shooting in
the air C ensures that he has the highest chance to win the truel! In this case the resulting winning
probabilities for A, Band C ar€l/63) - (14 24 25).

Intuitively: By shooting in the air first C lets B and A first to fight against each other and then he
will have the shooting turn against the survivor. If he instead manages to shoot either A or B the

survivor of these would have the shooting turn against him.

11



S-38.143 Queueing Theory, Fall 2004 Virtamo / Hyytia

3. A continuous time Markov process with statest = 1,..., 3 has the following transition rate
matrix:
-2 1 1
Q=|1 -1 o
1 1 -2

Determine the equilibrium probabilities of the states of this process.
Solution:

For global equilibriumgr, it holds thatrQ = 0. Let distribution ber = (a, b, ¢), when one gets,

—2a+b+c =0,

a = 2c,
a—b+c =0, = b — 30
a—2c =0. '

Normalization gives,
a+b+c=6c=1 = c=1/6.

Thus the steady state distributianis
= (1/3 1/2 1/6).
4. Determine the probability distribution in equilibrium for birth-death processes (state spacei =

0,1,2,...), which transition intensities are a)\; = X\, p; = i, b) \; = XN/(i + 1), p; = w,
where A and p are constants.

Solution:
A
O CRNTY & Y
(i+)u u

Figure 3: Transition intensities between the states : and i + 1.

(a) From fig. it can be seen that

. 1 A a
(Z + 1)M7TZ‘+1 = )\7'('1‘ = Ti4+1 = 7,—}——1;71-1 = ’L—f——lﬂ-z
That is
m = anmo,
. a . CL2
T2 = 5771 = 5770,
a’i
Ty = 70

Furthermore) |, m; =1, i.e.

at _
E 7Ti:7T02 ,—'zwoea = my =¢e °.
, — 4!
K K

So A
a’ _
m=—e ¢

7!

(that is a Poisson-distribution with parametes /)

12
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(b) In this case we obtain

A a
Z.+17ri:/“ri+1 A 7Ti+1:i+17ri

that is the probability distribution in equilibrium is the same as in (a).

5. In a game audio signals arrive in the interval (0, T") according to a Poisson process with rate\,
where T > 1/X. The player wins only if there will be at least one audio signal in that interval
and he pushes a button (only one push allowed) upon the last of the signals. The player uses the
following strategy: he pushes the button upon the arrival of the first (if any) signal after a fixed
times < T.

a) What is the probability that the player wins?
b) What value of s maximizes the probability of winning, and what is the probability in this
case?

Solution:

Player bets on that during the tinie, T') there is exactly one arrival (what happened dufffigs) has
no effect here). Let = T — s, when the number of arrivals obeys Poisson distribution with parameter
a=M7.Here,0 <7 <T,i.e.0<a< )\ where\T > 1.
1
a) po = PIN(T) — N(s) =1} = %e—a — ae~®, wherea = A(T — s).
b) Maximum can be found by taking the first derivate in relativa:to

d
—pu(a) =e " —ae = (1—-a)e "
a

d

The derivate has clearly exactly one raot= 1, which is also the maximum of the function (first
strictly increasing and then stricly decreasing function).

a=1 = MT —s)=1 = s=T -1/,

which also lies inside the allowed interval. The maximum probability of winning is h%\@e

13
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EX 4: Little’s result, Erlang’s Loss System

1. Consider a particular state, ¢, of a continuous time Markov process as a black box. What is a)
the rate of arrivals to this state, b) mean time spent in this state (the life time of the state), c) the
average number of systems in this state (note, the system either is or is not in this state). Apply
Little’s result. Which familiar relation is expressed by the result in this case?

Solution:
AN =D Ty

b) Wi =1/¢; = <Zj7£i qz’j>71

c) There is either "one customer" or no customé¥s:= ; - 1 = ;.

Little:
Wizzﬂjqji'l/qz‘ = quz‘jZZqu]‘z‘-
JFi JFi JF#i

The obtained relation is thglobal balance equatiofor statei, i.e. the total mean flow into the state is
equal to the total mean flow out of the state.

2. The mean timeT a car spends in a traffic system is proportional to the number of cars in the
systemNN,
T = o+ BN?,

wherea > 0 and 8 > 0 are some constants.

a) What is the highest possible arrival rateA™ the system can sustain?

b) Assuming that the arrival rate is less than A*, what is the mean sojourn timeT in the
system? Is the answer unambiguous? Does the assumptih= o + BIN? make sense?

Solution:

a) Little’s result: N = AT
SubstitutingN? = A2T"? to the original equation yields

14+ +/1—4ab)2
NBT?2 —T+a=0 = T= Wﬁo‘ﬂ . (4.1)

The system is stable whénis a finite real number. Thus, the discriminant must be non-negative,

N b
T 2Vap

Consequently, the maximum possible arrival rate the system can haddl&i%.

1 —4a8X% >0 =

b) Equation[(4.1) has clearly two (stable) solutions (roots). One of them corresponds to a situation
where the traffic flows smoothly and the other one to a situation where the traffic has jammed(?).

3. Amodem pool has five modems. 10% of the arriving calls are blocked because all the modems are
reserved. What is the traffic intensity (in erlangs) of the offered traffic (assumed to be Poissonian;
redial attempts are not considered). How many modems would be needed in order to lower the
blocking probability to 1 %?

14



Exercise 4 LITTLE’S RESULT, ERLANG’S LOSS SYSTEM

A A A A A
P Y VN
.\/.\/.\/.\/.\/.

" 2u 3u 4 54

Figure 4: The state space of the system.

Solution:

In equilibrium the probability of statg¢is

al

7!
ad’

1+ &+ 9+ + D

5
wherea = A\/u. The time blocking is probability of state= 5,

.
a’
51

E(s,a)

It e+ S+ Y

If the intensity of arrivals is\, then the average number of blocked calla i8mes the proportion of
the time spent in stateé HenceE(5,a) = 10%. The approximate value for the offered loadan be
obtained for example with Mathematica, or by looking from figures 2.88.

The number of modems required in order to drop the blocking probabilifyt@an be obtained by
iterating with Mathematica:

In[25]:= (a”6/6!)/Sum[ anifi!, {i,0,6}]
Out[25]= 0.0458179
In[26]:= (a~7/7!)/Sum[ anifit, {i,0,7}]
Out[26]= 0.0185088
In[27]:= (a"8/8!)/Sum[ ani/i!, {i,0,8}]
Out[27]= 0.00662153

Hence, 8 modemare required.

4. Ordered search in ann server Erlang system: Assume that the servers are labeled sequentially
with numbers 1,...,n nd the offered load isa erl. Each arriving customers goes to the free
server with the lowest number. What proportion of the time is the server: in use? Hint: Note,
that all the servers1,...,4 are in use with probability of E(<,a), and deduce from this the
average arrival rate to servers: + 1, ..., n, and finally the arrival rate to each server.

Solution:

Consider the'® server. Because the customers do no switch servers in the middle of service, the group
of i first servers acts like normal/ /M /i/i system: the arriving customer enters one of iHest
servers or is "blocked", when it overflows to servérs 1,...,n. Thus, the probability that first
servers are busy B (i, a).

It follows that the arrival rate of customers to servefs1,...,nis A - E(i,a). Similarly, the offered
traffic to servers, i+ 1,...,nisA- E(i — 1,a). The difference in offered traffic corresponds to traffic
handled by servet, i.e. the rate of customers enteringi‘tb server,\;, Is

Ai = )‘[E(Z - 150’) _E(/Lva)] )
and the load of thé'" server is
a; =N/u=alE(Gi—1,a)— E(i,a)],

which is also the proportion of the time thi& server is in use.

15
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5. a)

b)

Consider Erlang’s loss system withn servers. The steady state probabilities can be obtained
recursively as well by starting from the staten and proceeding towards the origin as vice

versa. Letpgn) denote the unnormalized state probabilitiesg = 0,...,n, where we have

setp(M=1. LetC(n) = 31, pi") denote the corresponding normalization constant. Show
that with this notation the blocking probability is given by 1/C(n).

