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The Verilog Language 

• A hardware description language (HDL) used for 
modeling, simulation and synthesis of digital 
electronic systems 

• One of the two most commonly-used languages in 
digital hardware design (VHDL is the other) 

• Virtually every chip (FPGA, ASIC, etc.) is designed in 
part using one of these two languages 

• Combines structural and behavioral modeling styles 

• IEEE standard 1364-1995 

• Verilog-2001 extends the initial Verilog-95 specification 
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Simulation 

• Simulation is used to verify the functional 
characteristics of models at any level of abstraction 

• One of the main uses of Verilog/VHDL is simulation 

• To test if the RTL code meets the functional 
requirements of the specification, we must see if all 
the RTL blocks are functionally correct. 

•  To achieve this we need to write a testbench, which 
generates clk, reset and the required test vectors 

• Simulation is needed after every refinement step 
– Behavioral,  zero-delay gate level, timing, post P&R 

simulation 
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Discrete-event Simulation 

• Basic idea: only do work when something changes 

• Centered around an event queue 
– Contains events labeled with the simulated time at which 

they are to be executed 

• Basic simulation paradigm 
– Execute every event for the current simulated time 

– Doing this changes system state and may schedule events 
in the future 

– When there are no events left at the current time instance, 
advance simulated time soonest event in the queue 
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How Are Simulators Used? 

• Testbench generates stimulus and checks 
response 

• Coupled to model of the system 

• Pair is run concurrently 

Testbench System Under Test 

Stimulus 

Response 
Result 
checker 
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Timing Simulation 

• Timing simulation occurs after 
–   synthesis and 

–  after Place and Route (P&R) 

• It includes gate and wire delays to make 
simulation more realistic 

• Before P&R, the simulator uses gate delays 
models and (if available) wire delay models 

• After P&R, more detailed wire delay 
information can be fed back to the simulator 
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Synthesis 
• High level (behavioral) synthesis (HLS) is the 

conversion from algorithmic/behavioral logic to 
synthesizable HDL 

– The input to the HLS tool is C, C++, SystemC, behavioral 
HDL, etc. 

• HLS consists of the following steps 

– Parsing and analysis 

– Algorithmic optimization  

– Control/Data flow analysis 

– Operation scheduling 

– Resource allocation and binding 

– Code generation 
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Synthesis 

• Logic synthesis is the conversion from 
synthesizable HDL or from boolean functions 
to a multilevel gate netlist  
– First, technology-independent optimizations based on 

boolean arithmetic properties 

– Then, technology dependent optimizations convert the 
circuit into a network of gates in a given technology 

• Library mapping uses the available technology libraries 
to map boolean expression into gates  
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Placement and Routing (ASIC) 

• The gate level netlist is then placed in the 2D 
available space and the gate blocks are 
interconnected 

• The objective is to reduce latency and improve 
clock frequency 

• Clock tree synthesis also happens here 

• The P&R tool output is a GDSII file , used by 
foundry for fabricating the ASIC 

– GDSII is data base format used for data exchange 
of integrated circuit or IC layout artwork 
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Placement and Routing (FPGA) 

• FPGAs contain programmable logic blocks that 
can be reconfigured by the user after fabrication  

• Placement maps the synthesized gate netlist into 
the available reconfigurable logic 

• Routing maps the interconnects between gates 
into the available routing resources of the FPGA 

• After P&R, a tool is used to produce the final 
configuration bitstream 

• The bitstream is loaded to configure the FPGA 
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Learn by Example:  Combinational Logic  
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Adder: a circuit that does addition 
 
Here’s an example of binary addition: 

Adding two N-bit 
numbers produces an 
(N+1)-bit result 
 

“Ripple- 
carry 
adder” 

  

1101  

+0101  

10010  
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Α Β Cin S Cout 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

1-bit Adder 

Sum: S  A  B  C 

Carry Out: 

CO  A'BC  AB'C  ABC'  ABC 

 (A'  A)BC  (B'  B)AC  AB(C'  C) 

 BC  AC  AB 

Build Truth Table and use Sum of Products (SOP) 



// This is a  behavioral module of 1-bit adder 
module fulladd (Cin, x, y, s, Cout); 
 input Cin, x, y; 
 output s, Cout; 
  
 assign s = x ^ y ^ Cin; 
 assign Cout = (x & y) | (x & Cin) | (y & Cin); 
       
endmodule   

1-bit Adder 
module: Basic unit of description  

I/O ports with which the module  
communicates externally with other 
modules 

Continuous assignment: the RHS is 
evaluated again every time the value 
of an operand  changes. The LHS is 
assigned that value.  

