

Concepts of Digital Design
Introduction to Verilog

Nikos Bellas

Computer and Communications Engineering Department
University of Thessaly

1

The Verilog Language

• A hardware description language (HDL) used for
modeling, simulation and synthesis of digital
electronic systems

• One of the two most commonly-used languages in
digital hardware design (VHDL is the other)

• Virtually every chip (FPGA, ASIC, etc.) is designed in
part using one of these two languages

• Combines structural and behavioral modeling styles

• IEEE standard 1364-1995

• Verilog-2001 extends the initial Verilog-95 specification

2

Simulation

• Simulation is used to verify the functional
characteristics of models at any level of abstraction

• One of the main uses of Verilog/VHDL is simulation

• To test if the RTL code meets the functional
requirements of the specification, we must see if all
the RTL blocks are functionally correct.

• To achieve this we need to write a testbench, which
generates clk, reset and the required test vectors

• Simulation is needed after every refinement step
– Behavioral, zero-delay gate level, timing, post P&R

simulation

3

Discrete-event Simulation

• Basic idea: only do work when something changes

• Centered around an event queue
– Contains events labeled with the simulated time at which

they are to be executed

• Basic simulation paradigm
– Execute every event for the current simulated time

– Doing this changes system state and may schedule events
in the future

– When there are no events left at the current time instance,
advance simulated time soonest event in the queue

4

How Are Simulators Used?

• Testbench generates stimulus and checks
response

• Coupled to model of the system

• Pair is run concurrently

Testbench System Under Test

Stimulus

Response
Result
checker

5

Timing Simulation

• Timing simulation occurs after
– synthesis and

– after Place and Route (P&R)

• It includes gate and wire delays to make
simulation more realistic

• Before P&R, the simulator uses gate delays
models and (if available) wire delay models

• After P&R, more detailed wire delay
information can be fed back to the simulator

6

Synthesis
• High level (behavioral) synthesis (HLS) is the

conversion from algorithmic/behavioral logic to
synthesizable HDL

– The input to the HLS tool is C, C++, SystemC, behavioral
HDL, etc.

• HLS consists of the following steps

– Parsing and analysis

– Algorithmic optimization

– Control/Data flow analysis

– Operation scheduling

– Resource allocation and binding

– Code generation

7

Synthesis

• Logic synthesis is the conversion from
synthesizable HDL or from boolean functions
to a multilevel gate netlist
– First, technology-independent optimizations based on

boolean arithmetic properties

– Then, technology dependent optimizations convert the
circuit into a network of gates in a given technology

• Library mapping uses the available technology libraries
to map boolean expression into gates

8

Placement and Routing (ASIC)

• The gate level netlist is then placed in the 2D
available space and the gate blocks are
interconnected

• The objective is to reduce latency and improve
clock frequency

• Clock tree synthesis also happens here

• The P&R tool output is a GDSII file , used by
foundry for fabricating the ASIC

– GDSII is data base format used for data exchange
of integrated circuit or IC layout artwork

 9

Placement and Routing (FPGA)

• FPGAs contain programmable logic blocks that
can be reconfigured by the user after fabrication

• Placement maps the synthesized gate netlist into
the available reconfigurable logic

• Routing maps the interconnects between gates
into the available routing resources of the FPGA

• After P&R, a tool is used to produce the final
configuration bitstream

• The bitstream is loaded to configure the FPGA

10

Learn by Example: Combinational Logic

11

Adder: a circuit that does addition

Here’s an example of binary addition:

Adding two N-bit
numbers produces an
(N+1)-bit result

“Ripple-
carry
adder”

1101

+0101

10010

12

Α Β Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

1-bit Adder

Sum: S  A  B  C

Carry Out:

CO  A'BC  AB'C  ABC'  ABC

 (A'  A)BC  (B'  B)AC  AB(C'  C)

 BC  AC  AB

Build Truth Table and use Sum of Products (SOP)

// This is a behavioral module of 1-bit adder
module fulladd (Cin, x, y, s, Cout);
 input Cin, x, y;
 output s, Cout;

 assign s = x ^ y ^ Cin;
 assign Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule

1-bit Adder
module: Basic unit of description

I/O ports with which the module
communicates externally with other
modules

Continuous assignment: the RHS is
evaluated again every time the value
of an operand changes. The LHS is
assigned that value.