Consider next a system withn + 1 states. Letp(”+1) i = 0,...,n, denote the respec-
tive unnormalized steady state probabilities Wlthpfﬂ_ll) 1, and IetC(n + 1) denote the

corresponding normalisation constant. In view of the way how the steady state probabilities
are determined starting from the staten 4 1, deduce that recursive equationC(n + 1) =
14+ "‘T“C(n) holds (which is the recursion formula for Erlang’s loss function).

Solution:

a)

b)

Generally it holds for the unnormalized state probabilitiesl andi of Erlang’s system that

Xt =ipep” = p =

In this problem we have choseﬁ") = 1, which gives

) = <2 ' Hc;l Z) ) = (i — 1)!n-!an—z‘+1 I Z_T‘l ' %
Thus, .
a’L
sz - qn ; i’
and an /!

In recursion, the unnormalized probability of the previous staté is obtained by multiplying the
unnormalized probability of stateby i/a. Hence, when considering a system with- 1 states the
unnormalized state probabilities of firsstates are the same with some constant fac(see Fig.):

pgnﬂ) =q- pgn), wheni =0,...,n.

On the other handg%”) =1and

n+1 n—+1
p%nﬂ) T - .p(N) _or-

- M
" a

and henceg = ”T“ and normalization constant(n + 1) for a system withn + 1 states is given by

1
C(n—i—l):q-C(n)—i—l:l—i—nZ .C(n).

Transitions between
states i-1 and i: Q 1/a /\ /p) 3/a Q

A \/ U
w <

i 1/a /\ /\ /\ 4/a

Q (o2 ()" (p0)

Figure 5: The probability flow between states i and i — 1 (on left), and recursion for n = 34 (on right).
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Exercise 5 ENGSET'S SYSTEM, M/M/1 AND M/M/M

EX 5: Engset’s system, M/M/1 and M/M/m

1. Prove that in Engset's system withk sources andn servers (the M /M /n/n/k system), the
probability that arriving customer sees the system in state;, denoted with 7} [k], is the same as
m;[k — 1], i.e. the probability of state ¢ in system with & — 1 customers. Hint: Previously it has
been proven thatmy [k] = A;m;[k]/ 7% Ajm;[k].

Solution:

Ratkaisu:

Let,

when it holds that
k! ) _k(-—p) (k-D1! 1

Akl = ———p'(1 - k=i —
4] LAY k—i al(k—1—n’?
k(1 —p)
= Ailk —1).
o Ailk 1]
Hence, steady state probabilitiegk| can be written as;[k] = Zki‘ al AT Note that the denumerator

is independent of. Nextr} [k] is determined. Herg; = (k — j)v, so

— Aimilk] A n
milkl = S0 Akl (Zk o Arl¥] > (ZZk o AxlH )

O NA iR Ak -
o NAR k- )y Al - 1
_ k(A -p)- Ak -] Ailk—1]

a k(1 —p) 2?:0 Ajlk —1] ; Z?:o Ajlk —1]

= mlk—1].

2. Consider 2 x 1- and 4 x 2-concentrators, where for each input port calls arrive according to
independent Poisson-processes with intensities The mean call holding time is denoted byl /
and the offered load bya = v/u = 0.1. Compare in these two concentrators the probabilities
that a call arriving to a free input port gets blocked because all the output ports are busy.

Solution:

The system corresponds to an Engset's system wiburces and servers0 < s < n. Letr;[n],
j=0,...,s, denote the steady state probabilities. Similarlygﬂ;e[m], j=0,...,s, denote the state
probabilities seen by an arriving customer.

Time blockingin Engset’s system is generally the same as the steady state probability af state

(Lo

ms[n] = ——4—r = ,  Wherep =

. [n k . [n k n—k
1 —
<k>a <k:>p( p)
k=0 k=0

1+a

17
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Similarly, for call blockingit holds that

k=0
Substitutingn ands to above givesy( =~ 0.091)
n s time blocking call blocking
2 1 16.7% 9.1%
4 2 4.1% 2.6%

3. On average ten customers per hour arrive to a shoe polishing station. The polishing of shoes
takes 6 minutes on average. There are two stools, one for the person being served and the other
one for a waiting customer. If both stools are occupied, then the arriving customer leaves.

a) Draw the state diagram of the system and solve the balance equations, when the arrival
process is assumed to be Poissonian and the service times are exponentially distributed.
How many customers are served in an hour on average?

b) What happens if the shoe polisher has an assistant, i.e. when customers on both stools are
served at same time and there are no waiting places.

Solution:
A A A A
OBOWO) OBOWO
H H M 2u

Figure 6: State diagrams of M/M/1/2 and M/M/2/2 systems.

The arrival process is Poisson processAse 10 customers/h= 1/6 customers/min. Similarly, the
service time is exponentially distributed with= 1/(6 min). Thus, the offered load isa = 1.

a) M/M/1/2 system. From the state diagram it can be deduced that

m™ = ano,
Ty = am = a’m = mo=1/(14+a+a?) =1/3,
and thus,
= (1/3 1/3 1/3).

The time blocking of the system is, = 1/3 and from PASTA-properE/ it follows that2/3 of
the offered traffic gets through, i.e. during one h@us - 10 ~ 6.67 customers are served on
average.

b) M/M/2/2 system (right Fig.). The steady state probabilities in this case are
T = ano,
T = a/2-m =d*/2- 7 = 7o = (1/2)/(1 4+ a + a*/2) = 2/5,
and furthermore,
= (2/5 2/5 1/5).

Thus,4/5 of the arriving customers are accepted and, on avergge, 10 = 8 customers are
served during one hour.

Poisson arrivals see time averages

18



Exercise 5 ENGSET'S SYSTEM, M/M/1 AND M/M/M

4. Customers arrive to a taxi station according to a Poisson process with intensity oX. There is
room for K taxis in the station and practically for infinite number of customers. Taxis arrive to
the station according to a Poisson process with intensity qi. If the station is full, the taxi drives
immediately way. If there is a waiting customer in the station, the taxi picks the customer and
otherwise stays to taxi queue waiting. Determine the steady state distribution for both customer
and taxi queues. What are the distributions ifA = 1/min, p = 2/min and K = 5? Whatis the
probability that a customer must wait for a taxi? Hint: Customer and taxi queue cannot exist at
the same time. Start writing the state diagram from state0 when there are no customers or taxis
waiting in a queues.

Solution:
A A A A A A
VS Y Y Y Y VS
o000 LN N ]
OSIRSNSOS0S0w
H H H H H H
Figure 7: State diagram: —k, ..., —1 =taxis in queue, i > 0 = customers in queue.

As it can be seen from Fi@] 7 the system is normal M/M/1 system, where the indexes are relabeled. For
steady state probabilities it holds that,

pmir = Amp |ip
Ti+1 = PT
From which it can be deduced that
k+i

The sum of probabilities is equal to one,

I_Zkarz _szp

i=—k

Thus,m_r = 1 —p, jam; = p**(1 — p) kun —k < i < co. Substituting the given valugs= 1/2 and
k = 5 givest; = (1/2)5t+ = (1/2)5(1/2)".

The probability that an arriving customer must wait for a taxi is the sum of states with no taxis in queue,

e.
;;(1/% (1/2)" = (1/2) GZZ; 1/2) = (1/2)° 5 _11/2 = (1/2)° = 1/32.

5. The output buffers of a router share a common memory area. The arrival streams to the buffers
are assumed to be Poissonian and the packet size distribution is exponential. A fixed memory
allocation (buffer place) is made for each packet (we assume each packet can be accommodated
in this buffer place, in spite of the exponential size distribution), and altogether there areK
buffer places available in the memory. What is the probability that all K places are occupied
(i.e. the overflow probability of an incoming packet) when there are two output queues sharing
the memory, and the loads of the queues are equab(= 0.7) and K = 20? Compare the result
with the case when both buffers have a dedicated memory for 10 packets.