This is an example of Behavioral Description 
13 

One line comment 



/* This is a  structural module of 1-bit adder 
*/ 
module adder4 (carryin, X, Y, S, carryout); 
 input carryin; 
 input [3:0] X, Y; 
 output [3:0] S; 
 output carryout; 
 wire [3:1] C; 
  
 fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]); 
 fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]); 
 fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]); 
 fulladd stage3 (C[3], X[3], Y[3], S[3], carryout); 
   
endmodule  

4-bit Adder Structural Description 

Instantiation of the module fulladd 

Arguments correspond to formal 
parameters of modules 
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Multiple lines comment 



module addern #(parameter n=32) (carryin, X, Y, S, carryout); 
 input carryin; 
 input [n-1:0] X, Y; 
 output [n-1:0] S; 
 output carryout; 
 reg [n-1:0] S; 
 reg carryout; 
 reg [n:0] C; 
 integer k; 
  
 always @(X, Y, carryin) 
 begin 
  C[0] = carryin; 
  for (k = 0; k < n; k = k+1) 
  begin 
   S[k] = X[k] ^ Y[k] ^ C[k]; 
   C[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k]); 
       end 
  carryout = C[n]; 
 end 
endmodule  

Alternative N-bit Adder 

Behavioral Description 

An always statement is only triggered at (@) the 
condition in the parenthesis (sensitivity list). 
We execute the always statement only when X or Y or 
carryin change 

reg is a data type that indicates a  
driver that can store a value. 
If a signal is not reg, it is a wire 
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n=32 sets default value for parameter n 



module addern #(paramtere n=32) (carryin, X, Y, S, carryout, overflow); 
 input carryin; 
 input [n-1:0] X, Y; 
 output [n-1:0] S; 
 output carryout, overflow; 
 reg [n-1:0] S; 
 reg carryout, overflow; 
  
 always @(X or Y or carryin) 
 begin 
  S = X + Y + carryin; 
  carryout = (X[n-1] & Y[n-1]) | (X[n-1] & ~S[n-1]) | (Y[n-1] & ~S[n-1]); 
  overflow = carryout ^ X[n-1] ^ Y[n-1] ^ S[n-1]; 
 end 
  
endmodule  

Behavioral Description 

Another one 

S, X, Y are arrays 
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Sequential Logic 
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Specifications 
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What if you were given the following design specification: 

When the button is 
pushed: 

1)Turn on the light if it 

is off 

2)Turn off the light if it 

is on 
The light should 

change state within a 

second of the button 

press 

button light 
What makes this circuit  
different from those we’ve 
discussed before? 

 
1.“State” – i.e. the circuit has 

memory 
2.The output was changed by a 

input “event” (pushing a 
button) rather than an input 
“value”c 
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Digital State 
One model of what we’d like to build 

 

Combinational 
Logic 

Current 
State 

New 
State 

Input Output 

Memory 
Device 

LOAD 

Plan: Build a Sequential Circuit with stored digital STATE –  
•Memory stores CURRENT state 
•Combinational Logic computes 

•NEXT state (from input, current state)  
•OUTPUT bit (from input, current state)  

•State changes on LOAD control input 
 

 
 If Output depends on Input and current state, circuit is called a Mealy machine.  
If Output depends only on the current state, circuit is called a Moore machine. 
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D  

 

CLK 

 
Q 

The edge-triggered D register: on the rising 
edge of CLK, the value of D is saved in the 
register and then shortly afterwards appears 
on Q. 

Our building block: the D FF 
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D-Register Timing 

CLK 

D 

Q 

≤tPD 
 

≥tCD 

tPD: maximum propagation delay, CLK  Q 

 tCD: minimum contamination delay, CLK Q  

tSETUP: setup time 

≥tSETUP 

How long D must be stable before the rising edge of CLK 

≥tHOLD 

tHOLD: hold time 
How long D must be stable after the rising edge of CLK 
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module dff (input D, CLK, output reg Q);  
always @(posedge clk) 
 begin 
  Q<=D; 
     end 
endmodule; 

The Sequential always Block 

module CL(input a,b, sel,  
                    output reg out); 
always @(*) 
 begin 
  if (sel) out = b; 
               else out = a; 
     end 
endmodule; 

module SL(input a,b, sel,  
                    output reg out); 
always @(posedge  clk) 
 begin 
  if (sel) out = b; 
               else out = a; 
     end 
endmodule; 
 



 
Language Elements and Expressions 
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Numbers in Verilog 
• Integer numbers 

– Simple decimal notation 
• 32, -15 

– Base format notation : [size in bits]’base value 
– Base is one of d or D (decimal), o or O (octal), b or B (binary), h 

or H (hex). Use s for signed. 
• 5’O37        // 5 bit octal number 37 
• 4’D2           //  4 bit decimal number 2 
• 4’B1x_01   // 4 bit binary number 1x01.  
• 7’Hx            // 7 bit hex xxxxxxx 
• 8’shFF         // Signed hex equal to -1 
• 4’d-4            // Not legal. The sign is before the size. 
• -4’d4           //  4-bit binary number -4. The sign is before the size  
• (2+3)d’10  // Not legal. Size cannot be an expression 