This is an example of Behavioral Description
13

One line comment

/* This is a structural module of 1-bit adder
*/
module adder4 (carryin, X, Y, S, carryout);
 input carryin;
 input [3:0] X, Y;
 output [3:0] S;
 output carryout;
 wire [3:1] C;

 fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]);
 fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]);
 fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
 fulladd stage3 (C[3], X[3], Y[3], S[3], carryout);

endmodule

4-bit Adder Structural Description

Instantiation of the module fulladd

Arguments correspond to formal
parameters of modules

14

Multiple lines comment

module addern #(parameter n=32) (carryin, X, Y, S, carryout);
 input carryin;
 input [n-1:0] X, Y;
 output [n-1:0] S;
 output carryout;
 reg [n-1:0] S;
 reg carryout;
 reg [n:0] C;
 integer k;

 always @(X, Y, carryin)
 begin
 C[0] = carryin;
 for (k = 0; k < n; k = k+1)
 begin
 S[k] = X[k] ^ Y[k] ^ C[k];
 C[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k]);
 end
 carryout = C[n];
 end
endmodule

Alternative N-bit Adder

Behavioral Description

An always statement is only triggered at (@) the
condition in the parenthesis (sensitivity list).
We execute the always statement only when X or Y or
carryin change

reg is a data type that indicates a
driver that can store a value.
If a signal is not reg, it is a wire

15

n=32 sets default value for parameter n

module addern #(paramtere n=32) (carryin, X, Y, S, carryout, overflow);
 input carryin;
 input [n-1:0] X, Y;
 output [n-1:0] S;
 output carryout, overflow;
 reg [n-1:0] S;
 reg carryout, overflow;

 always @(X or Y or carryin)
 begin
 S = X + Y + carryin;
 carryout = (X[n-1] & Y[n-1]) | (X[n-1] & ~S[n-1]) | (Y[n-1] & ~S[n-1]);
 overflow = carryout ^ X[n-1] ^ Y[n-1] ^ S[n-1];
 end

endmodule

Behavioral Description

Another one

S, X, Y are arrays

16

Sequential Logic

17

Specifications

18

What if you were given the following design specification:

When the button is
pushed:

1)Turn on the light if it

is off

2)Turn off the light if it

is on
The light should

change state within a

second of the button

press

button light
What makes this circuit
different from those we’ve
discussed before?

1.“State” – i.e. the circuit has

memory
2.The output was changed by a

input “event” (pushing a
button) rather than an input
“value”c

19

Digital State
One model of what we’d like to build

Combinational
Logic

Current
State

New
State

Input Output

Memory
Device

LOAD

Plan: Build a Sequential Circuit with stored digital STATE –
•Memory stores CURRENT state
•Combinational Logic computes

•NEXT state (from input, current state)
•OUTPUT bit (from input, current state)

•State changes on LOAD control input

 If Output depends on Input and current state, circuit is called a Mealy machine.
If Output depends only on the current state, circuit is called a Moore machine.

20

D

CLK

Q

The edge-triggered D register: on the rising
edge of CLK, the value of D is saved in the
register and then shortly afterwards appears
on Q.

Our building block: the D FF

21

D-Register Timing

CLK

D

Q

≤tPD

≥tCD

tPD: maximum propagation delay, CLK  Q

 tCD: minimum contamination delay, CLK Q

tSETUP: setup time

≥tSETUP

How long D must be stable before the rising edge of CLK

≥tHOLD

tHOLD: hold time
How long D must be stable after the rising edge of CLK

22

module dff (input D, CLK, output reg Q);
always @(posedge clk)
 begin
 Q<=D;
 end
endmodule;

The Sequential always Block

module CL(input a,b, sel,
 output reg out);
always @(*)
 begin
 if (sel) out = b;
 else out = a;
 end
endmodule;

module SL(input a,b, sel,
 output reg out);
always @(posedge clk)
 begin
 if (sel) out = b;
 else out = a;
 end
endmodule;