Solution:

The system consists of two M/M/1-queues, whose state space:2) is truncated with condition
n1 + ne < 20. The probability of statén,,ny) is
il N2 pn1+n2

p(n1,ng) = P1g§) ==q

19
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wheref? is normalization constant. In states where all the memory locations are reserved it holds that
n1 + ne = 20 and number of such states2s. Thus, the probability asked & - 0.72° /.

The normaliztion constarst is obtained by taking a sum over all (feasible) states:

20 7 o 20 ' 20 d ‘ d 20 ‘
ARSI SRS W Y P
=0 j=0 1=0 1=0 p p =0
20

_ ipzpi _dp—p? _(1-220")1—p)+p—p*
dp ~ dp 1—p (1-p)?

_ 1_p_22p21+22p22+p_p22:1_22p21+21p22

(1—p)? (1—p)?

1—22-0.721 +21.0.7%2

_ + ~ 11.066.

0.32

Thus, the overflow probability is abo0t0015, i.e. abou® per mil.

In case both buffers had a dedicated memory for 10 packets one obtains the normal truncated M/M/1-
queue, for which,

pi = p'po.
Normalization gives,

1—p 1—p
l=0+p+p*+...+p0)p = = po= :
) 1—p 1—plt
Thus, the probability of stat&) is
l—p p10_1+1_p11 l_plo
_ 10 _ _ ~
Pio=p 1_p11_ 1—pl _1_1_p11N0009N1—%
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Exercise 6 P-K FORMULA AND PRIORITY QUEUES

EX 6: P-K formula and priority queues

1. Consider a M/G/1 queue. Prove, by using the Little’s theorem, that for any work conserving
gueueing discipline it holds that,
P{N > 0} = p.

Solution:

Work conserving queueing discipline means simply that when there is customers in the system then
they are served. L&V, be the number of customers in the server,Ne.€ {0,1}.

P{N > 0} = P{N, =1} work conserving queueing discipling
= E [N;] definition of expectation
= \E[S5] Little’s formula, S is the service time
= p.

2. Carloads of customers arrive at a single-server station in accordance with a Poisson process with
rate 4 per hour. The service times are exponentially distributed with mean 3 min. If each carload

contains either 1, 2, or 3 customers with respective probabilitie%, %, i, compute the average

customer waiting time in the queue. Hint: The waiting time of the first customer of each group
can be obtained from an appropriate M /G /1 queue. Consider separately the “internal” waiting

time in the group.
Solution:

Consider first the whole batch as one unit and later the waiting time inside batch can be added to it. For
the whole batch one can apply M/G/1-queue model. It was given that

A =4/h =1/15min, and  1/p = 3min.
The service time of the batch is,
S=X1+...4+ Xy, whereN is1,2or3

For the number of customerd], in one group it holds that,

E[N]=1-(1/4)+2-(1/2) +3-(1/4) =2
VIN]=E[(N-E[N])?)] =1-(1/4) +0-(1/2) +1- (1/4) = 1/2.

from which, by using the conditioning rule (or tower property), one gets for the servicestittmat,

E[S]=E[E[S|N]] = E[N - 3min] = 6min,
VI[S]=E[V[SIN]]+ V [E[S|N]] =E [N - 9min®] + V [N - 3min]

9
= 18min® + ~min® = 45/2min
2
117
E [$?] = V[S] + E[S]” = 45/2min? + 36min® = 7min2_

The average waiting time of batch can be obtained by using the Pollaczek-Khinchin formula,

AE [$7] L1702 17 13
E = — 15min 2 _ 30 = B aiin 15,
Wl = 50 AR TS = 201 o) — g T = min 15

21
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In addition the customer sometimes have to wait within his batch. This is easiest to obtain by deter-
mining the total waiting time inside one batch and then dividing that by the average size of the batch:

EW,]=(1/4-0+1/2-141/4-3)-3min/2 = 15/8min = 1min 52.5s.

(Note. When batch size is 3, the average waiting tim@i$ 1 + 2) - 3min = 3 - 3min.)
By adding the waiting times together one gets the total average waiting time of customer, which is

E[W] =E[W,] + E [W,] = 5min 7.5s.

3. A generalization of Little’s result. Consider an arrival-departure system with arrival rate A\,
where entering customers are forced to pay money to the system according to some rule.

a) Argue that the following identity holds:
Averate rate at which the system earns= X - (Average amount a customer pays)

Show that Little’s theorem is a special case of above.

b) Consider the M /G /1 system and the following cost rule: Each customer pays at a rate af
per unit time when its remaining service time isy, whether in queue or in service. Show that
the formula in @) can be written as (cf. Pollaczek-Khinchin formula)

W =XA(XW + X2/2),

where W denotes the waiting time of a customer andX denotes the service time.

Solution:

a)
Consider the time intervdD, t). Let

M; no. of departing customers durir@, ¢)
Ay total cumulative income duringp, ¢)
m mean payment by a customer

E[A;] = E[E[A¢|My]] = E[M; - m] = mAt
Hence, the mean income rate is
E[A]/t = mA.

Little’s result follows when the payment is chosen to be equal to the sojourn time in the systerf,.
Then, the charge rate is equal to one and, consequently, the income rate is equal to the number of
customers at the systery,.

N = T -\
mean income rate mean payment
b)
M/G/1-queue with charge rate = the remaining service time of customer. The mean payment in this
case is

o 1—
m = X - W + §X2,
whereX andW are independent random variables.

Income rate of the system is equal to the sum of the remaining service times of the customers in the
system, i.e. the unfinished work of the system, denotedl hiye.

U=U:+Us+...+4UNx+ R,
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Exercise 6 P-K FORMULA AND PRIORITY QUEUES

The following holds for the power series:

Zz-ni“ and Zz (2n—|—1)

Let X ~ Uniform(1,n) andY = m + X. Then,

Elx] = 2 E[Y] = m+2H

E [Xz] _ (n+1)(62n+1) E [Yz] — m2 —|—2mE[X] +E [XQ]
— (n+1)(2n+1
= m?+m(n+ 1) + LHEED

Table 2: The two first moments of discrete uniform distribution.

where R corresponds to the remaining service time of the customer currently being servetl; and
corresponds to service time of customershis is the same as the virtual waiting time, i.e. the waiting
time of a customer which arrives at the system at a given point of time. The Poisson-arrivals have the
lack of memory property from which it follows that the distribution of the actual waiting fithes the

same.

w unfinished work at the queue when customer arrives
U unfinished work at the queue at an arbitrary point of time

In other words]J ~ W andU = W, and hencel’V = m\. Furthermore, it holds that
— . 1—
W= xm =X -W+ ;X?),

from which we obtain

AX?2 X2 AX2

> Ve m oy

Wl —-MX) =

which is P-K formula.

4. A grocery store has two checkout counters each of which together receives a Poisson stream of
customers with rate 1/2 per minute. The number of items each customer carries is uniformly
distributed in the range 1, ..., 30. Processing an item at the counter takes 4 s. a) What is the
average waiting time of an customer in the checkout queue? b) Write the expression for the mean
waiting time in the case that counter 1 servers customers with no more thak items, and counter
2 is dedicated for customer with more thank items. Find the optimal value for k& with the aid of
a small computer program.