– The underscore character (_) is legal anywhere in a number 
except as the first character, where it is ignored 

– When used in a number, the question mark (?) character is the 
Verilog alternative for the z character. 
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Numbers in Verilog 

• Real numbers 

– Decimal notation 

• 32.0, -11.06 

• 2.     // Not legal. Must have a digit on either side of 
decimal 

– Scientific notation 

• 23.51e2     // 2351.0 

• 23_5.1e1   // 2351.0 

• 5E-4 
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Strings in Verilog 

• A  string is a sequence of chars within double 
quotes 

– “Verilog is cool!” 
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Four-valued Data 

• Verilog’s nets and registers hold four-valued data 
 
• 0, 1 

– Obvious 

• Z (high impedance) 
– Output of an undriven tri-state driver 
– Models case where nothing is setting a wire’s value 

• X (unknown or undecided) 
– Models when the simulator can’t decide the value 
– Initial state of registers 
– When a wire is being driven to 0 and 1 simultaneously 
– Output of a gate with Z inputs 
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Two Main Data Types 

• Wires represent connections between things 
– Do not hold their value 
– Take their value from a driver such as a gate or other module 
– A signal is wire by default 
 

• Regs represent data storage 
– Behave exactly like memory in a computer 
– Hold their value until explicitly assigned in an initial or always 

block 
– Can be used to model latches, flip-flops, etc., but do not 

correspond exactly 
– Shared variables with all their attendant problems 
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Nets and Registers 

• Wires and registers can be bits, vectors, and arrays 
 

wire a;   // Simple wire 
wire [15:0] dbus;  // 16-bit bus 
wire #(5,4,8) b;  // Wire with rise delay 5, fall 

delay 4, and turn-off delay (hiZ) 8 
reg [-1:4] vec;  // Six-bit register 
integer imem[0:1023]; // Array of 1024 integers 
reg [31:0] dcache[0:63];  // A 32-bit mem with 64 

entries 
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Operators 

• Arithmetic operators 
• X = (A+B)-C       // binary plus and minus 

• X = -Y                  // unary minus 

• X = Y*Z               // multiplication 

• X = A/B               // division 

• X = A%B              // modulus is the remainder with         

                                // the sign of the dividend.  

                                // 7%4 = 3, -7%4 = -3, 7%-4 = 3 

• X = A**B            // exponent (Only in Verilog 2001) 
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Operators 

• Relational operators 

– The result is 0 (false), 1 (true), or x (either operand 
has an x or z bit) 

• 23 > 45                         // false (value 0) 

• 52 < 8’hxFF                  // result is x 

• ‘b1000  >= ‘b01110    // false. Smaller sized operand is 
zero-filled 
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Operators 

• Equality operators. 

– 2’b10  ==  4’b0010        // true 

– ‘b11x0 == ‘b11x0           // unknown because there 
is a bit in in either operand which is x (or z) 

– ‘b11x0 === ‘b11x0         // true. In case equality, x 
and z are compared strictly as values 
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Operators 

• Logical operators. 

– A && B    // logical AND 

– A || B      // logical OR 

– !A             // logical NOT 
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Operators 
• Bit-wise operators 

– ~A (unary negation) 
– & (binary and) 
– | (binary or) 
– ^ (binary xor) 
– ~^ (binary XNOR) 

 

 

 0 1 X Z 
 

0 0 0 0 0 
1 0 1 X X 
X 0 X X X 
Z 0 X X X 

AND (&) 

 0 1 X Z 
 

0 0 1 X X 
1 1 1 1 1 
X X 1 X X 
Z X 1 X X 

OR (I) 
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Operators 

• Reduction operators 
• A = ‘b0110, B = ‘b0100, C = ‘b0x1 

• &B  is 0   // logical AND of all bits  

• |B  is 1   // logical OR of all bits  

• ~&A  is 1   // logical NAND of all bits  

• ^B  is 1   // logical XOR of all bits  

• ~^B  is 0   // logical XNOR of all bits  

• &C  is 0   // at least a bit is 0 

• |C is 1     // at least a bit is 1 

• ^C  is x   // if any bit is x or z, result is x 
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Operators 

• Shift operators 

– A >> B     // logical right shift  

– A << B     // logical left shift  

– A >>> B     // right shift for signed numbers (Only 
Verilog 2001) 

– A <<< B     // left shift for signed numbers (Only 
Verilog 2001) 

 

• Conditional operator 

– cond_expr? expr1 : expr2 
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Operators 