Language Elements and Expressions

23

Numbers in Verilog
• Integer numbers

– Simple decimal notation
• 32, -15

– Base format notation : [size in bits]’base value
– Base is one of d or D (decimal), o or O (octal), b or B (binary), h

or H (hex). Use s for signed.
• 5’O37 // 5 bit octal number 37
• 4’D2 // 4 bit decimal number 2
• 4’B1x_01 // 4 bit binary number 1x01.
• 7’Hx // 7 bit hex xxxxxxx
• 8’shFF // Signed hex equal to -1
• 4’d-4 // Not legal. The sign is before the size.
• -4’d4 // 4-bit binary number -4. The sign is before the size
• (2+3)d’10 // Not legal. Size cannot be an expression

– The underscore character (_) is legal anywhere in a number
except as the first character, where it is ignored

– When used in a number, the question mark (?) character is the
Verilog alternative for the z character.

24

Numbers in Verilog

• Real numbers

– Decimal notation

• 32.0, -11.06

• 2. // Not legal. Must have a digit on either side of
decimal

– Scientific notation

• 23.51e2 // 2351.0

• 23_5.1e1 // 2351.0

• 5E-4

25

Strings in Verilog

• A string is a sequence of chars within double
quotes

– “Verilog is cool!”

26

Four-valued Data

• Verilog’s nets and registers hold four-valued data

• 0, 1

– Obvious

• Z (high impedance)
– Output of an undriven tri-state driver
– Models case where nothing is setting a wire’s value

• X (unknown or undecided)
– Models when the simulator can’t decide the value
– Initial state of registers
– When a wire is being driven to 0 and 1 simultaneously
– Output of a gate with Z inputs

27

Two Main Data Types

• Wires represent connections between things
– Do not hold their value
– Take their value from a driver such as a gate or other module
– A signal is wire by default

• Regs represent data storage
– Behave exactly like memory in a computer
– Hold their value until explicitly assigned in an initial or always

block
– Can be used to model latches, flip-flops, etc., but do not

correspond exactly
– Shared variables with all their attendant problems

28

Nets and Registers

• Wires and registers can be bits, vectors, and arrays

wire a; // Simple wire
wire [15:0] dbus; // 16-bit bus
wire #(5,4,8) b; // Wire with rise delay 5, fall

delay 4, and turn-off delay (hiZ) 8
reg [-1:4] vec; // Six-bit register
integer imem[0:1023]; // Array of 1024 integers
reg [31:0] dcache[0:63]; // A 32-bit mem with 64

entries

29

Operators

• Arithmetic operators
• X = (A+B)-C // binary plus and minus

• X = -Y // unary minus

• X = Y*Z // multiplication

• X = A/B // division

• X = A%B // modulus is the remainder with

 // the sign of the dividend.

 // 7%4 = 3, -7%4 = -3, 7%-4 = 3

• X = A**B // exponent (Only in Verilog 2001)

30

Operators

• Relational operators

– The result is 0 (false), 1 (true), or x (either operand
has an x or z bit)

• 23 > 45 // false (value 0)

• 52 < 8’hxFF // result is x

• ‘b1000 >= ‘b01110 // false. Smaller sized operand is
zero-filled

31

Operators

• Equality operators.

– 2’b10 == 4’b0010 // true

– ‘b11x0 == ‘b11x0 // unknown because there
is a bit in in either operand which is x (or z)

– ‘b11x0 === ‘b11x0 // true. In case equality, x
and z are compared strictly as values

32

Operators

• Logical operators.

– A && B // logical AND

– A || B // logical OR

– !A // logical NOT

33

Operators
• Bit-wise operators

– ~A (unary negation)
– & (binary and)
– | (binary or)
– ^ (binary xor)
– ~^ (binary XNOR)

 0 1 X Z

0 0 0 0 0
1 0 1 X X
X 0 X X X
Z 0 X X X

AND (&)

 0 1 X Z

0 0 1 X X
1 1 1 1 1
X X 1 X X
Z X 1 X X

OR (I)

34

Operators

• Reduction operators
• A = ‘b0110, B = ‘b0100, C = ‘b0x1

• &B is 0 // logical AND of all bits

• |B is 1 // logical OR of all bits

• ~&A is 1 // logical NAND of all bits

• ^B is 1 // logical XOR of all bits

• ~^B is 0 // logical XNOR of all bits

• &C is 0 // at least a bit is 0

• |C is 1 // at least a bit is 1

• ^C is x // if any bit is x or z, result is x

35

Operators

• Shift operators

– A >> B // logical right shift

– A << B // logical left shift

– A >>> B // right shift for signed numbers (Only
Verilog 2001)