Solution:

The first moments of uniform distribution are presented in Table 2.
2
a) P-K formula can be applied [W] = %
Counters behave identically so we can concentrate on the first counter. The arrivatodiest

counter is
1, . 1
A=—-/min=——.
2 120 s

Let X be the number of items, i.€X is uniformly distributed in the rangg, ..., 30. Then the
service timeS of customer is
S=4s-X.
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It follows
E[S] = 4s-E[X]|=4s-31/2=062s5,
30
1 303161
E[S?] = 168 E[X?=165-) —i’=165 " _— =15128/3 5’ = 5043 <.
£~ 30 630

- 62s= 31 =~ 0.5167
T 120s 60 '

Substituting the numerical values to P-K formula gives

p = A-E[S]

_AE[S?] g 15128/387  3782s

Blw]= 2(1-p)  2(1-31/60) 87 4858

b) Here the total arrival rat&; = 1/min is split to two counters according to the number of items
X. Customers who buy mostitems are forwarded to countérand the rest to count@r Hence,
the parameters of countérare

p1 = P{arriving customer is served at counie} = 30
k k
)\1 = = s
30-60s 1800s
E[S1] = 4s-E[Xq]=4s-(k+1)/2=2(k+1)s,
k
1 k-(k+1)-2k+1) 8(k+1)(2k+1)
E[S?] = 168 - E[X}] =168 ) —i?=165" = $
EAl 6 [X7] =16 ;kz 6 " : ,
k K +k
= M- -E = 2(k+1)s=
P 1 BIS = 15505 2k H U s= =555
Similarly, the parameters of counteare 2 = 30 — k):
. . 30—k
pe = P{arriving customer is served at countef = —50
30—k 30—k
Ay = = ,
30-60s 1800s
E[Sy] = 4s-E[Xy]=4s-[k+ (k2 +1)/2] = (2k +62) s,
30
E[S;] = 165 E[X7] =168 ) s gl =16 [k + 2KE [X] + B [X7]]
i=kt+1 "0
30—k 1860 — 2k — 2k?
= M-E[S] = - (2k +62) s=
P2 1B = 550 2k +62) 1300
Waiting Time
800 \
600

400 \

200 /

\—/
10 15 20 25

Figure 8: The average waiting time of arriving customer (W = p; - W1 + pa - W).

P-K formula gives class specific mean waiting times. The optimialk = 21, which gives an
average waiting timé)” ~ 38.2 s. Below the solution is obtained with Mathematica.
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Exercise 6 P-K FORMULA AND PRIORITY QUEUES

X Uniformly distributed in 1 ... K’

EXk] = (k + 1)2
EX2[k ] = (k + 1)*@* + 1)/6

'S Uniformly distributed in k1 ...k2'

ES[k1_, k2] := 4%kl - 1 + EX[k2 - k1 + 1])
ES2KL_, k2] := 16%(kl - 1)"2 + 2%kl - 1)*EX[K2 - k1 + 1] + EX2[k2 - k1 + 1])

'P - K formula for waiting time’
WI_, S_, S2_] := I*S2/(2*(1 - I*S))
‘a)y

W[1/120, ES[1, 30], ES2[1, 30]] // N
Out[37] = 43.4713

b

WKIK_] := k/30*W[k/1800, ES[1, k], ES2[1, K] + (30 - k)/30*
W[(30 - k)/1800, ES[k + 1, 30], ES2[k + 1, 30]]

Table]WkK[K], {k, 16, 22}] // N

Out[51]= {66.4737, 54.9805, 46.7428, 41.3038, 38.4573, 38.2329, 40.9373}

5. Consider a simplified model for TCP linkB Assume that TCP packets arrive according to a
Poisson process with arrival intensity ofA = 100 pkt/s to a 2 Mbit/s DSL-modem acting as a
router. The packet length distribution and respective service times are the following:

length proportion time/ms

40 0.1 0.16
576 0.3 2.3
1500 0.6 5.9

Determine the mean waiting time of a packet in the queue, when the service discipline is,

a) FIFO
b) the shortest job first (hon-preemptive)

Solution:

The arrival rate of packets wb¥)/s, i.e.0.1/ms.

a) Apply P-K mean time formula:
E[S]=0.1-0.16+0.3-2.3 4 0.6 -5.9 = 4.246 ms
E[S?] =0.1-0.16> + 0.3-2.32 + 0.6 - 5.97 ~ 22.5 ms’.

Thus,
p = AE[S] = 0.4246,

and P-K mean time formula gives,

— AE[S?]  0.1-225
C2(1—p)  2(1 —0.4246)

b) In this case the packets are classified into three classes according to the length:

length proportion X\ EI[S;] E[S?]

~ 1.95 ms

40 0.1 0.01 0.16 0.0256
576 0.3 0.03 2.3 5.29
1500 0.6 0.06 5.9 3481

2Typically there are three peaks in TCP packet length distribution: the first peak at 40 bytes (ACK), the second peak around
552/576 bytes (the smallest possible value for MTU) and the third at 1500 bytes (the largest possible IP packet in ethernet).
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The mean remaining service tinfis,

R=2) \S?~1124ms
p

1
2

So the class-specific waiting times are,

W, = LA 1.126,
L—p1
Wy = l ~ 1.211,
(1 —=p1)(L = p1—p2)
— R
W3 = =~ 2.10.

(L=p1—p2)(1 = p1 — p2 — p3)

From what one gets the average waiting time,
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Exercise 7 M/G/1-QUEUE, TIME REVERSIBILITY

EX 7: M/G/1-queue, time reversibility

1. The Pollaczek-Khinchin formula for the Laplace transform of the waiting time W is

s(1—p)

W) = o T as ()

where S*(s) is the Laplace transform of the service timeS. Apply the transform formula to the
M /D/1 system, where the service time is constanl. Calculate the expectation and variance
of the waiting time. Hint: Determine S*(s), develop it into power series, take an appropriate
number of terms and make the division.

Solution:

M/G/1 queue where the service time is a constariience,S*(s) = e~*? and PK formula gives

s(1 —
Wls) = %
Furthermore,
EW] = —-Ww*(0),
{ EW? = w*(0) = V[W]=W*"(0) - W*(0)?

DevelopingV'* to a Taylor’s serie gived/*(s) = W*(0) + W*'(0)s + 2W*"(0)s>.. .. On the other
handW*(s) is

W*(S) _ S(l—p) _ S(l—p)
S—A+ A1 —ds+ 3d%s2 — Ld3s3..)  s(1—p)+ IAd2s2 — tAds3 ...
1 LA . ( Ad? )2 . |,
= =1-——5 57
1+ 5855 — g% 2(1-p) 2(1-p) 6(1—p)

Ad? AB(p+2)

1-— s+ +—]52:1— s s
1-p) 3 2(1-p)  12(1-p)?

20=p)  2(1-p)

Comparing the multipliers of the series givesd = p)

A2 Ad3 p
2(

Thus,
p
ST
_ plpt2) P\ o Ap+2p° 3p°
VIV = Gt <2(1—p)> TRt T mn ot
_ MCR
12(1 = p)2 "

2. Consider a M/G/1-queue. LetS denote the customers service time and's(t) its cumulative dis-

tribution function. Furthermore, let R denote the customers remaining service time on condition
that there is a customer in the server. Show that probability density function ofR is

1 — Fs(t)

Ir(t) = E[S]

Hint: generalize the hitchikers paradox presented in the lecture notes from mean times to pdf.
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\/

r r r
e
S, S, S; S,

Figure 9: Behaviour of conditioned system.

Solution:

Let S’ be the service time of the customer in service at arbitrary point of time on condition that there
is a customer in server. The original system is sometimes empty but in the conditioned system there is
always a customer in the server and the service time behaves according télfigure 9.

From figure one can deduce that it is more probable to “hit” on a longer service time than shorter. Next
we try to deduce the probability that at an arbitrary point of time the serviceSiroécurrent customer
would be in the intervalx, = + dz). This is clearly proportional E)a) the length of intervaly, and to

b) probability that service time would in of given lengi’{ S € (z,z + dx)}. Thus,

P{S" € (z,x +dx)} xx-P{S € (z,x +dz)} = xfs(x)

) zfs(x) x
— P{S" € (z,z+dx)} = Tufsly) dy = E[S]fS(x)'

Next we determine the tail distribution &f:
P{R>r}= / P{R > r|S' =x} -P{S" € (z,z +dx)} dx
0

uniform [z —r x

:ﬁ </rooxf5(:c)dx—rP{S>r}>,

and taking a derivate in respectitgives,

SP(R > ) = i (—rslr) + rds(r) — P{S > ) =~ 2 2
B d _P{S>r}_1—P{S<T}_ 1— Fs(r)
frr)=—2"P{R>r}=—0 s E[9] | E[S]

3. Consider an M /G /1 queue. Let the number of new customers arriving during a service time§
be V and denotea; = P{V > i}, ¢ = 0,1,.... Show thatE [V] = AE [S] and further that
p=AE[S] = 3>, a;.