• Concatenation and Replication operators 

– wire [7:0] Dbus 

– wire [11:0] Abus 

– assign Dbus = {Dbus[3:0], Dbus[7:4]}  // 
concatenation: swap nibbles 

– Abus ={3{4’b1011}} // 12’b1011_1011_1011 
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Structural and Behavioral Models 
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Two Main Components of Verilog 

• Concurrent, event-triggered processes (behavioral) 
– Initial and Always blocks 
– Imperative code that can perform standard data 

manipulation tasks (assignment, if-then, case) 
– Processes run until they delay for a period of time or wait 

for a triggering event 

• Structure (structural) 
– Verilog program built from modules with I/O interfaces 
– Modules may contain instances of other modules 
– Modules contain local signals, etc. 
– Module configuration is static and all run concurrently 

• High level modules typically structural 
• Low level modules (leaves) typically behavioral 
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Structural Modeling 

• When Verilog was first developed (1984) most 
logic simulators operated on netlists 

• Netlist: list of gates and how they’re 
connected 

• A natural representation of a digital logic 
circuit 

• Not the most convenient way to express test 
benches 
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Behavioral Modeling 

• A much easier way to write testbenches 

• Also good for more abstract models of circuits 
– Easier to write 

– Simulates faster 

• More flexible 

• Provides sequencing 

• Verilog succeeded in part because it allowed both 
the model and the testbench to be described 
together 
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Multiplexer Built From Primitives 

module mux(f, a, b, sel); 
   output f; 
   input a, b, sel; 
 
  and g1(f1, a, nsel), 
  g2(f2, b, sel); 
   or g3(f, f1, f2); 
   not g4(nsel, sel); 
 
endmodule 

a 

b 

sel 

f 

nsel 
f1 

f2 

g1 

g2 

g3 

g4 

Module may contain 
structure: instances of 
primitives and other 
modules 

Identifiers not 
explicitly defined 
default to wires 

Predefined module types 
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Multiplexer Built With Always 

module mux(f, a, b, sel); 
output f; 
input a, b, sel; 
reg f; 
 
always @(a, b, sel) 
  if (sel)  
       f = b; 
  else 
       f = a; 
 
endmodule 

a 

b 

sel 

f 

Modules may contain one or 
more always blocks 

Sensitivity list 
contains signals 
whose change 
triggers the execution 
of the block 
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Mux with Continuous Assignment 

module mux(f, a, b, sel); 
output f; 
input a, b, sel; 
 
assign f = sel ? b : a; 
 
endmodule 

a 

b 

sel 

f 

LHS is always set to the value on 
the RHS 
Any change on the right causes 
reevaluation 
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Mux with User-Defined Primitive 

primitive mux(f, a, b, sel); 
output f; 
input a, b, sel; 
 
table 
  1?0 : 1; 
  0?0 : 0; 
  ?11 : 1; 
  ?01 : 0; 
  11? : 1; 
  00? : 0; 
endtable 
endprimitive 

a 

b 

sel 

f 

Behavior defined using a truth 
table that includes “don’t cares” 

This is a less pessimistic than 
others: when a & b match, sel is 
ignored 
(others produce X) 
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Structural Modeling 
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Modules and Instances 

• Basic structure of a Verilog module: 

 

module mymod(port1, port2, … portN); 

 output port1; 

 output [3:0] port2; 

 input [2:0] portN; 

… 

endmodule 

Verilog convention lists 
outputs first. This is not 
necessary 
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Modules and Instances 

• Verilog 2001 allows port direction and data type in 
the port list of modules as shown in the example 
below 

module mymod(output port1, 
                              output [3:0] port2, 
                               … 
                              input [2:0] portN); 
  
… 
endmodule 
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Instantiating a Module 

• Instances of 
 

module mymod(y, a, b); 
 

• look like 
 

mymod mm1(y1, a1, b1);  // Connect-by-position 
mymod (y2, a1, b1), 
     (y3, a2, b2);         // Instance names omitted 
mymod mm2(.a(a2), .b(b2), .y(c2));  // Connect-by-name 
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Gate-level Primitives 

• Verilog provides the following keywords for gate 
level modeling: 

 

and  nand  logical AND/NAND 

or   nor  logical OR/NOR 

xor  xnor  logical XOR/XNOR 

buf  not  buffer/inverter 

bufif0  notif0 Tristate buf with low enable 

bifif1  notif1         Tristate buf with high enable 
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Delays on Primitive Instances 

• Instances of primitives may include delays 

 

buf  b1(a, b);  // Zero delay 

buf #3 b2(c, d);  // Delay of 3 

buf #(4,5) b3(e, f);  // Rise=4, fall=5 

buf #(3:4:5) b4(g, h); // Min-typ-max 
values of all delays 
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Switch-level Primitives 

• Verilog also provides mechanisms for modeling CMOS 
transistors that behave like switches 

• A more detailed modeling scheme that can catch some 
additional electrical problems when transistors are 
used in this way 

• Rarely used because circuits generally aren’t built this 
way 

• More seriously, model is not detailed enough to catch 
many of the problems 

• These circuits are usually simulated using SPICE-like 
simulators based on nonlinear differential equation 
solvers 

52 



User-Defined Primitives 

• Way to define gates and sequential elements 
using a truth table 

• Often simulate faster than using expressions, 
collections of primitive gates, etc. 