– A <<< B // left shift for signed numbers (Only
Verilog 2001)

• Conditional operator

– cond_expr? expr1 : expr2

36

Operators

• Concatenation and Replication operators

– wire [7:0] Dbus

– wire [11:0] Abus

– assign Dbus = {Dbus[3:0], Dbus[7:4]} //
concatenation: swap nibbles

– Abus ={3{4’b1011}} // 12’b1011_1011_1011

37

Structural and Behavioral Models

38

Two Main Components of Verilog

• Concurrent, event-triggered processes (behavioral)
– Initial and Always blocks
– Imperative code that can perform standard data

manipulation tasks (assignment, if-then, case)
– Processes run until they delay for a period of time or wait

for a triggering event

• Structure (structural)
– Verilog program built from modules with I/O interfaces
– Modules may contain instances of other modules
– Modules contain local signals, etc.
– Module configuration is static and all run concurrently

• High level modules typically structural
• Low level modules (leaves) typically behavioral

39

Structural Modeling

• When Verilog was first developed (1984) most
logic simulators operated on netlists

• Netlist: list of gates and how they’re
connected

• A natural representation of a digital logic
circuit

• Not the most convenient way to express test
benches

40

Behavioral Modeling

• A much easier way to write testbenches

• Also good for more abstract models of circuits
– Easier to write

– Simulates faster

• More flexible

• Provides sequencing

• Verilog succeeded in part because it allowed both
the model and the testbench to be described
together

41

Multiplexer Built From Primitives

module mux(f, a, b, sel);
 output f;
 input a, b, sel;

 and g1(f1, a, nsel),
 g2(f2, b, sel);
 or g3(f, f1, f2);
 not g4(nsel, sel);

endmodule

a

b

sel

f

nsel
f1

f2

g1

g2

g3

g4

Module may contain
structure: instances of
primitives and other
modules

Identifiers not
explicitly defined
default to wires

Predefined module types

42

Multiplexer Built With Always

module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always @(a, b, sel)
 if (sel)
 f = b;
 else
 f = a;

endmodule

a

b

sel

f

Modules may contain one or
more always blocks

Sensitivity list
contains signals
whose change
triggers the execution
of the block

43

Mux with Continuous Assignment

module mux(f, a, b, sel);
output f;
input a, b, sel;

assign f = sel ? b : a;

endmodule

a

b

sel

f

LHS is always set to the value on
the RHS
Any change on the right causes
reevaluation

44

Mux with User-Defined Primitive

primitive mux(f, a, b, sel);
output f;
input a, b, sel;

table
 1?0 : 1;
 0?0 : 0;
 ?11 : 1;
 ?01 : 0;
 11? : 1;
 00? : 0;
endtable
endprimitive

a

b

sel

f

Behavior defined using a truth
table that includes “don’t cares”

This is a less pessimistic than
others: when a & b match, sel is
ignored
(others produce X)

45

Structural Modeling

46

Modules and Instances

• Basic structure of a Verilog module:

module mymod(port1, port2, … portN);

 output port1;

 output [3:0] port2;

 input [2:0] portN;

…

endmodule

Verilog convention lists
outputs first. This is not
necessary

47

Modules and Instances

• Verilog 2001 allows port direction and data type in
the port list of modules as shown in the example
below

module mymod(output port1,
 output [3:0] port2,
 …
 input [2:0] portN);

…
endmodule

48

Instantiating a Module

• Instances of

module mymod(y, a, b);

• look like

mymod mm1(y1, a1, b1); // Connect-by-position
mymod (y2, a1, b1),
 (y3, a2, b2); // Instance names omitted
mymod mm2(.a(a2), .b(b2), .y(c2)); // Connect-by-name

49

Gate-level Primitives

• Verilog provides the following keywords for gate
level modeling:

and nand logical AND/NAND

or nor logical OR/NOR

xor xnor logical XOR/XNOR

buf not buffer/inverter

bufif0 notif0 Tristate buf with low enable

bifif1 notif1 Tristate buf with high enable

50

Delays on Primitive Instances

• Instances of primitives may include delays

buf b1(a, b); // Zero delay

buf #3 b2(c, d); // Delay of 3

buf #(4,5) b3(e, f); // Rise=4, fall=5

buf #(3:4:5) b4(g, h); // Min-typ-max
values of all delays

51

Switch-level Primitives

• Verilog also provides mechanisms for modeling CMOS
transistors that behave like switches