Solution:

Applying the conditioning rule of expectation gives

E[V]=E[E[V|S] = E[\AS] = AE[S] = p.

3Take a big numbeN of service timesS,. From these on averagé - P{S € (z,z + dz)} fall in the range(, = + dz). Thus,
the probability to “hit” on service time with given length@s- = - P{S € (x,z + dz)}, whereC'is a hormalization constant.
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Similarly,

p=E[V]=> i -P{V=i}=> P{V=i}+> P{V=il+...=> a
=1 =2 =0

=0

4. In afinite M /G /1/4 queue the arrival rate A and the distribution of the service time S are such
that a; = P{V > i} = 1/3%t1. a) Based on the result of the previous problem, calculate
the load p of the queue. b) Determine the queue length distribution of the system. Hint: Solve

the unnormalized equilibrium probabilities in an infinite system 7r§°°) (¢ =0,...,3) using the
recursion on page 29, setting e.gr(()°°) = 1. Calculate the probabilities of the queue length after
a departure in a finite systemﬂ-z(K) (¢ =0,...,3) by using the formula on page 31, and finally,
the queue length probabilities in a finite systemp; (¢ = 0, ..., 4) with the aid of the formulae

on page 32.

Solution:

a) Herea; = P{V > i} = i+. Hence,

b) The point probabilitieg; are

2

kiZP{VZ’L’}ZaZ‘_l—aZ‘ZW.

The steady state probabilities of M/G/1 queue can be obtained by using the following recursive
formula:

i—1
[e.e] 1 [e.e] o0
71'1( ) = k_o ai,lwé ) + jEl ai,jw§ )

Substitutinga; andk;, and choosingréoo) =1, it follows

(o) 3 (1 S 1 (o 1 5 (o)
o0 _ [e’e) _ i—1 (oo
T T g §+Zgz‘—j+17rj T 531 1+Z?’] g
j=1 J=1
Applying the recursion gives
ﬂ(()oo) = 1,
() 1 _ 1
T g Ty
() _ _1 0 () _ 1
2T 93 <1+3 m )‘Z
(c0) _ _1 0 (00) o1 (o)) _ 1 (4+2+3) 1
s T 2-32<1+3”1 T3 )_2-9< 4 )
The queue length distribution afterd@parting customeis obtained by normalizing the above
probabilities:
1 1 1 8+4424+1 15
44— - =
+ 2 * 4 * 8 8 8
Hence,

1
(K) = &
0 15(8 4.2 1).
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The queue length distribution amriving customersees is obtained from:

(K) 1
P = —t—un i=0,1,..., K -1 and pk=1— —rx.
om0 o g

Hence,p + 7T(()K) = % + & = % and substituting the numerical values to equations gives

1
p:ﬁ(16 8 4 2 1).

5. Let B*(s) denote the Laplace transform of the busy periodB in an M /G /1 queue. This satisfies
so-called Takacs' equation,

B*(s) = S*(s+ A — AB*(s)),
where S*(s) is the Laplace transform of the service timeS.

a) Derive expression forB*(s) in the case of anM /M /1 queue, i.e. whenS*(s) = u/(p + s).
b) Derive the following expressions for the first two moments oB:

B- " P
1-p’ - (1-p)®
Solution:
a)
A direct substitution gives
* * * ,LL
B = — A\B =
() = FEHAAE) = S T m )
0 = —A(B () + (nts+NB(s)—p
2 _
B'(s) = _u—i—s—i-)\j:\/(ﬂ-l—s—l—)\) A p
2\ 2\
ptsHA= V(s + A2 -4
B 22 ’
because in order to have a stable solution we must Hags)| < 1.
b)
— d _,
B = _EB (S)\S:O
the first derivate oB*(s) is
—iB*(s) - 4 (S*(s+ X —AB*(s)))
ds N ds
dS* (s 4+ X — AB*(s)) dB*(s)
= - 1=
ds ds
Whens = 0, we haveB*(0) = 1 and
=0
——
5 - _dS*(04+ A= AB*(0)) (14 B)
ds
= S+)\SB
B - 2 _- 9
1-XS 1—0p
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Exercise 7 M/G/1-QUEUE, TIME REVERSIBILITY

The second moment can be obtained from the 2nd derivate,

_ d?
B2 = 25287 ()is=0
i.e.
2 d? d 2
752 (s) dsQS (s+A—=2A (s))( —1—)\( o (s))) +
+iS*( + A — AB*(s)) —)\d—QB*( )
ds s s ds? 5
Furthermore, at point = 0 one obtains
B2 = S2(1+AB)?+\SB?
= = 2
— — — — — (1 =AS+\S
B2(1-)\S) = S2(1+\B)?*=82( ————
(1-38) = S BP =5 ()
— - S2
( ) (1 —\S)?
S2 S?

1=A8)3  (1=p)*

31



S-38.143 Queueing Theory, Fall 2004 Virtamo / Hyytia

EX 8: Time Reversibility, Queueing Networks

1. Show that Kolmogorov criterion and detailed balance equations

are equivalent in the three node network depicted on the right. . @
W ql?\\Qn
G20

o1
@/ﬂ
-~

CETY

Solution:

One needs to prove the equivalance of the following conditions:

(K)  Kolmogorov's criterion:  qo1 - gi2 - g21 = qo2 * 421 * 410,

(D) Detailed balance: T Qi = T Qi Vi, j
1° (D) = (K)
From (D) it follows that,
70401 = 71410,
T1412 = 72421,
2420 = T0q02-
Thus,
T0q017T191272920 = T141072421704902 = 901412420 = Q10921902 = (K).
2° (K) = (D)
Global balance equations,
m0(qo1 + qo2) = T1q10 + T2q20 (8.1)
m1(q10 + q12) = Toqo1 + T2q21 (8.2)
m2(q20 + g21) = Toqo2 + T1q12 (8.3)

are always valid. We do a counter assumption that the detailed balance equations does not hold
between certain statés j). Without limiting the generality, we can choose that,

T0q01 < 1410,

from which, together with (8]1) and (8.2), it follows that the detailed balance equation does not
hold between the other states either:

T2q20 < T0q02,

mT1q12 < T2q21.

Thus,
704901 - 1412 - 72920 < 70402 * 24921 - 71410

Mo T Ty < TQ*T9+T1 — not valid.

2. Consiner the Jackson queueing network depicted below. Packets from outside arrive to the nodes
1, 2 and 5 as a Poisson stream with ratd. = 2 packets/s. In every node each link has own buffer.
The incoming packet stream to each node is randomly directed with the depicted probabilities.
The link from node 4 has capacity ofu = 8 packets/s, while the capacity of the other links are
pn = 3 packets/s. a) What are the mean delays of packets taking the routes 1-2-3 and 1-5-4?
b) How many packets there is on average in the network? c) What is the mean sojourn time of
packets entering the network?
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Exercise 8

TIME REVERSIBILITY, QUEUEING NETWORKS

3.

Solution:
I — N 1 1
Waiting time (average delay) i6 = — = P /A= /1 =
A 1—p 1—p p—2A
a) Mean delay in route 1-2-3 is, )
E(Ty93) = L ~ 1.66
Ty T2 T3 oarj12 T3 —1rj1i2
and mean delay in route 1-5-4 is,
1 1 . . . .
E(Ty54) = ~ 1.76. Figure 10: Traffic intensities in

= + +
3-3/2 3-7/4 8-55/12 the network.

b) In the network there are on averagém) = Zf‘il E(M;) packets, wherd”(m;) is the number
of packets in linki (either waiting on in service).