• Gives more control over behavior with X 
inputs 

• Most often used for specifying custom gate 
libraries 

 
53 



A Carry Primitive 

primitive carry(out, a, b, c); 
output out; 
input a, b, c; 
table 
  00? : 0; 
  0?0 : 0; 
  ?00 : 0; 
  11? : 1; 
  1?1 : 1; 
  ?11 : 1; 
endtable 
endprimitive  

Always have exactly one 
output 

Truth table may include 
don’t-care (?) entries 
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A Sequential Primitive 

primitive dff( q, clk, data); 
output q; reg q; 
input clk, data; 
table 
// clk data q   new-q 
  (01)   0  : ? :    0;  // Latch a 0 
  (01)   1  : ? :    1;  // Latch a 1 
  (0x)   1  : 1 :    1;  // Hold when d and q both 1 
  (0x)   0  : 0 :    0;  // Hold when d and q both 0 
  (?0)   ?  : ? :    -;  // Hold when clk falls 
  ?    (??) : ? :    -;  // Hold when clk stable 
endtable 
endprimitive 
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Behavioral Modeling 
 
 
 
 

http://www.asic-world.com/verilog/index.html 
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Types of Assignments in Verilog 

• Continuous and Procedural Assignments 

• Continuous assignments model combinational 
behavior only 
– They assign a value to a wire (never to a reg) 

– assign LHS_target = RHS_expression 

– The continuous statement executes every time an event 
happens in the RHS expression 

– The expression is evaluated 

– If the result is different, the new value is assigned to the 
LHS target 
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Continuous Assignment 

• Convenient for logical or data path specifications 

 

 

wire [8:0] sum; 

wire [7:0] a, b; 

wire carryin; 

 

assign sum = a + b + carryin; 

Define bus widths 

Continuous assignment: 
permanently sets the value 
of sum to be a+b+carryin 
Recomputed when a, b, or 
carryin changes 
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Types of Assignments in Verilog 

• Procedural assignments model combinational 
and sequential behavior 

• They appear only within an initial statement or 
an always statement 

• Two different types of procedural assignments 

– Blocking 

– Non-blocking 
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Initial and Always Blocks 

• Basic components for behavioral modeling 
initial 
  begin 
    … imperative statements … 
  end 
 
Runs when simulation starts 
Terminates when control reaches the end 
Good for providing stimulus in testbenches 
 

always 
  begin 
    … imperative statements … 
  end 
 
Runs when simulation starts 
Restarts when control reaches the end 
Good for modeling/specifying hardware 
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Timing Controls 

• Two forms of timing control: 

– Delay control 

– Event control 
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Delay Controls 

• Delay control is of the form  
      # delay <procedural statement> 
      It specifies the time units from the time the statement is 

initially encountered to the time it is executed 
 
e.g. 
#2  input = 4’b0101;  // wait for 2 units, and then make  
                                           the assignment 
input = #1 x     // assign to input  the value that x will have after 
                            1 time unit. Different than #1 input = x 
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Event Controls 

• Edge-triggered event control is of the form 

     @ event   <procedural statement> 

  e.g.  @ (posedge clk)    curr_state = next_state 

            @ (X or Y)   A <= 0;      // when X or Y change 

                             

• Level-triggered event control is of the form 

    wait (condition)    <procedural statement> 

         The statement executes only if the condition is true, 
else it waits until the condition becomes true. 

   e.g. wait(DataReady);  

            Data = Bus      
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Initial and Always 

• Run until they encounter a delay 
 

initial begin 
   #10 a = 1; b = 0; 
   #10 a = 0; b = 1; 
end 

 
• or a wait for an event 

 
always @(posedge clk) q = d; 
always 
    begin  
            wait(i); a = 0; wait(~i); a = 1;  
    end 
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Blocking Procedural Assignment 

• Inside an initial or always block: 
 

           sum = a + b + cin; 
 

• Just like in C: RHS evaluated and assigned to LHS 
before next statement executes 
 