• A more detailed modeling scheme that can catch some
additional electrical problems when transistors are
used in this way

• Rarely used because circuits generally aren’t built this
way

• More seriously, model is not detailed enough to catch
many of the problems

• These circuits are usually simulated using SPICE-like
simulators based on nonlinear differential equation
solvers

52

User-Defined Primitives

• Way to define gates and sequential elements
using a truth table

• Often simulate faster than using expressions,
collections of primitive gates, etc.

• Gives more control over behavior with X
inputs

• Most often used for specifying custom gate
libraries

53

A Carry Primitive

primitive carry(out, a, b, c);
output out;
input a, b, c;
table
 00? : 0;
 0?0 : 0;
 ?00 : 0;
 11? : 1;
 1?1 : 1;
 ?11 : 1;
endtable
endprimitive

Always have exactly one
output

Truth table may include
don’t-care (?) entries

54

A Sequential Primitive

primitive dff(q, clk, data);
output q; reg q;
input clk, data;
table
// clk data q new-q
 (01) 0 : ? : 0; // Latch a 0
 (01) 1 : ? : 1; // Latch a 1
 (0x) 1 : 1 : 1; // Hold when d and q both 1
 (0x) 0 : 0 : 0; // Hold when d and q both 0
 (?0) ? : ? : -; // Hold when clk falls
 ? (??) : ? : -; // Hold when clk stable
endtable
endprimitive

55

Behavioral Modeling

http://www.asic-world.com/verilog/index.html

56

Types of Assignments in Verilog

• Continuous and Procedural Assignments

• Continuous assignments model combinational
behavior only
– They assign a value to a wire (never to a reg)

– assign LHS_target = RHS_expression

– The continuous statement executes every time an event
happens in the RHS expression

– The expression is evaluated

– If the result is different, the new value is assigned to the
LHS target

57

Continuous Assignment

• Convenient for logical or data path specifications

wire [8:0] sum;

wire [7:0] a, b;

wire carryin;

assign sum = a + b + carryin;

Define bus widths

Continuous assignment:
permanently sets the value
of sum to be a+b+carryin
Recomputed when a, b, or
carryin changes

58

Types of Assignments in Verilog

• Procedural assignments model combinational
and sequential behavior

• They appear only within an initial statement or
an always statement

• Two different types of procedural assignments

– Blocking

– Non-blocking

59

Initial and Always Blocks

• Basic components for behavioral modeling
initial
 begin
 … imperative statements …
 end

Runs when simulation starts
Terminates when control reaches the end
Good for providing stimulus in testbenches

always
 begin
 … imperative statements …
 end

Runs when simulation starts
Restarts when control reaches the end
Good for modeling/specifying hardware

60

Timing Controls

• Two forms of timing control:

– Delay control

– Event control

61

Delay Controls

• Delay control is of the form
 # delay <procedural statement>
 It specifies the time units from the time the statement is

initially encountered to the time it is executed

e.g.
#2 input = 4’b0101; // wait for 2 units, and then make
 the assignment
input = #1 x // assign to input the value that x will have after
 1 time unit. Different than #1 input = x

62

Event Controls

• Edge-triggered event control is of the form

 @ event <procedural statement>

 e.g. @ (posedge clk) curr_state = next_state

 @ (X or Y) A <= 0; // when X or Y change

• Level-triggered event control is of the form

 wait (condition) <procedural statement>

 The statement executes only if the condition is true,
else it waits until the condition becomes true.

 e.g. wait(DataReady);

 Data = Bus

63

Initial and Always

• Run until they encounter a delay

initial begin
 #10 a = 1; b = 0;
 #10 a = 0; b = 1;
end

• or a wait for an event

always @(posedge clk) q = d;
always
 begin
 wait(i); a = 0; wait(~i); a = 1;
 end

64

Blocking Procedural Assignment

• Inside an initial or always block:

 sum = a + b + cin;