Now E(m;) = \T; = H%A and thus adding these together one obtains,

E(m)

M
Z Aifi — A
i=1

2 32 1/ 17/12 17/6 7/4  55/12 1
3-1/2 '3-3/2 3-7/4 3-17/12 3-17/6 3 -7/48-55/12 8 —55/12
L S SRS | S | S SIS U AR -
6-1 6-3 12—7 36—17 18—17 12—-7  36-17  96—55
1 717 7 17 55 34 55
Sl o+ 1T o = =214+ 4 2 x 2413,
st s Tttty LTI s

c) By applying the Little’s result for the whole system one obtains

Solution:

E(T)=——, wherey = 6, and thus, E(T) = T ~ 4.02.

2

Consider a cyclic closed network consisting of two queues. The service times in the queues are
exponentially distributed with parameters 1, and po. There are three customers circulating in
the network. a) Draw the state transition diagram of the network (four states). b) Determine
the equilibrium probabilities and calculate the mean queue lengths. ¢) Calculate the customer
stream in the network (e.g. the customer stream departing from queue 1). d) Rederive the results
of ¢) and d) by means of the mean value analysis (MVA).

a) State diagram of the system is depicted in[Figy. 11.

33



S-38.143 Queueing Theory, Fall 2004 Virtamo / Hyytia

Hy My My
VY A A
> ) S ) S
Hy K, K,
Figure 11: State diagram of the system.

b) In steady state it holds that

Himo = H2T1 T = pmy
2

H1me = Q2T = T2 = P T

p1T2 = p2T3 3 = pimg

Normalization:

(I+p+p*+p)m=1 = WOZ;.
L+p+p2+p?
The average queue lengths are
342p+p?
N1 = (3+2p+pH)m =
1 (B+2p+p%)mo s
3p% +2p2 4 p
Ny = (3p°+20*+ p)mg = . N+ Ny =3
2 (30° + 20” + p)mo T i Fr (N1+ Ny =3)
¢) The traffic flow is
1+ p+ p? C1-pP1-p 1—p?

A= (mo+m + w2 =

Tl T I T

1 — p4M1-

d) Mean value analysis (MVA):

T;[k] (1+Nz‘[]k—1])/u1
Tk
Nilk] = kZSrm
Nlk] = Ni[k]/T;[k]
Here,
N[O] = [0,0] _ 24p 1+2p | _ 1 2
( T = 1/m(L,p] TRl = 1m [m’ L+p p} = sy 200+ 207
1 p N[2] = 2|g2tl, s | = (2o ot
N[1] = {m, m} 2+2p+2p2 2+2p+2p? T+p+p2? 1+p+p2
(T3] = 1/m [”1’2157123“’,1+p+p2+p+2p21+p+p2p}
= e 320+ 0% p + 207 + 3]
— 3+2p+p° +2p° +3p°
NB = 3| s ]
= [3+2p+p%p+20° +3p°| Mo

Similarly, the traffic flow becomes

3+20+p* m+p+p*) _ m+p+p’) 1-p°

TAAp P2 B2+ 2 d4prpPtp 1

A= A3

4. In the closed queueing network depicted in the figure there are four customers. What is the
average cycle time of an customer and the average customer stream through queue 4?
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Exercise 8 TIME REVERSIBILITY, QUEUEING NETWORKS

queue 1

queue 2 queue 3

—_Tl@ _@——

queue 4

Ol

Solution:

In the lecture notes the following recursive method is presented. Initially we start with zero customers
and in each step one customer is added.X,¢8] = 0 and the recursive step is

_ _ 1
Tk = (14 Ni[k—1])—
i
_ N[k
Nilk] = k ’f[,]
Zj Aj ][k]
NIkl = NiK/T[K]
Here,
H1 = U4 = U )\1 == )\2:)\3:)\/2
p2 = p3=2u Apo= A
Matlab can be used to solve the problem numerically:
function r089( n ) 1.0000 0.5000 0.5000 0000
0.2500 0.1250 0.1250 6000
mu=1[1221];
I =[1112 ]:_ 1.2500 0.5625 0.5625 $000
N =[0000] 0.4651 0.2093 0.2093 1163
for k=1:4 1.4651 0.6047 0.6047 2163
T =([1111]+N) ./ my 0.6364 0.2626 0.2626 8384
apu =sum (| .= T );
N =k=x* (1l.xT)/ apu; 1.6364 0.6313 0.6313 8384
[T NIJ 0.7633 0.2945 0.2945 BA78
end;
0.4664 0.4664 0.4664 9329
lambda = N./T 8.5758 8.5758 8.5758 2879
k./ lambda
It holds that _ "
k
Ailk] = =
ik

so the average traffic streams of queues are
A[4] = p(0.47,0.47,0.47,0.93)

from which it can be deduced that the traffic flow of queue @98 .

The average cycle time of customer through queue 4 is obtained by meakintgmmediately after the
queue 4. The traffic flow in and out of the cut are equal. The average delay from the moment when
a packet leaves from the cut and returns to iVig\, = 4/\4 ~ %. The average cycle times of the
other queues are two times longer.

5. Consider Engset’s system withn customers ands servers. Let X; denote whether sourcei is
on (X; = 1) or off (X; = 0). Without the limitation posed by the number of servers each
source would change independently between the stat@sand 1 with transition rates ~ and p, SO
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that the probability of state 1isp = ~/(v 4+ w©). Show that each processX;, ¢ = 1,...,n

is reversible and thus the joint processX = (Xi, X2,...,X,,) is also reversible (no need
to prove). Furthermore, by truncation of a reversible process show that systems steady state
probability distribution with a limited number of servers s s,

n n
CHpn(l_p)l_Jia Zjigsa
P{X = j} = =1 =1

0, otherwise,

where j is an-vector consisting of zeroes and ones, an@ is a normalization constant.

In the similar way one can write down steady state distribution for a smaller systemX’ —=
(X5,...,X]}), with n — 1 sources (i.e. one source is missing) and the same number of servers.
Show that steady state distribution of other components oX on condition that source1 is off, is
equal to the steady state distribution ofX”’,

P{(Xa2,...,X,) =j|X1 =0} =P{X' =j},

where j’ is again (n — 1)-vector consisting of zeroes and ones. Based on that, deduce that the
blocking probability experienced by sourcel is equal to the time blocking in the system with one

source less.
Solution:
Let eachX; be independent of others, i.e. it is assumed that the number y
of servers not less than the number of sources. Then the detailed balance e ‘e
. >
equation holds for eack;, m
(@) (4) Y
T =T P
0 401 1 41,0 e, o
where, H
@ _ Y
41,0 =M, Ty = ﬁa o ‘o
g1 = = T
, 1 RN H

Thus, each¥; is time reversible.

As each process is time reversible the joint process is also time reversible (assuming sufficient number
of servers).

In the lecture notes it is shown that when a time reversible process is truncated the state probabilities
of the resulting process are the same as in the original process multiplied with some normalization
constant. In this case the state probabilities of the original process are clearly,

PIX =j=]p (1 -0,
i=1

from what the claim follows.
Next we try to determine the state distribution of other components on condition that $asiiceoff
state:
P{X =(0,72,..-,7n)}
P{X; =0}
C-p)Ilip(1—p)'
C(1=p) > e liap” (1 - p) i

n—1
= [V -p' =P =)
i=1

P{(XQ,,XTL) :j/’Xl :0} =
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Consider next the call blocking probability experienced by solirdeet,

A = At = (Xo,...,Xn) =7§,
B = B(t) — Xi(t) =0,
C = C(t,t+dt) < lahdel yrittdd menna paalle aikavalilid, ¢ + dt) .

The state probability distribution of other components seen by sausten it tries to move from OFF
state to ON state is,

P{A|C} = P{A|C,B}
P{A,C, B}
P{C, B}

P{C|A, B} - P{A, B}
P{C|B} - P{B}
P{A, B}
P{B}

= P{A|B} = P{X' = j'}.