• RHS may contain wires and regs 
– Two possible sources for data 

• LHS must be a reg 
– Primitives or cont. assignment may set wire values 
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Imperative Statements 

if (select == 1) y = a; 
else   y = b; 
 
case (op) 
  2’b00: y = a + b; 
  2’b01: y = a – b; 
  2’b10: y = a ^ b; 
  default: y = ‘hxxxx; 
endcase 

66 



For Loops 

• A increasing sequence of values on an output 

 

reg [3:0] i, output; 

 

for ( i = 0 ; i <= 15 ; i = i + 1 ) begin 

  output = i; 

  #10; 

end 
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While Loops 

• A increasing sequence of values on an output 
 
reg [3:0] i, output; 
 
i = 0; 
while (i <= 15) begin 
  output = i; 
  #10 i = i + 1; 
end 
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Blocking vs. Non Blocking Assignments 

• Verilog has two types of procedural 
assignments 

 

• Fundamental problem: 

– In a synchronous system, all flip-flops sample 
simultaneously 

– In Verilog, always @(posedge clk) blocks run in 
some undefined sequence 
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A Flawed Shift Register 

• This doesn’t work as you expect: 
 

reg d1, d2, d3, d4; 
 
always @(posedge clk) d2 = d1; 
always @(posedge clk) d3 = d2; 
always @(posedge clk) d4 = d3; 
 
• These run in some order, but you don’t know 

which 
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Non-blocking Assignments 

• This version does work: 

 

reg d1, d2, d3, d4; 

 

always @(posedge clk) d2 <= d1; 

always @(posedge clk) d3 <= d2; 

always @(posedge clk) d4 <= d3; 

Nonblocking rule: 
RHS evaluated when 
assignment runs 

LHS updated only after all 
events for the current instant 
have run. It runs after a Delta 
time 71 



Nonblocking Can Behave Oddly 

• A sequence of nonblocking assignments don’t 
communicate 

a = 1; 
b = a; 
c = b; 

 
Blocking assignment: 
a = b = c = 1 

a <= 1; 
b <= a; 
c <= b; 
 
Nonblocking assignment after δ 
time: 
a = 1 
b = old value of a 
c = old value of b 
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Nonblocking Looks Like Latches 

• RHS of nonblocking taken from latches 

• RHS of blocking taken from wires 

a = 1; 
b = a; 
c = b; 

a <= 1; 
b <= a; 
c <= b; 

1 

a b c 

a 

b 

c 

1 
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Finite State Machines and Verilog 
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Finite State Machines 

•Finite State Machines (FSMs) are a useful abstraction for 
sequential circuits with centralized “states” of operation 
•At each clock edge, combinational logic computes outputs and 
next state as a function of inputs and present state 

Combinational 

Logic 

Registers 
Q D 

CLK 

inputs 

+  present state 

outputs 

+  next state 

n 
n 
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•Mealy FSM: 

Outputs 
yk  = fk(S, x0...xn) 

Two types of Finite State Machines 

Moore and Mealy FSMs : different output generation 
 

Outputs 
yk  = fk(S) 

inputs 
x0...xn 

Comb. 
Logic 

 
 
•Moore FSM: 

 
 
 
 
 
 

n 

D Q 
Registers Comb. 

Logic 

present state S 

next 
state S' 

CLK 

inputs 
x0...xn 

Comb. 
Logic 

n 

D Q 
Registers Comb. 

Logic 

present state S 

next 
state S' 

CLK 
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•A level-to-pulse converter produces a 

single- cycle pulse each time its input 

goes high. 

• It’s a synchronous rising-edge detector. 

•Sample uses: 

–Buttons and switches pressed by 

humans for arbitrary periods of time 

–Single-cycle enable signals for counters 

Level to 
Pulse 

Converter 

L P 

CLK 

Whenever input L goes 
from low to high... 

...output P produces a single 
pulse, one clock period wide. 

Design Example: Level-to-Pulse 
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Level to 
Pulse FSM 

L P 

CLK 

Step 1: State Transition Diagram 

Level (L) Pulse (P) 
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Step 2: Logic Derivation 

+ 
S0   = L 
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Moore Level-to-Pulse Converter 
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Design of a Mealy Level-to-Pulse 
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Design of a Mealy Level-to-Pulse 



Moore/Mealy Trade-Offs 



Second FSM Example  
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Step 1A: Block Diagram 
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Step 1B: State transition diagram 
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module lock(input clk, reset_in, b0, b1, output out); 
wire reset;  
parameter S_RESET = 0; parameter S_0= 1;              // state assignments 
parameter S_01 = 2;  parameter S_010 = 3; 
parameter S_0101 = 4;  parameter S_01011 = 5; 
always @(*) 
           begin                          // First always computes next state 
                   case (state)  
                      S_RESET: next_state = b0 ? S_0 :  b1 ? S_RESET : state; 
                      S_0: next_state = b0 ? S_0 :  b1 ? S_01 : state; 
                      S_01: next_state = b0 ? S_010 :  b1 ? S_RESET : state; 
                     S_010: next_state = b0 ? S_0 :  b1 ? S_0101 : state; 
                     S_0101: next_state = b0 ? S_010 :  b1 ? S_01011 : state; 
                     S_01011: next_state = b0 ? S_0 :  b1 ? S_RESET : state; 
                      default: next_state = S_RESET; 
                   endcase 
         end   // always  