• Just like in C: RHS evaluated and assigned to LHS
before next statement executes

• RHS may contain wires and regs
– Two possible sources for data

• LHS must be a reg
– Primitives or cont. assignment may set wire values

65

Imperative Statements

if (select == 1) y = a;
else y = b;

case (op)
 2’b00: y = a + b;
 2’b01: y = a – b;
 2’b10: y = a ^ b;
 default: y = ‘hxxxx;
endcase

66

For Loops

• A increasing sequence of values on an output

reg [3:0] i, output;

for (i = 0 ; i <= 15 ; i = i + 1) begin

 output = i;

 #10;

end

67

While Loops

• A increasing sequence of values on an output

reg [3:0] i, output;

i = 0;
while (i <= 15) begin
 output = i;
 #10 i = i + 1;
end

68

Blocking vs. Non Blocking Assignments

• Verilog has two types of procedural
assignments

• Fundamental problem:

– In a synchronous system, all flip-flops sample
simultaneously

– In Verilog, always @(posedge clk) blocks run in
some undefined sequence

69

A Flawed Shift Register

• This doesn’t work as you expect:

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;
always @(posedge clk) d3 = d2;
always @(posedge clk) d4 = d3;

• These run in some order, but you don’t know

which

70

Non-blocking Assignments

• This version does work:

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;

always @(posedge clk) d3 <= d2;

always @(posedge clk) d4 <= d3;

Nonblocking rule:
RHS evaluated when
assignment runs

LHS updated only after all
events for the current instant
have run. It runs after a Delta
time 71

Nonblocking Can Behave Oddly

• A sequence of nonblocking assignments don’t
communicate

a = 1;
b = a;
c = b;

Blocking assignment:
a = b = c = 1

a <= 1;
b <= a;
c <= b;

Nonblocking assignment after δ
time:
a = 1
b = old value of a
c = old value of b

72

Nonblocking Looks Like Latches

• RHS of nonblocking taken from latches

• RHS of blocking taken from wires

a = 1;
b = a;
c = b;

a <= 1;
b <= a;
c <= b;

1

a b c

a

b

c

1

73

Finite State Machines and Verilog

74

75

Finite State Machines

•Finite State Machines (FSMs) are a useful abstraction for
sequential circuits with centralized “states” of operation
•At each clock edge, combinational logic computes outputs and
next state as a function of inputs and present state

Combinational

Logic

Registers
Q D

CLK

inputs

+ present state

outputs

+ next state

n
n

76

•Mealy FSM:

Outputs
yk = fk(S, x0...xn)

Two types of Finite State Machines

Moore and Mealy FSMs : different output generation

Outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

•Moore FSM:

n

D Q
Registers Comb.

Logic

present state S

next
state S'

CLK

inputs
x0...xn

Comb.
Logic

n

D Q
Registers Comb.

Logic

present state S

next
state S'

CLK

77

•A level-to-pulse converter produces a

single- cycle pulse each time its input

goes high.

• It’s a synchronous rising-edge detector.

•Sample uses:

–Buttons and switches pressed by

humans for arbitrary periods of time

–Single-cycle enable signals for counters

Level to
Pulse

Converter

L P

CLK

Whenever input L goes
from low to high...

...output P produces a single
pulse, one clock period wide.

Design Example: Level-to-Pulse

78

Level to
Pulse FSM

L P

CLK

Step 1: State Transition Diagram

Level (L) Pulse (P)

79

Step 2: Logic Derivation

+
S0 = L

80

Moore Level-to-Pulse Converter

81

Design of a Mealy Level-to-Pulse

82

Design of a Mealy Level-to-Pulse

Moore/Mealy Trade-Offs

Second FSM Example

84

Step 1A: Block Diagram

85

Step 1B: State transition diagram

87

module lock(input clk, reset_in, b0, b1, output out);
wire reset;
parameter S_RESET = 0; parameter S_0= 1; // state assignments
parameter S_01 = 2; parameter S_010 = 3;
parameter S_0101 = 4; parameter S_01011 = 5;
always @(*)
 begin // First always computes next state
 case (state)
 S_RESET: next_state = b0 ? S_0 : b1 ? S_RESET : state;
 S_0: next_state = b0 ? S_0 : b1 ? S_01 : state;
 S_01: next_state = b0 ? S_010 : b1 ? S_RESET : state;
 S_010: next_state = b0 ? S_0 : b1 ? S_0101 : state;
 S_0101: next_state = b0 ? S_010 : b1 ? S_01011 : state;
 S_01011: next_state = b0 ? S_0 : b1 ? S_RESET : state;
 default: next_state = S_RESET;
 endcase
 end // always