Thus the state probability distribution of other components seen by sbwhen it tries to move to the
on state is equal to the steady state distribution of smaller system. Hence, the call blocking probability
of sourcel is equal to the time blocking in the smaller system.
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A Some Formulas and Tables

Polynomials and series

n
binomial theorem (a + b)" = <n> a'b"
i—0 '
factorizations a"+b" = (a+b)(a"t —a" b .. —ab 2 Y,
a" =" =(a—b)(a" ' +a" %4...+ab" 2+ ")
_ T T __
| > W
series “ ’:
" n(n+1) ", nn+1)@2n+1)
D i= D =
, 2 ; 6
=0 1=0
Power series
i .
Power seriesS(z) = Zaiz’ converge for alllz| < R, where R the radius of convergencekR =
=0

lim; @i
i—00 | g 7

or R = lim;_, \/Tl_\ (if exists). The serie can be integrated and differentiated tern
a;
term inside the radius of convergenBe S’(z) = > 1 ia; 2"~ < oco.

Discrete Distributions

name P{X =i} generating fn. E [X] o?
Geometric| (1 —p)"'p i=123,... 5 1/p (1-p)/p?
: bY
Poisson ,—'e*A i=0,1,2,... eMz=D A A
2.
Binomial | (7})p(1 —p)"~* i=0,1,....n (L—p+pz)" np np(l — p)
, P wheni = 1 . B _
Bernoulli { 1—p wheni=0 1=0,1 1—p+pz D p(1 —p)
Uniform 1/n i=1 n 2=t ntl  (B+1)(2k+1)
[ n—nmz 2 6
Continuous Distributions
name density function generating fn.E[X] o2
Exponential| Ae=* Aax >0 (1—t/N)71 1A 1/)2
T— U 2 J—
Normal L -5 020 -0<e<oo, e 2
N —00 < U < 00

Probability Calculus

name formula explanation
P{B|A;}P{A;}
> P{BJA;}P{4;}
De Morgan AUB = (A% 0 B9,
AN B = (A% U B

Bayes formula P{A;|B} =

Markov’s inequality P{X >a} <pu/a X non-negativeg > 0

Chebyshev’s inequality P{|X — pu| > k} < 02 /k?
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Generating function, z-transformation

Let X be a non-negative integer valued probability variabl€X = i} = p;, wheni =0,1,....

The generating function of, denoted by, is, Gx (z) = Zpi 2 =E[].
i=0

Y Gy note

X1 +Xo+...+ XN QN(QX(z)) X, ~X, random sum

A+ B Ga(z)-Gp(z) | AandB are independent

Twisted distributions

Denote withX 3 a twisted random variable obtained from random variallewhere3 is the twisting
parameter. Then the pdf of g is

e f(x)
M(@B)
where)M (3) is the moment generating function &, i.e. M (3) = E [¢"~].

fa(z) =

Queueing Theory
name formula explanation
Little’s formula N=\-T N=number of customers in system,
A=arrival intensity and’'=service time
M/M/1-queue 7= (1—p)p’ p=ANup<l1
No_P
1—p
_ AS2 S . o
M/G/1-queue W=——— T=S5+W | Sisthe service time
2(1 — \S)
a™/n!
Erlangs B-formula| E(n,a) = n=serversa=load
1+a/ll4+...+a"/n!
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Erlang’s blocking formula

100%;
— 4’/ 4/:: ;
_— > / '/,/,1;
10%—— BRI #5774
///I //I //I ,/ y iy /
P / A /1 / /
—- // // yAWAN AW
1% |2~ A A LSS,
'// //I 7 /II //II /II /III /III I VA
7 B 77 7 /7
1%l | 84 o/ B/0/BR[1
i - yda 7 a /I /l /I /I
/ / V4 / yARWA 4
// pd // / / ]/ /
01% & / VARV Sy
1 10

0.1

100% —
—
e S // - — A _ [
109 = 0020~
I"’ // // // // // /// //,/ ///, ////
| / / 4 / pd N A
106 [ [V [ /L S
l"' Ii l”’ // I/ // // // / //
| / [ / / / /
1% [ L[ ) [ [JOYPU/E0P
Ii li li Ii f I/ I/ I/ //
I 1] [ [ / / /
[T 1] [ 1]
60 80 100

.01%
0 20 40

Figure 12: Erlang blocking formula E(n, A) as a function of the offered traffic intensity A. The number of
servers n is the parameter of the family of curves: upper figure n = 1,...10, lower figure n =

10, ...100.
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Figure 13: The profiles of Erlang blocking formula E(n, A) for 0.1%, 0.2%, 0.5%, 1%, 2%, 5% and 10%
blocking probability.
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Example source code

Mathematica

BeginPackagg"tlt ‘" ];

(*
x+ Commonly used functions in-38141 Teletrdfic Theory

*)

(+ Erlang’s blocking formula %)

erl::usage = "erl[_n,.a_], Erlang’s B-formula, ,n_servers,and load_a.";

erld :: usage "erld[x,_.a_],.generalized,Erlang 's_B-formula_for_real_values.";
erli::usage "erlia, B ], inverse Erlang 's_formula, how_many_servers required.";

(* Markov Chains x)
DTMC:: usage = "DIMC[P], steady, state distribution_of_discrete time_Markov_chain.";
CTMC::usage = "CIMC[Q], steady,state distribution_of_continuous,time_Markov_chain.";

(x other x)
Qnddl::usage = "Qndd1[xN, D], virtual_waiting_time_distribution_for_the N«D/D/1_queue.";

Begin["‘Private ‘"];

erl[n_,a_] := Module[{e=1}, Do[e=1+ixe/a,{i,n}]; 1/e]
erld[x_, a_] :=N[a”x Exp[—a]/Gamma[x+1,a]] /; (x >= 0) && (a > 0)
erli[a_,B_] = Module[{e=1,r=1/B,n=0}, While[(e=1+mxe/a)<r,n++];n]
CTMC[Q_] := Module[{n=Length[Q] ,EE, ee},

EE=Table[1,{n},{n}];

ee=Table[1,{n}];

Chop[ee .Inverse[Q+EE]]]
DTMC[P_ ] := Module[{n=Length[P],EE, ee},

EE=Table[1,{n},{n}] —IdentityMatrix [n];
ee=Table[1,{n}];
Chop[ee .Inverse[P+EE]]]

Qndd1l[x_, N_, D_] :=Module[{sum = 0, bin = 1, n},
For[n = N, n > x, n—y
sum += bin ((n—x)/D)*n (1—(n—x)/D)*(N-n) (DN+x)/(D-n+x);
bin x= n/(N-n+1);
I;

sum ]

End[];
EndPackage[];

Matlab

function b = erl( n, a)
% Erlang’s blocking formula, erl(n,a)
e =1;

function b = erld( x, a )
% Erlang’s (generalized) blocking formula, erld(x,a)
b = a”x x exp(—a) / ( gamma(x+1)*(1 — gammainc(a,x+1) ) );

function n = erli( a, B)
% Inverse Erlang’'s blocking formula, erli(a,B)

n=0;

r = 1/B;

e =1+ nl/a;
while e < r,
n=n+1;

e =1+ mela;
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end

function p = DIMC( P )

% DTMC( P ), returns steady state distribution of a Discrete Time Markov Chain
n length( P );

p ones( 1, n )x inv( P + ones(n)— eye(n) );

function p = CTMC( Q )

% CTMC( Q ), returns steady state distribution of a Continuous Time Markov Chain
n = length( Q );

p=ones(1l,n)* inv(Q+ ones(n ) );
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Normal Distribution Table