Step 2. Verilog Implementation of the FSM 
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  always @(posedge clk)      // Second always computes next state 
     if (reset == 1’b1) 
        state <= S_RESET; 
     else  
       state  <=next_state; 
 
 
   assign out = (state = S_01011); 
endmodule 

Step 2. Verilog Implementation of the FSM 



Modeling FSMs Behaviorally 

• There are many ways to do it: 

 

1. Define the next-state logic combinationally 
and define the state-holding latches explicitly 

 

2. Define the behavior in a single always 
@(posedge clk)  block 
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FSM with Combinational Logic 

module FSM(output reg o, input a,  
                        input b, input reset); 
 
reg [1:0] state, nextState; 
 
always @(a, b, state) 
 case (state) 
    2’b00: begin 
       nextState = a ? 2’b00 : 2’b01; 
       o = a & b; 
    end 
    2’b01: begin 
            nextState = 2’b00;  
            o = 0; 
      end 
 endcase 

Combinational block must be 
sensitive to any change on 
any of its inputs 
(Implies state-holding 
elements otherwise) 
 
This is a Mealy FSM: output 
is sampled every time state 
or inputs change 

Output o is declared a reg 
because it is assigned 
procedurally, not because it 
holds state 

90 



FSM with Combinational Logic 

module FSM(o, a, b, reset); 
… 
 
always @(posedge clk, reset) 
  if (reset) 
    state <= 2’b00; 
  else 
    state <= nextState; 

Latch implied by sensitivity 
to the clock or reset only 
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Writing Testbenches 

module test; 
reg a, b, sel; 
 
mux m(y, a, b, sel); 
 
initial  
    begin 
          $monitor($time,, “a = %b, b=%b, sel=%b, y=%b”, 
                   a, b, sel, y); 
          a = 0; b= 0; sel = 0; 
         #10 a = 1; 
         #10 sel = 1; 
         #10 b = 1; 
    end 
endmodule  

 

Inputs to device under test 

Device under test (DUT) 

$monitor is a built-in event 
driven “printf” 

Stimulus generated by sequence 
of assignments and delays 
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Writing Testbenches 
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module first_counter_tb();  
// Declare inputs as regs and outputs as wires  
 reg clock, reset, enable;  
wire [3:0] counter_out;  
 
//Initialize all variables  
initial  
      begin  
         $display ("time\t clk reset enable counter");  
         $monitor ("%g\t %b %b %b %b",  
         $time, clock, reset, enable, counter_out);  
         clock = 1; // initial value of clock  
         reset = 0; // initial value of reset  
         enable = 0; // initial value of enable  
         #5 reset = 1; // Assert the reset  
         #10 reset = 0; // De-assert the reset  
         #10 enable = 1; // Assert enable  
         #100 enable = 0; // De-assert enable  
        #5 $finish; // Terminate simulation  
     end  
 
// Clock generator  
always begin  
       #5 clock = ~clock; // Toggle clock every 5 ticks  
end  
 
// Connect DUT to test bench  
first_counter U_counter ( clock, reset,  enable, counter_out );  
 
 end module  



Simulating Verilog 

94 



Simulation Behavior 

• Scheduled using an event queue 

• Non-preemptive, no priorities 

• A process must explicitly request a context 
switch 

• Events at a particular time unordered 

 

• Scheduler runs each event at the current time, 
possibly scheduling more as a result 
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Two Types of Events 

• Evaluation events compute functions of inputs 

• Update events change outputs 

• Split necessary for delays, nonblocking 
assignments, etc. 

Evaluation event reads 
values of b and c, adds them, 
and schedules an update 
event 

a <= b + c 
Update event writes 
new value of a and 
schedules any 
evaluation events that 
are sensitive to a 
change on a signal 
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Simulation Behavior 

• Concurrent processes (initial, always) run until they 
stop at one of the following 
 

• #42 
– Schedule process to resume 42 time units from now 

• wait(cf & of) 
– Resume when expression “cf & of” becomes true 

• @(a or b or y) 
– Resume when a, b, or y changes 

• @(posedge clk) 
– Resume when clk changes from 0 to 1 
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Simulation Behavior 

• Infinite loops are possible and the simulator does not 
check for them 

• This runs forever: no context switch allowed, so ready 
can never change 
 

while (~ready) 
  count = count + 1; 
 