Step 2. Verilog Implementation of the FSM

88

 always @(posedge clk) // Second always computes next state
 if (reset == 1’b1)
 state <= S_RESET;
 else
 state <=next_state;

 assign out = (state = S_01011);
endmodule

Step 2. Verilog Implementation of the FSM

Modeling FSMs Behaviorally

• There are many ways to do it:

1. Define the next-state logic combinationally
and define the state-holding latches explicitly

2. Define the behavior in a single always
@(posedge clk) block

89

FSM with Combinational Logic

module FSM(output reg o, input a,
 input b, input reset);

reg [1:0] state, nextState;

always @(a, b, state)
 case (state)
 2’b00: begin
 nextState = a ? 2’b00 : 2’b01;
 o = a & b;
 end
 2’b01: begin
 nextState = 2’b00;
 o = 0;
 end
 endcase

Combinational block must be
sensitive to any change on
any of its inputs
(Implies state-holding
elements otherwise)

This is a Mealy FSM: output
is sampled every time state
or inputs change

Output o is declared a reg
because it is assigned
procedurally, not because it
holds state

90

FSM with Combinational Logic

module FSM(o, a, b, reset);
…

always @(posedge clk, reset)
 if (reset)
 state <= 2’b00;
 else
 state <= nextState;

Latch implied by sensitivity
to the clock or reset only

91

Writing Testbenches

module test;
reg a, b, sel;

mux m(y, a, b, sel);

initial
 begin
 $monitor($time,, “a = %b, b=%b, sel=%b, y=%b”,
 a, b, sel, y);
 a = 0; b= 0; sel = 0;
 #10 a = 1;
 #10 sel = 1;
 #10 b = 1;
 end
endmodule

Inputs to device under test

Device under test (DUT)

$monitor is a built-in event
driven “printf”

Stimulus generated by sequence
of assignments and delays

92

Writing Testbenches

93

module first_counter_tb();
// Declare inputs as regs and outputs as wires
 reg clock, reset, enable;
wire [3:0] counter_out;

//Initialize all variables
initial
 begin
 $display ("time\t clk reset enable counter");
 $monitor ("%g\t %b %b %b %b",
 $time, clock, reset, enable, counter_out);
 clock = 1; // initial value of clock
 reset = 0; // initial value of reset
 enable = 0; // initial value of enable
 #5 reset = 1; // Assert the reset
 #10 reset = 0; // De-assert the reset
 #10 enable = 1; // Assert enable
 #100 enable = 0; // De-assert enable
 #5 $finish; // Terminate simulation
 end

// Clock generator
always begin
 #5 clock = ~clock; // Toggle clock every 5 ticks
end

// Connect DUT to test bench
first_counter U_counter (clock, reset, enable, counter_out);

 end module

Simulating Verilog

94

Simulation Behavior

• Scheduled using an event queue

• Non-preemptive, no priorities

• A process must explicitly request a context
switch

• Events at a particular time unordered

• Scheduler runs each event at the current time,
possibly scheduling more as a result

95

Two Types of Events

• Evaluation events compute functions of inputs

• Update events change outputs

• Split necessary for delays, nonblocking
assignments, etc.

Evaluation event reads
values of b and c, adds them,
and schedules an update
event

a <= b + c
Update event writes
new value of a and
schedules any
evaluation events that
are sensitive to a
change on a signal

96

Simulation Behavior

• Concurrent processes (initial, always) run until they
stop at one of the following

• #42
– Schedule process to resume 42 time units from now

• wait(cf & of)
– Resume when expression “cf & of” becomes true

• @(a or b or y)
– Resume when a, b, or y changes

• @(posedge clk)
– Resume when clk changes from 0 to 1

97

Simulation Behavior

• Infinite loops are possible and the simulator does not
check for them

• This runs forever: no context switch allowed, so ready
can never change

while (~ready)
 count = count + 1;