O(x) = \/%/ e*/2 gt

O(z) +P(—x)=1

0.5

T

0

1

2

3

5

6

7

8

9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4

0.5000
0.5398
0.5793
0.6179
0.6554
0.6915
0.7257
0.7580
0.7881
0.8159
0.8413
0.8643
0.8849
0.9032
0.9192
0.9332
0.9452
0.9554
0.9641
0.9713
0.9772
0.9821
0.9861
0.9893
0.9918
0.9938
0.9953
0.9965
0.9974
0.9981
0.9987
0.9990
0.9993
0.9995
0.9997

0.5040
0.5438
0.5832
0.6217
0.6591
0.6950
0.7291
0.7611
0.7910
0.8186
0.8438
0.8665
0.8869
0.9049
0.9207
0.9345
0.9463
0.9564
0.9649
0.9719
0.9778
0.9826
0.9864
0.9896
0.9920
0.9940
0.9955
0.9966
0.9975
0.9982
0.9987
0.9991
0.9993
0.9995
0.9997

0.5080
0.5478
0.5871
0.6255
0.6628
0.6985
0.7324
0.7642
0.7939
0.8212
0.8461
0.8686
0.8888
0.9066
0.9222
0.9357
0.9474
0.9573
0.9656
0.9726
0.9783
0.9830
0.9868
0.9898
0.9922
0.9941
0.9956
0.9967
0.9976
0.9982
0.9987
0.9991
0.9994
0.9996
0.9997

0.5120 0.5160
0.5517 0.5557
0.5910 0.5948
0.6293 0.6331
0.6664 0.6700
0.7019 0.7054
0.7357 0.7389
0.7673 0.7703
0.7967 0.7995
0.8238 0.8264
0.8485 0.8508
0.8708 0.8729
0.8907 0.8925
0.9082  0.9099
0.9236 0.9251
0.9370 0.9382
0.9484 0.9495
0.9582  0.9591
0.9664 0.9671
0.9732 0.9738
0.9788 0.9793
0.9834 0.9838
0.9871 0.9875
0.9901 0.9904
0.9925 0.9927
0.9943 0.9945
0.9957 0.9959
0.9968 0.9969
0.9977 0.9977
0.9983 0.9984
0.9988 0.9988
0.9991 0.9992
0.9994 0.9994
0.9996 0.9996
0.9997 0.9997

0.5199
0.5596
0.5987
0.6368
0.6736
0.7088
0.7422
0.7734
0.8023
0.8289
0.8531
0.8749
0.8943
0.9115
0.9265
0.9394
0.9505
0.9599
0.9678
0.9744
0.9798
0.9842
0.9878
0.9906
0.9929
0.9946
0.9960
0.9970
0.9978
0.9984
0.9989
0.9992
0.9994
0.9996
0.9997

0.5239
0.5636
0.6026
0.6406
0.6772
0.7123
0.7454
0.7764
0.8051
0.8315
0.8554
0.8770
0.8962
0.9131
0.9279
0.9406
0.9515
0.9608
0.9686
0.9750
0.9803
0.9846
0.9881
0.9909
0.9931
0.9948
0.9961
0.9971
0.9979
0.9985
0.9989
0.9992
0.9994
0.9996
0.9997

0.5279
0.5675
0.6064
0.6443
0.6808
0.7157
0.7486
0.7793
0.8078
0.8340
0.8577
0.8790
0.8980
0.9147
0.9292
0.9418
0.9525
0.9616
0.9693
0.9756
0.9808
0.9850
0.9884
0.9911
0.9932
0.9949
0.9962
0.9972
0.9979
0.9985
0.9989
0.9992
0.9995
0.9996
0.9997

0.5319
0.5714
0.6103
0.6480
0.6844
0.7190
0.7517
0.7823
0.8106
0.8365
0.8599
0.8810
0.8997
0.9162
0.9306
0.9429
0.9535
0.9625
0.9699
0.9761
0.9812
0.9854
0.9887
0.9913
0.9934
0.9951
0.9963
0.9973
0.9980
0.9986
0.9990
0.9993
0.9995
0.9996
0.9997

0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.7549
0.7852
0.8133
0.8389
0.8621
0.8830
0.9015
0.9177
0.9319
0.9441
0.9545
0.9633
0.9706
0.9767
0.9817
0.9857
0.9890
0.9916
0.9936
0.9952
0.9964
0.9974
0.9981
0.9986
0.9990
0.9993
0.9995
0.9997
0.9998

Approximation for the large values of
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Index

absorbing staté, 10
arriving customer
Engset’s system, 17

balance equations
global,[8[ 14
batch arrivals_ 16
average waiting timég, 21
Bernoulli trial,[8
binomial distribution[2[ 13
binomial theorem 14
birth-death procesk, 12
bittivirheen todennakoisyys
tietoliikenneyhteyd, 12
busy period
M/G/1,[30
Takacs’ equatior, 30

chain rule,seetower property
classification of stateB] 7
closed network, 33
closed queueing networlk, 134
concentratof_17
conditional

covariancel.]2

expectation, 13
conditioning rule[ 2B

mean and variancg, RP1
covariance

conditional 2

tower property{ 2
cyclic closed network, 33

detailed balancé¢, 32
detailed balance equatiofs] 36
dimensioning
modem pool T4
duel [10

empty system
in M/G/1,21
Engset’s systen, 117, B5
arriving customeif, 17
equilibrium probabilities
Markov procesd, 12
Erlang’s loss systeri, 116
B-formula,[14
ordered server§, 15
exponential distribution
orderings[ 7
exponential random variables
probability of increasing ordelr] 7

45

FIFO queueing discipling, 25
finite
state spacé, 85

game strateg{, 13

Gaussian distributiorseenormal distribution

generating functiori,14

global balance equation|, [8.]14
grocery store countells, 123
group arrivalsseebatch arrivals

independencé] 3
Jackson queueing netwofk,]32
Kolmogorov criterion[“32

Laplace transform
of busy period 30
Little's result[14[ 22 33
M/G/1,[21
Littlen tulos[14
location of umbrellad,18

M/D/1
waiting time [27
M/G/1
arrivals during one service time,|28
busy period-30
empty systeni, 21
remaining service timé,_ 27
waiting time[21
M/G/1/4,[29
M/M/1,
M/M/1/2,[18
M/M/2/2,[18
Markov chain[8
absorbtion[_10
global balance conditiof] 8
state classificatiof,] 7
Markov process
equilibrium probabilities[ 112
global balance equatioh, 14
transition rate matrix,_12
mean
tower property[ 16
mean value analysiseeMVA
modem pool T4
MVA, B3|

non-preemptive
priority queue[ 2b
normal distribution[_44



approximation of tail distributiori, 44

open queueing network, B2
optimal
game strategy. 13
ordered servers
in modified Erlang’s systerh, 115
overflow probability[7IP

PASTA,[18
Poisson distribution
sum[4
Poisson procesk. 113
polishing station| 18
Pollaczek-Khinchin formula, 2L, 23
Laplace transformi, 27
Pollaczek-Khinchinin formuld, 22
priority queue
non-preemptive, 25
waiting time [25

gueueing discipline
FIFO,[25
shortest job firsf, 25
work conserving, 21

gueueing network
closed[(33, 34
cyclic,[33
Jackson-32
open[3P

random selection,]3
random suni, 16
remaining service time
M/G/1,[Z1
router
output buffer[ 1D

shared memory area, |19

shortest job firs{, 25

state space
truncation[ 1P

tail distribution
of normal distribution[-44
Takacs’ equatiori,_30
taxi station[IP
Taylor’s serie[ 27
time reversibility[ 35
tower propertyl Rseeconditioning rule
covariancel 12
mean[b
variance[ P16
transition rate matrix, 12
truel,[11

truncated state spade,] 19
truncation of state spade.|35
two service classes, 23

uniform distribution[ 2B 25

variance

tower propertyl 4,16
virheeton tiedonsiirtd, 12

waiting time,seePollaczek-Khinchin formula
batch arrivals 21
in priority queue[ 2b
M/D/1,24
M/G/1,[21
work conserving queueing disciplirie,]121
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