• Instead, use 

 
wait(ready); 
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Simulation Behavior 

• Race conditions abound in Verilog 

 

• These can execute in either order: final value 
of a undefined: 

 

always @(posedge clk) a = 0; 

always @(posedge clk) a = 1; 
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Verilog and Logic Synthesis 
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Logic Synthesis 

• Verilog is used in two ways 
– Model for discrete-event simulation 
– Specification for a logic synthesis system 

 

• Logic synthesis converts a subset of Verilog 
language into an efficient netlist 

• One of the major breakthroughs in designing 
logic chips in the last 20 years 

• Most chips are designed using at least some logic 
synthesis 
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Logic Synthesis Tools 

• Mostly commercial tools 
– Very difficult, complicated programs to write well 
– Limited market 
– Commercial products in $10k - $100k price range 

 

• Major vendors 
– Synopsys Design Compiler, FPGA Express 
– Cadence BuildGates 
– Synplicity (FPGAs) 
– Exemplar (FPGAs) 

 

• Academic tools 
– SIS (UC Berkeley) 
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Logic Synthesis 

• Takes place in two stages: 

 

• Translation of Verilog (or VHDL) source to a 
netlist 

– Register inference 

 

• Optimization of the resulting netlist to 
improve speed and area 
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Logic Optimization 

• Netlist optimization the critical enabling technology 
• Takes a slow or large netlist and transforms it into one 

that implements the same function more cheaply 
 

• Typical operations 
– Constant propagation 
– Common subexpression elimination 
– Function factoring 

 

• Time-consuming operation 
– Can take hours for large chips 
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Translating Verilog into Gates 

• Parts of the language easy to translate 

– Structural descriptions with primitives 

• Already a netlist 

– Continuous assignment 

• Expressions turn into little datapaths 

 

• Behavioral statements the bigger challenge 
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What Can Be Translated 

• Structural definitions 
– Everything 

• Behavioral blocks 
– Depends on sensitivity list 
– Only when they have reasonable interpretation as 

combinational logic, edge, or level-sensitive latches 
– Blocks sensitive to both edges of the clock, changes on 

unrelated signals, etc. cannot be synthesized 

• User-defined primitives 
– Primitives defined with truth tables 
– Some sequential UDPs can’t be translated (not latches or 

flip-flops) 
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What Isn’t Translated 

• Initial blocks 
– Used to set up initial state or describe finite testbench 

stimuli 
– Don’t have obvious hardware component 

• Delays 
– May be in the Verilog source, but are ignored by 

synthesizer 

• A variety of other obscure language features 
– In general, things heavily dependent on discrete-event 

simulation semantics 
– Certain “disable” statements 
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Register Inference 

• The main trick 

 

• reg does not always equal latch 

 

• Rule:  

• Combinational if outputs always depend 
exclusively on sensitivity list 

• Sequential if outputs may also depend on 
previous values 
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Register Inference 

• Combinational: 
 

reg y; 
always @(a or b or sel) 
  if (sel) y = a; 
  else y = b; 
 
• Sequential: 
 
reg q; 
always @(d or clk) 
  if (clk) q = d; 

Sensitive to changes on all of 
the variables it reads 

Y is always assigned 

q only assigned when clk is 1 
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Register Inference 

• A common mistake is not completely specifying a 
case statement 

• This implies a latch: 
 
always @(a or b) 
     case ({a, b}) 
        2’b00 : f = 0; 
        2’b01 : f = 1; 
        2’b10 : f = 1; 
endcase 

f is not assigned when {a,b} = 2b’11 
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Register Inference 

• The solution is to always have a default case 
 

always @(a or b) 
   case ({a, b}) 
      2’b00: f = 0; 
      2’b01: f = 1; 
      2’b10: f = 1; 
     default: f = 0; 
endcase 

f is always assigned 
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Inferring Latches with Reset 

• Latches and Flip-flops often have reset inputs 
• Can be synchronous or asynchronous 

 
• Asynchronous positive reset: 

 
always @(posedge clk or posedge reset) 
  if (reset) 
       q <= 0; 
  else 
       q <= d; 
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Inferring Latches with Reset 

 

• Synchronous positive reset: 

 

always @(posedge clk) 

  if (reset) 

       q <= 0; 

  else 

       q <= d; 
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Simulation-synthesis Mismatches 

• Many possible sources of conflict 
 

• Synthesis ignores delays (e.g., #10), but 
simulation behavior can be affected by them 

• Simulator models X explicitly, synthesis doesn’t 
• Behaviors resulting from shared-variable-like 

behavior of regs is not synthesized 
– always @(posedge clk) a = 1; 
– New value of a may be seen by other @(posedge clk) 

statements in simulation, never in synthesis 
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