• Instead, use

wait(ready);

98

Simulation Behavior

• Race conditions abound in Verilog

• These can execute in either order: final value
of a undefined:

always @(posedge clk) a = 0;

always @(posedge clk) a = 1;

99

Verilog and Logic Synthesis

100

Logic Synthesis

• Verilog is used in two ways
– Model for discrete-event simulation
– Specification for a logic synthesis system

• Logic synthesis converts a subset of Verilog
language into an efficient netlist

• One of the major breakthroughs in designing
logic chips in the last 20 years

• Most chips are designed using at least some logic
synthesis

101

Logic Synthesis Tools

• Mostly commercial tools
– Very difficult, complicated programs to write well
– Limited market
– Commercial products in $10k - $100k price range

• Major vendors
– Synopsys Design Compiler, FPGA Express
– Cadence BuildGates
– Synplicity (FPGAs)
– Exemplar (FPGAs)

• Academic tools
– SIS (UC Berkeley)

102

Logic Synthesis

• Takes place in two stages:

• Translation of Verilog (or VHDL) source to a
netlist

– Register inference

• Optimization of the resulting netlist to
improve speed and area

103

Logic Optimization

• Netlist optimization the critical enabling technology
• Takes a slow or large netlist and transforms it into one

that implements the same function more cheaply

• Typical operations
– Constant propagation
– Common subexpression elimination
– Function factoring

• Time-consuming operation
– Can take hours for large chips

104

Translating Verilog into Gates

• Parts of the language easy to translate

– Structural descriptions with primitives

• Already a netlist

– Continuous assignment

• Expressions turn into little datapaths

• Behavioral statements the bigger challenge

105

What Can Be Translated

• Structural definitions
– Everything

• Behavioral blocks
– Depends on sensitivity list
– Only when they have reasonable interpretation as

combinational logic, edge, or level-sensitive latches
– Blocks sensitive to both edges of the clock, changes on

unrelated signals, etc. cannot be synthesized

• User-defined primitives
– Primitives defined with truth tables
– Some sequential UDPs can’t be translated (not latches or

flip-flops)

106

What Isn’t Translated

• Initial blocks
– Used to set up initial state or describe finite testbench

stimuli
– Don’t have obvious hardware component

• Delays
– May be in the Verilog source, but are ignored by

synthesizer

• A variety of other obscure language features
– In general, things heavily dependent on discrete-event

simulation semantics
– Certain “disable” statements

107

Register Inference

• The main trick

• reg does not always equal latch

• Rule:

• Combinational if outputs always depend
exclusively on sensitivity list

• Sequential if outputs may also depend on
previous values

108

Register Inference

• Combinational:

reg y;
always @(a or b or sel)
 if (sel) y = a;
 else y = b;

• Sequential:

reg q;
always @(d or clk)
 if (clk) q = d;

Sensitive to changes on all of
the variables it reads

Y is always assigned

q only assigned when clk is 1

109

Register Inference

• A common mistake is not completely specifying a
case statement

• This implies a latch:

always @(a or b)
 case ({a, b})
 2’b00 : f = 0;
 2’b01 : f = 1;
 2’b10 : f = 1;
endcase

f is not assigned when {a,b} = 2b’11

110

Register Inference

• The solution is to always have a default case

always @(a or b)
 case ({a, b})
 2’b00: f = 0;
 2’b01: f = 1;
 2’b10: f = 1;
 default: f = 0;
endcase

f is always assigned

111

Inferring Latches with Reset

• Latches and Flip-flops often have reset inputs
• Can be synchronous or asynchronous

• Asynchronous positive reset:

always @(posedge clk or posedge reset)
 if (reset)
 q <= 0;
 else
 q <= d;

112

Inferring Latches with Reset

• Synchronous positive reset:

always @(posedge clk)

 if (reset)

 q <= 0;

 else

 q <= d;

113

Simulation-synthesis Mismatches

• Many possible sources of conflict

• Synthesis ignores delays (e.g., #10), but
simulation behavior can be affected by them

• Simulator models X explicitly, synthesis doesn’t
• Behaviors resulting from shared-variable-like

behavior of regs is not synthesized
– always @(posedge clk) a = 1;
– New value of a may be seen by other @(posedge clk)

statements in simulation, never in synthesis

114

